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Abstract

This paper investigates the problem of event-triggered control for the synchronization of networks of nonlinear dynamical
agents; distributed model-based approaches able to guarantee the synchronization of the overall system are derived. In these
control schemes all the agents use a model of their neighborhood in order to generate triggering instants in which the local
controller is updated and, if needed, local information based on the adopted control input is broadcasted to neighboring agents.
Synchronization of the network is proved and the existence of Zeno behaviour is excluded; an event-triggered strategy able
to guarantee the existence of a minimum lower bound between inter-event times for broadcasted information and for control
signal updating is proposed, thus allowing applications where both the communication bandwidth and the maximum updating
frequency of actuators are critical. This idea is further extended in an asynchronous periodic event-triggered schemes where
the agents check a trigger condition via a periodic distributed communication without requiring a model based computation.
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1 Introduction

The problem of controlling a multi-agent system to
reach a cooperative behaviour has been widely ex-
ploited in the literature. Specifically, synchroniza-
tion of dynamical systems has been investigated as
a paradigm for more specific behaviours like consen-
sus algorithms and platooning and formation control
[Olfati-Saber et al., 2007,Arcak, 2007].
Distributed control algorithms for multi-agent systems
have often been realized in continuous time. However,
continuous time control laws for such kind of networked
systems are not easy or even impossible to implement
in real applications where a wireless medium is often
exploited to enact the communication.

? The material in this paper was partially presented at the
IFAC meeting NOLCOS 2013. This work was supported by
the Swedish Research Council (VR) and the Knut and Alice
Wallenberg Foundation. The second author is also affiliated
with the KTH Centre for Autonomous Systems. Correspond-
ing author D. Liuzza.

In order to save the bandwidth and avoid unnecessary
updating, the case of event-triggered communication
[Tabuada, 2007] among single and double networked in-
tegrators has been studied in the recent literature, e.g.
[Dimarogonas et al., 2012,Seyboth et al., 2013].
Studies on synchronization of linear systems un-
der an event-triggered framework can be found in
[Guinaldo et al., 2011,Liu et al., 2013a] where the con-
trol signals are continuous in time and are generated
via a model based approach while the communication
signals are piecewise constant and based on the error
between the real state and the uncoupled model state.
Synchronization of linear systems has also been inves-
tigated in [Liu et al., 2013b], although the absence of
Zeno behaviour [Johansson et al., 1999] is not proved,
while in [Persis, 2013] a self-triggered approach is ex-
ploited in order to compute the next triggering instant.
In this paper we study a novel distributed event-
triggered control scheme able to guarantee synchro-
nization of nonlinear multi-agent systems by using dis-
tributed information related to each pair of connected
agents. The relative information on the state mismatch
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between each pair of connected agents will be consid-
ered, in order to generate local events and update the
control law. The proposed idea follows a model-based
approach, where each agent is equipped with its own
embedded processor and it is assumed to know the dy-
namical model of its neighbours and to predict their
state evolutions between any two consecutive triggering
events. Both the control and the communication sig-
nals will be piecewise constant and, specifically, neigh-
bouring nodes will exchange information about their
current (piecewise constant) control input. Such infor-
mation will allow each node to predict the evolution
of its neighbours and evaluate a trigger condition. The
proposed scheme solves the problem of achieving syn-
chronization of the interconnected nonlinear systems
while guaranteeing a nonzero lower bound for the inter-
event time. The existence of such bound is a stronger
result than the simple absence of Zeno behaviour, which
only excludes accumulation point over a finite time, but
does not prevent triggers to get infinitesimally close in
time. This advantage allows applications where both
the communication bandwidth and the maximum up-
dating frequency of actuators are critical. Furthermore,
it also allows the development of an asynchronous pe-
riodic event-triggered strategy, where the agents check
periodically a trigger condition and decide whether or
not update their control input. In this case, no compu-
tations based on the model are needed. Such periodic
event-triggered scheme represents the other major con-
tribution of this work.
For the sake of brevity, we omit a background section
on algebraic graph theory. For more details we refer the
reader to [Godsil and Royle, 2001].

2 Model-based Event-triggered Control

Consider N identical dynamical agents of the form:

ẋi = f(t, xi) + ui, xi, ui ∈ Rn, t ≥ 0, ∀i = 1, . . . , N.
(1)

The aim is to guarantee the emergence of coordinated
motion (synchronization) for all the agents by consider-
ing a distributed event-triggered control law. More pre-
cisely, the average trajectory is defined as

x̄(t) =
1

N

N∑
j=1

xj(t), (2)

and the synchronization errors as ei(t) = xi(t) − x̄(t),

which in stack vector form is e(t) =
(
eT1 (t), . . . , eTN (t)

)T ∈
RnN . We want to achieve either one of the following two
objectives:

Bounded synchronization. There exists an arbitrar-
ily small ε > 0 such that limt→∞ sup ||e(t)||2 ≤ ε;

Complete synchronization. limt→∞ ||e(t)||2 = 0.

The setup upon which the synchronization analysis will
be conducted in Section 3 is now described. Specifically,
we assume that each agent is able to exchange informa-
tion between a subset of the other agents. The resulting
communication network, which for the sake of simplic-
ity is assumed to be bidirectional, can be described by
an undirected adjacency matrix A = [aij ] defined in the
usual way. Furthermore, we assume that each agent is
equipped with its own embedded processor able to ex-
ecute a local control law based on the prediction of the
evolution of its neighbours. Thanks to this local informa-
tion, each node will execute an event-triggered update of
its controller. In particular, at each node i we associate:

(1) a time sequence, {tkij}∞kij=0 : N 7→ [0,+∞), of
events corresponding to node i receiving informa-
tion from node j, where aij 6= 0 and where kij is
the index of the sequence related to the pair (i, j);

(2) a time sequence, {tki}∞ki=0 : N 7→ [0,+∞), of in-
stants when node i updates its control input ui(t),
where ki is the index of the sequence related to the
updating of ui(t).

For any index kij ∈ N (or ki ∈ N) we have that
tkij ≤ tkij+1 (or tki ≤ tki+1).
For each sequence {tkij}∞kij=0 we introduce the last

function lij(t) : [0,+∞) 7→ N defined as lij(t) =
arg minkij∈N:t≥tkij {t− tkij} . So, for each time instant t,
tlij(t) is the most recent event occurred to i with respect
to j, while with tlij(t)+1 we indicate the next event.

Analogously, we define the function li(t) for the se-
quence {tki}∞ki=0.

As will be clear in what follows, the last indices lij(t)
and li(t) will be used to generate implicitly the se-
quences {tkij}∞kij=0 and {tki}∞ki=0.
Note that, although the communication graph is undi-
rected, events related to coupled pairs (i, j) are, in gen-
eral, not synchronous, so tlij(t) 6= tlji(t). For this reason,
the sequences {tkij}∞kij=0 and {tkji}∞kji=0 are generally
different. For the sake of brevity, in what follows we will
often omit the explicit dependence of lij and li on time.
The updating law of the sequences {tkij}∞kij=0 and
{tki}∞ki=0 will be described in detail in Section 3. Here
we anticipate that, for each node i, the control ui is
updated (and so a new event in the sequence {tki}∞ki=0
is generated) any time a new event on a connected pair
(i, j) happens, i.e., every time there is a new event on
one of the sequences {tkij}∞kij=0 , with j ∈ Ni. So, the
latter are subsequences of {tki}∞ki=0.

3 Event-triggered Synchronization

In the setup we introduced, each node knows the dynam-
ical model and the value of the initial conditions of its
neighbours (or the value of their state at a specific time
instant, for example at the first trigger). Therefore, each
node i can compute from any event at time tkij the flow
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ϕf (t − tkij , tkij , xj(tkij )), ∀j ∈ Ni. Note that in order
to evaluate it, node i must also have information on the
current control input uj(t) acting on each of its neigh-
bours. Later, an algorithm able to guarantee that this
information is shared among nodes will be presented.
However, we firstly focus on the triggering events occur-
ring at a generic node i.
For all pairs (i, j) ∈ E we define the trigger error

ẽij(t) := eij(tlij )− eij(t), t ∈ [tlij , tlij+1), (3)

where eij(t) = xj(t)− xi(t).
The error in (3) is referred to the last and the future
trigger instants and is used, as will be clear in what fol-
lows, to compute the future trigger instant tlij+1. Sim-
ilarly ẽji(t) is defined for the pair (j, i). Note that, as
mentioned earlier, events referred to node i with respect
to j are, in general, not synchronous with the events re-
ferred to j with respect to i. Indeed, as will be clear in
what follows, in general tlij 6= tlji since such time in-
stants depend on the whole neighbourhood of node i and
j respectively. For this reason, the pair (i, j) is treated
here as a directed link and, in general, ẽij(t) 6= ẽji(t).
For all pairs (i, j), we also define the trigger function
as Ξij(t, ẽij(t)) = ‖ẽij(t)‖2 − ςij(t), where ςij(t) is a
continuous-time non-increasing threshold function (par-
ticular choices of such function will be later considered
and analyzed). Then, an event occurs when the follow-
ing condition is violated

Ξij(t, ẽij(t), ςij(t)) < 0. (4)

For a generic agent i, the sequences {tkij}∞kij=0 and
{tki}∞ki=0 are generated by Algorithm 1 given below, as
well as the piecewise constant control input ui(i), whose
value at each update is computed as in (5), with c > 0
being a coupling gain and Γ = ΓT > 0 being the inner
coupling matrix. Such algorithm is run independently at
each node of the network. Note that, as every node that
triggers changes its control input and broadcasts it to
its neighbours (line 10), then all the nodes j ∈ Ni can
update their dynamic model of i taking into account
the new input ui(tli) and the current state xi(tli) (line
3). So, they will always be able to evaluate the correct
value of the flow ϕf (·) of node i. Notice also that, since
the control input ui(t) is a piecewise constant function,
node i does not need to transmit such information con-
tinuously in time, but only when there is a change in its
current value.
The initialization of Algorithm 1 happens when at least
one node sends the triplet (t0i , xi(t0i), ui(t0i)) to its
neighbours, with t0i being the time instant when the
generic node i broadcasts for the first time its triplet.
Then, having received the value of the triplet, all the
neighbours can start predicting its evolution and, at the
same time, broadcasting their triplets to the transmit-
ting node and to their neighbours. In this way all the
nodes of the network can be connected in a finite time.
Notice that condition (4) is always verified when a node

joins for the first time the network since it computes
the first synchronizing control input using the state
information coming from its neighbours.

Algorithm 1 Event-triggered update

1: loop
2: Integrate the dynamical model ẋj=f(t,xj(t))+

uj(tlj ) from the initial condition xj(tlj ) for all the
neighbouring nodes j∈Ni, while listening to possible
transmission from them;

3: if a new value uh(t
lh

), with h∈Ni, is received then
update the dynamical model ẋh=f(t,xh(t))+uh(t

lh
);

4: end if
5: if condition (4) is violated for a node h∈Ni at a

time instant t∗ then

6: li←li+1 and tli←t
∗;

7: lih←lih+1 and t
lih
←t∗;

8: eih(t
lih

)←eih(t=t∗);
9: ẽih←0

10: Update the control input to the value

ui(t)=c
∑N

j=1
aijΓeij(tlij ), t∈[tli ,tli+1), (5)

and broadcast ui to the neighbourhood Ni;
11: end if
12: end loop

Remark 2 If we choose ςij(t) = ςji(t), Algorithm 1
guaranties that when node i triggers and updates its con-
trol, node j also triggers and so we have that tlij =
tlji , which in turn implies the symmetry of the coupling
strengths between any connected pair (i, j). This fact is
a direct consequence of the choice of symmetric thresh-
old functions together with the symmetry of the trigger
condition expressed by (3)–(4).

Note that, when condition (4) in Algorithm 1 is violated
for a certain node h ∈ Ni (line 5), lines from 6 to 10
could also be replaced by the following fragment of code:

6: li←li+1 and tli←t
∗;

7: lij←lij+1 and tlij ← t∗, ∀j∈Ni;
8: eij(tlij )←eij(t=t∗), ∀j∈Ni;
9: ẽij←0, ∀j∈Ni;

10: Update the control input to the value

ui(t)=c
∑N

j=1
aijΓeij(tli ), t∈[tli ,tli+1). (6)

Basically, in this last case, once the first trigger occurs,
say for ẽih(t), then not only the current value eih is up-
dated and the corresponding trigger error (3) reset, but
also all other values eij with j ∈ Ni. When the above
choice is made, we denote the obtained algorithm as Al-
gorithm 1′.
The control input (5) lead to a diffusively coupled event-
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triggered dynamical network given by

ẋi(t) = f(t, xi(t)) + c

N∑
j=1

aijΓeij(tlij ), (7)

for t ∈ [tli , tli+1) and for i = 1, . . . , N . A similar expres-
sion is obtained considering the control input (6).

Remark 3 When using Algorithm 1′, all triggers related
to pair (i, j), with j ∈ Ni, are forced to be synchronous
and, moreover, tlij = tlih for all j, h ∈ Ni. Conversely,
at a generic time instant t, we have eij(t) 6= eji(t). So,
as all eij are updated at the same time, the symmetry is
lost of the control actions between coupled pairs (i, j).

A convergence result for the considered event-triggered
control scheme is now given. Before this, let us define

ες :=
c
√
NNmax‖Γ‖2

cλ2(L⊗ Γ)− Lf
, (8)

and for any constant δ > 0,

α :=
δ

1 + δ
[cλ2(L⊗ Γ)− Lf ] , (9)

where L represents the Laplacian network of the graph
and λ2(L⊗Γ) indicates the smallest nonzero eigenvalue
of the positive semidefinite matrix L⊗ Γ.

Theorem 1 Let us consider the event-triggered con-
nected network (7), where the function f(t, x) is Lips-
chitz continuous with respect to x with Lipschitz constant
Lf and let us choose a coupling gain c such that

Lf − cλ2(L⊗ Γ) < 0. (10)

Let us consider some constants kς such that

kς ≥
‖e(0)‖2
ες

, (11)

and λς such that
0 < λς < α, (12)

where ες and α are defined in (8) and (9), respectively.
We have the following results:

i. If limt→∞ ςij(t) = ς̄ij, with ς̄ij > 0 for all i, j such
that aij 6= 0, then both Algorithm 1 and Algorithm 1′

guarantee bounded synchronization of the network;
ii. If ςij(t) = kςe

−λςt for all pairs (i, j) such that aij 6=
0, then Algorithm 1 and Algorithm 1′ guarantee
complete synchronization of the network with expo-
nential rate λς .

Furthermore, no Zeno behaviour occurs.

PROOF. The proof is split into two steps. Firstly it
is proven that (Step 1) synchronization occurs and then
(Step 2) that no Zeno behaviour occurs. Equation (7)
can be rewritten as

ẋi = f(t, xi) + c

N∑
j=1

aijΓeij(t) + (13)

c

N∑
j=1

aijΓẽij(t), ∀i = 1, . . . , N.

Step 1. Let us consider the candidate Lyapunov func-
tion V (e(t)) = 1

2e
T e defined in the error space. We ob-

tain

V̇ (e(t)) =

N∑
i=1

eTi ėi =

N∑
i=1

eTi f(t, xi)−
N∑
i=1

eTi ˙̄x−

ceT (L⊗ Γ) e+ c

N∑
i=1

eTi

N∑
j=1

aijΓẽij .

Now, from condition (4), taking into account that∑N
i=1 e

T
i

˙̄x = 0, adding and subtracting
∑N
i=1 e

T
i f(t, x̄),

where
∑N
i=1 e

T
i f(t, x̄) = 0 since

∑N
i=1 e

T
i = 0, the fol-

lowing inequality holds using the one-sided Lipschitz
property [Agarwal and Lakshmikantham, 1993]

V̇ ≤ LfeT e− ceT (L⊗ Γ)e+ c‖e‖2
√
NNmax‖Γ‖2ς(t),

where Lf is the Lipschitz constant of the func-
tion f and ς(t) = maxi,j ςij(t). To obtain the pre-
vious inequality we have exploited the fact that

‖c
∑N
i=1 e

T
i

∑N
j=1 aijΓẽij‖2 ≤ ‖e‖2 · ‖ξ‖2, with ξ =(

c
∑N
j=1 a1jΓẽ1j , . . . , c

∑N
j=1 aNjΓẽNj

)T
and that,

since ‖ẽij‖2 ≤ ς(t)∀i, j, we can use the bound

‖ξ‖2 ≤ c
√
NNmax‖Γ‖2ς(t).

Writing e = aê, where a = ‖e‖2 is the norm of the er-
ror and ê = 1

‖e‖2 e is the unitary vector associated to e

and considering that, due to the Rayleigh-Ritz theorem
[Horn and Johnson, 1987], λ2(L⊗ Γ)eT e ≤ eT (L⊗ Γ)e,
the above inequality can be rewritten as

V̇ (e) ≤ (Lf − cλ2(L⊗ Γ)) a2 + c
√
NNmax‖Γ‖2ς(t)a.

(14)
Now, since c is chosen in order to fulfill inequality (10),
then the error trajectory e(t) converges to the invariant
region ‖e(t)‖2 ≤ ε, where

ε =
c
√
NNmax‖Γ‖2ς(t)

cλ2(L⊗ Γ)− Lf
, (15)

or, using (8), equivalently ε = εςς(t). So, if limt→∞ ςij(t) =
ς̄ij is verified, then limt→+∞ ς(t) = ς̄ > 0 and so
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bounded synchronization is ensured. Conversely, if
ςij(t) = kςe

−λςt holds, then limt→+∞ ς(t) = 0 and so
complete synchronization is achieved since the invariant
region given by ε shrinks with exponential rate λς .
Step 2. We prove next that no Zeno behaviour occurs.
The more complicated case (item ii.) of complete syn-
chronization will be firstly analysed, while a simpler
reasoning will be later used for the case of bounded
synchronization (item i.).
Let us define the strictly decreasing function

b(t) = (1 + δ)εςς(t), (16)

where δ > 0 is an arbitrary constant value.
In order to prove that no Zeno behaviour occurs, we first
show that for any time instant, inequality

‖e(t)‖2 ≤ b(t) ∀t ≥ 0, (17)

holds. In order to do so, let us note that ‖e(0)‖2 < b(0).
Now, since both e(t) and b(t) are continuous, if there is
no time instant t̄ such that b(t̄ ) = ‖e(t̄ )‖2, then relation
(17) is trivially true. So, let us suppose that such time
instant t̄ exists. Now, for all t ≥ t̄ we evaluate the value
of V̇ (e) when e is such that ‖e‖2 = b. More precisely we
have that

V̇ (e)
∣∣∣
‖e‖2=b

≤ −δ(1 + δ)
[c
√
NNmax‖Γ‖2]2

cλ2(L⊗ Γ)− Lf
ς2(t).

where the above formula has been obtained substituting
a with expression (16) in (14). Multiplying and divid-
ing the above relation by (1 + δ)[cλ2(L ⊗ Γ) − Lf ] the
following expression is obtained

V̇ (e)
∣∣∣
‖e‖2=b

≤ −αb2, (18)

where α has been defined as in (9). Now, since

V̇ (e)
∣∣∣
‖e‖2=b

=
d

dt

1

2
‖e‖22

∣∣∣∣
‖e‖2=b

= b
d

dt
‖e‖2

∣∣∣∣
‖e‖2=b

,

(19)
comparing (18) and (19) we get

d

dt
‖e‖2

∣∣∣∣
‖e‖2=b

≤ −αb. (20)

Moreover, considering the decreasing function B(t) =
1
2b

2 and remembering that ς(t) = kςe
−λςt, we have Ḃ =

−λςb2. So, using (12) we get V̇ (e)
∣∣∣
‖e‖2=b

≤ Ḃ < 0 or,

equivalently

d

dt
‖e‖2

∣∣∣∣
‖e‖2=b

≤ −αb ≤ −λςb. (21)

Since expression (21) holds for all values b ∈ [0, b(0)],
(17) can be obtained by integrating both sides of (21)
with respect to time.
We can now show that no Zeno behaviour occurs. Let
us consider the dynamics of the error between a generic
connected pair of nodes (i, h) ∈ E . Such dynamics can
be expressed as ėih(t) = ẋh(t)− ẋi(t) thus,

ėih = f(t, xh) + c

N∑
j=1

ahjΓehj(t) + c

N∑
j=1

ahjΓẽhj(t)

−f(t, xi)− c
N∑
j=1

aijΓeij(t)− c
N∑
j=1

aijΓẽij(t).

Now, taking the norm of both sides of the above equation
into account that f is Lipschitz and that ‖eih(t)‖2 =
‖xh(t) − xi(t) + x̄(t) − x̄(t)‖2 ≤ ‖eh(t)‖2 + ‖ei(t)‖2 ≤
2‖e(t)‖2 and recalling relation (17), we obtain

‖ėih(t)‖2 ≤ 2 [Lf + c‖Γ‖2(Nh +Ni)] b(t) (22)

+c‖Γ‖2(Nh +Ni)ς(t),

where Ni and Nh are the degrees of nodes i and h,
respectively, and where we have bounded ‖ẽij(t)‖2
and ‖ẽhj(t)‖2 with the maximum admissible value
of the threshold according to condition (4). Let
q1 = 2 [Lf + c‖Γ‖2(Nh +Ni)] and q2 = c‖Γ‖2(Nh+Ni).
Then, at the last trigger event t = tlih , from (22) we
obtain

‖ėih(t)‖2 ≤ q1(1 + δ)εςkςe
−λςtlih + q2kςe

−λςtlih , (23)

where, we have considered the choice ςij(t) = ς(t) =
kςe
−λςt for all the pairs (i, j) (item ii. in the Theorem

statement), with aij 6= 0. Now, in order to prove now
that Zeno behaviours do not occur in the network, we
show that for all triggering instants tkih there exists a
nonzero lower bound τm > 0 such that the next event
tkih+1 will satisfy the condition tkih+1−tkih ≥ τm. To do
so, let us consider the dynamics of the triggering error
ẽih(t) at time instants t > tihl . Clearly, the following
considerations will be valid not only for the last event
instant tlih but for all instants tkih , since the sequence
{tkih}∞kih=0 is implicitly defined by the sequence of the
last events. It is possible to write

‖ẽih(t)‖2 ≤
∫ t

t
lih

‖ ˙̃eih(s)‖2 ds =

∫ t

t
lih

‖ėih(s)‖2 ds.

Taking into account inequality (23) and considering t =
tlih + τ from the above formula, we can write

‖ẽih(tlih+τ)‖2 ≤
(
q1(1 + δ)εςkςe

−λςtlih + q2kςe
−λςtlih

)
τ.

(24)
Referring to the trigger function (4) with the considered
threshold ς(tlih + τ) = kςe

−λς(tlih+τ), we have that τm
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solves the equation

kςe
−λς(tlih+τm) =

(
q1(1 + δ)εςkςe

−λςtlih + q2kςe
−λςtlih

)
τm.

Multiplying both sides of the previous equation by
1
kς
eλςtlih we finally obtain

e−λςτm = (q1(1 + δ)ες + q2) τm, (25)

which implicitly defines τm as a non-zero lower bound
between any two consecutive triggering instants.

The case of bounded synchronization (item i. of the The-
orem statement) is, instead, easier than the case of com-
plete synchronization. Indeed, note that

‖eih(t)‖2 ≤ 2‖e(t)‖2 ≤ 2 sup
t′∈[t,+∞)

‖e(t′)‖2 ≤ 2b̃(t),

(26)

where b̃(t) is the nonincreasing piecewise smooth contin-
uous function

b̃(t) =

{
‖e(t)‖2 if ‖e(t)‖2 > εςς(t)

εςς(t) if ‖e(t)‖2 ≤ εςς(t).

So, considering a generic triggering event at t = tlih ,
inequality (22) can be bounded as

‖ėih(t)‖2 ≤ q1b̃(tlih) + q2ς(tlih), ∀t ≥ tlih , (27)

where the same positions of q1 and q2 as done in equation
(23) have been used in order to simplify the notation.
Integrating both sides of (27) with respect to time, a
nonzero lower bound τih(tlih) for the inter-event time
between the last trigger event tihl and the next one tlih+1

for the generic pair (i, h) is

τih(tlih) =
ς̄ih

q1b̃(tlih) + q2ς(tlih)
. (28)

This completes the proof.

Remark 4 Notice that choosing a high value of λς al-
lows to speed up the convergence rate. However, (25)
shows that a faster synchronization reduces the value of
the inter-event bound and so increases the frequency of
the triggers.

Remark 5 Note that Theorem 1 holds for both Algo-
rithm 1 and Algorithm 1′ since the proof is independent
on the updating criterion of eij. Since in Algorithm 1′

all eij with j ∈ Ni are updated at the same time in-
stant tli and the corresponding errors ẽij are reset, both
for bounded and complete synchronization there implic-
itly exists a non-zero lower bound between any two con-
secutive updating events of the control law. For this rea-
son, Algorithm 1′ can be implemented in all applications

where constraints on actuators do not allow to change
the control input arbitrarily fast.

4 Periodic event-triggered synchronization

The scheme presented in the previous section can be eas-
ily modified in order to derive a periodic event-triggered
synchronization setup, where the agents communicates
in an asynchronous way and with clocks of possibly dif-
ferent periods. Such scheme exploits the advantages of
having a nonzero lower bound for the inter-event times
in Algorithm 1′, which turns to be useful for a periodic
event detection of a trigger condition. Specifically, we
no longer require a model based approach and we con-
sider here for each agent i a periodic checking sequence
{Tpi}∞pi=0, where the agent obtains its neighbours’ state

value. Such sequence is computed considering the sam-
pled times Tpi = t0i +p

iτi, with τi ≤ τm, where τm is the
solution of (25). For the sake of brevity and without loss
of generality, we present here the case of a constant pe-
riod τi, but the same setup and the same analysis can be
adopted in the case of a time-varying τi(Tpi) ≤ τm, thus
resulting in a cyclic event-triggered detection, instead of
a periodic one. More specifically, at each Tpi , agent i ob-
tains the measurement of its own state and the one of
its neighbours and evaluates, for all h ∈ Ni, the value
ẽih(Tpi) given in (3), deciding whether or not to trigger
an update of its piecewise constant control input (6) ac-
cording to a suitable trigger condition. So, the resulting
updating sequence {tki}∞ki=0 is a subsequence of the pe-
riodic checking sequence, namely {tki}∞ki=0 ⊆ {Tpi}

∞
pi=0.

Considering the same constants given in Section 3, the
periodic event-triggered synchronization algorithm is re-
ported below as Algorithm 2.

Algorithm 2 Periodic event-triggered update

1: for pi = 0, 1, . . . do
2: At each instant Tpi=t0i+p

iτi, obtain neighbours’
state information and evaluate ẽih(Tpi ), with h∈Ni.

3: Compute τ̄i(Tpi )=minh∈Ni τ
∗
ih(Tpi ), with τ∗ih(Tpi ) the

solution of the implicit equation

e
−λςτ∗ih(T

pi
)
= 1
kς
‖ẽih(Tpi )‖2e

λςTpi+(q1(1+δ)ες+q2)τ∗ih(Tpi )

(29)
4: if τ̄i(Tpi) < τi then
5: li←li+1 and tli←Tpi ;
6: ẽih←0;
7: Update the control input ui(tli ) to the value

in (6);
8: end if
9: end for

For the periodic event-triggered scheme we can give the
following result.

Theorem 2 Let us consider network (7), where the
function f(t, x) is Lipschitz continuous with respect to
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x with Lipschitz constant Lf and let us choose a cou-
pling gain c and a function ς(t) = kςe

−λςt such that the
inequalities (10)-(12) of Theorem 1 hold. Then, the pe-
riodic event-triggered control scheme given in Algorithm
2 guarantees complete synchronization of the network
with exponential rate λς .

PROOF. The proof can be obtained following similar
steps of those in the proof of Theorem 1. In particu-
lar, the key point is to prove that the trigger condition
τ̄i(Tpi) < τi guarantees ‖ẽih(t)‖2 ≤ ς(t) for all t ≥ 0 and
for all the connected pairs (i, h). To do so, let us consider
an induction argument starting from a generic update
time tli = Tli . Following the same steps leading to (22),
we obtain

‖ėih(t)‖2 ≤ q1(1 + δ)εςkςe
−λςTli + q2kςe

−λςTli , (30)

which is the same inequality of (23) where we have sub-
stituted tlih with Tli . Now, considering that ẽih(t) =

ẽih(Tli)+
∫ t
Tli

˙̃eih(s)ds, analogously to what was done for

Theorem 1, evaluating the norm of both sides and substi-
tuting (30), we obtain ‖ẽih(Tli + τih)‖2 ≤ ‖ẽih(Tli)‖2 +(
q1(1 + δ)εςkςe

−λςTli + q2kςe
−λςTli

)
τih. Following sim-

ilar steps to those taken to obtain equation (25), we get
the implicit equation (29) in the variable τ∗ih(Tpi). Since
at tli = Tli we have ‖ẽih(t)‖2 = 0 due to line 6 in Algo-
rithm 2, equations (25) and (29) are identical, provid-
ing the same solution τm. So, at the following checking
instant ‖ẽih(Tpi+1)‖2 ≤ ς(Tpi+1). Solving again equa-
tion (29) at Tpi+1, if τ̄i(Tpi+1) ≥ τi then at the check-
ing instant Tpi+2 we will satisfy again ‖ẽih(Tpi+2)‖2 ≤
ς(Tpi+2), otherwise a trigger is generated and the con-
trol input is updated. By induction, the reasoning can
be iterated for all the future instants,while the stabil-
ity proof follows exactly the same steps as in Step 1 of
Theorem 1.

5 Numerical Examples

We consider a network of identical Chua circuits, a
paradigmatic nonlinear example of chaotic behaviours
which has been considered as a testbed for both numeri-
cal and experimental analysis of theoretical synchroniza-
tion strategies and for applications to communication
[Gámez-Guzmán et al., 2009,de Magistris et al., 2012].
The dynamical model of a single system is ẋi = f(xi)
given by ẋi1 = α [xi2 − xi1 − ϕ(xi1)] ; ẋi2 = xi1 −
xi2 + xi3; ẋi3 = −βxi2, with α = 10, β = 17.30, and
ϕ(xi1) = bxi1 + (a − b)(|xi1 + 1| − |xi1 − 1|)/2, with
a = −1.34, b = −0.73. For this vector field it is possible
to evaluate an upper bound for the Lipschitz constant
Lf = 34.2; a network of five Chua circuits over a con-
nected random graph is simulated and the matrix Γ is
the identity matrix for the sake of simplicity; a value

[0, 1) s [1, 2) s [2, 3) s [3, 4) s [4, 5)

node 1 32 33 26 25 22

node 2 35 25 27 39 33

node 3 29 25 19 22 23

node 4 32 24 22 27 36

node 5 15 15 14 21 23

Table 1
Number of triggers in unitary intervals for the network of
Chua systems: static thresholds

of the minimum coupling guaranteeing inequality (10)
is c = 13.7. Simulations have been performed applying
Algorithm 1 and setting an identical static threshold
ςij(t) = ς̄ for all connected pairs (i, j), with ς̄ = 0.1. The
synchronization of the chaotic trajectories is obtained
within the first 2 s (figures are omitted here for the sake
of brevity). Also, simulations have been carried out for
Algorithm 1′ considering identical exponential thresh-
old functions ςij = kςe

−λςt with kς = 1 and λς = 0.5
(again figures are omitted for the sake of brevity). In
this case, the exponential synchronization of the net-
work is obtained within 5 s. The number of triggers for
each node in time intervals of unitary length for the
first 5 s of simulation is reported in Tab. 1 and Tab. 2
for the case of static threshold with Algorithm 1 and
for the case of exponential threshold with Algorithm 1′,
respectively. Observe how the first approach generates
an higher number of triggers than the second one. Sim-
ulations have also been carried out for the case of the
same static threshold with Algorithm 1′, showing better
performance than the case with Algorithm 1.
Simulations for the case of periodic event-triggered
synchronization developed in Algorithm 2 have been
conducted, considering for (29) the same parameters of
the case of identical exponential threshold. This led to
a τm = 0.17 ms and so, τi ≤ τm have been randomly
assigned accordingly for each node. As illustrated in
Tab. 3, a significant higher number of triggers is gener-
ated in the periodic case due to the conservativeness of
the approach, that does not rely on model-based com-
putations. Although, a faster convergence is obtained
(within 0.5 s) due to the reduced error mismatch on the
connected pairs of agents.
Finally, for the sake of comparison, a time-triggered
control protocol where all the nodes update their con-
trol law following a centralized sampling of period
Ts = 60 ms has been carried out. Such sampling period
corresponds to the average of all the inter-event inter-
vals obtained for the case of exponential thresholds and
leads the network to instability.

6 Conclusions

A model-based approach where connected agents broad-
cast input information has been considered and results
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[0, 1) s [1, 2) s [2, 3) s [3, 4) s [4, 5)

node 1 16 14 17 16 17

node 2 19 25 26 26 22

node 3 7 12 18 13 13

node 4 0 0 0 0 20

node 5 0 0 0 0 10

Table 2
Number of triggers in unitary intervals for the network of
Chua systems: exponential thresholds

[0, 1) s [1, 2) s [2, 3) s [3, 4) s [4, 5)

node 1 5882 5883 5882 5882 5883

node 2 6667 6666 6667 6667 6666

node 3 1000 1000 1000 1000 1000

node 4 8333 8333 8334 8333 8333

node 5 7143 7142 7143 7143 7143

Table 3
Number of triggers in unitary intervals for the network of
Chua systems: periodic event-triggered

have been given for bounded synchronization and for
exponential synchronization. The absence of Zeno be-
haviour has been proven guaranteeing a lower bound for
the inter-event times between consecutive updates. This
fact allowed to extend the results to an asynchronous
periodic event-triggered setup, where the agents period-
ically gather neigbours’ state information and check for
a trigger condition in order to decide whether or not up-
date their control input. In this latter scheme, a model-
based information is no longer required.
The proposed strategies have been shown to be promis-
ing for synchronization of nonlinear systems.
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