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Abstract— This paper presents a method to control vehicular
platoons in an event-triggered fashion. Therefore, every vehicle
broadcasts its position and velocity information only at discrete
event times. These events are determined by a trigger rule
only depending on the agents state and on time. Two control
architectures are considered. The first one, called symmetric
bidirectional, uses information of the front and back neighbor
in the control law. The architecture is analyzed with a linear
controller and it is shown that the state error converges to
an adjustable region around the origin. In earlier work it is
suggested to use a nonlinear controller if solely information
from the front neighbor is available. Thus, a nonlinear event-
triggered predecessor-following control is developed and ana-
lyzed additionally. Not only bounds are given for the state of
each vehicle, but it is also shown that the converging input
converging state property holds. In both cases we guarantee
the existence of a lower bound on the inter-event times. The
benefits of both strategies are verified in numerical simulations.

I. INTRODUCTION
An important idea to prevent traffic congestion and in-

crease road safety is to run a big group of vehicles in a
platoon with small gaps between the vehicles. Two decentral-
ized control architectures only depending on nearest neighbor
interaction are stated in [1] to control such a platoon. Since
the paper gives a detailed analysis of linear and nonlinear
controllers regarding stability and robustness this is the
motivating paper on which we build up our work. A possible
extension to the configuration in [1] is to assume the platoon
being equipped with a communication network and therefore
the control should be adapted to keep the network load low
while preserving the performance of the controller. To reduce
the network load we try to combine the work on vehicular
platoons with current work on event-triggered control of
multi-agent systems. Since the vehicles are modeled with
double-integrator dynamics in this paper especially work on
multi-agent systems with double-integrator dynamics, like in
[2] seems to be relevant.

Control of vehicular platoons is a well known problem.
In [3] the current progress on longitudinal control problems
in platoons of vehicles is summarized with focus on good
ways to model the system and find necessary sensors and
actuators to design a controller. Much work has been done
in the analysis of platoon stability, which is based on the
string stability concept introduced in [4]. In [5] a controller
for a detailed vehicle model is stated that guarantees vehicle
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stability as well as platoon stability for different spacing
strategies and only depends on relative information of front
and back neighbor. Error amplification and disturbance prop-
agation through the platoon are investigated in [6] and [7]
for platoons with nearest neighbor interaction. [8] looks at
string stability under communication constraints, assuming
the platoon has a communication network. Assuming such
a communication network, another interesting question that
arises is the influence of the network topology on the platoon
behavior. The work in [9] and [10] discusses this topic. In
[1], two control architectures are investigated as linear and
nonlinear controllers. The analysis combines analytic and
numerical results on stability and robustness and therefore
serves as a good basis to build our work on event-triggered
control of vehicular platoons.

The idea of event-triggered control is that the controller
is not updated continuously but only at certain times. In
contrast to time-triggered control these discrete times are
not known before, e.g., through a fixed trigger time, but
the event times are determined by a trigger rule. Early
work on event-triggered control introduced an event-based
PID controller in [11]. Further work investigated event-based
control for larger classes of systems. The work in [12] treats
nonlinear systems being rendered input-to-state stable ([13])
by a given controller. It states a trigger law that guarantees
asymptotic stability and guarantees that the time between two
events is lower bounded. Enhancements based on this work
lead to a Lyapunov framework that guarantees asymptotic
stability and can be used to synthesize trigger laws in [14].
In [12] the possibility to apply event-triggered control to
networked dynamic systems is mentioned. In these systems
a big improvement is expected if every agent decides on
its own when it broadcasts its state information, since then
not only the control effort but also the network load is
reduced. This concept is analyzed in [15] for a class of
networked dynamic systems with controllers that fulfill a
certain matching condition. In [16] the well known controller
for the consensus problem from [17] is investigated in an
event-triggered and self-triggered implementation. The work
in [2] also focuses on the consensus problem not only in the
single-integrator but also in the double-integrator case. In this
work each agent only observes its own state and the trigger
rule decides when to send the information to its neighbors. In
this paper we fuse the design scheme of [2] with the control
laws in [1] to derive event-triggering rules for platooning.

The following Section gives some necessary definitions
and states the problem for the following two main parts.
In Section III a linear event-triggered control in symmet-
ric bidirectional architecture is analyzed, while a nonlinear
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Fig. 1. Desired configuration with constant spacing and constant velocities
with a fictitious leader agent 0∗

predecessor-following control is investigated in Section IV.
Section V gives some simulations verifying the theoretical
results and showing the benefits of this work, ending in a
conclusion in Section VI.

II. DEFINITIONS AND PROBLEM STATEMENT

Firstly we want to state some terminology from graph the-
ory as well as concerning event-triggered control. Afterwards
we state the problem being investigated in this paper.

A. Definitions

The graph class G = (V, E) considered in this paper
consists of a set of nodes V , with |V| = N + Nr, where
N is the number of real agents and Nr is the number of
fictitious reference agents, and edges E . The Laplacian of a
graph, i.e., L(G) ∈ R|V|×|V| is defined as in [18], where
many matrix properties and further definitions are stated.
Furthermore if we eliminate column k and row k for each
virtual reference agent k we get the grounded Laplacian
matrix Lg(G) ∈ RN×N , which is used in [9].

In our event-triggered control scheme every agent decides
on its own at what time it transmits its current state to its
neighbors. The discrete times when agent i triggers its state
information are denoted by tik with k ∈ N and the transmitted
state at this time is x̂ = x(tik). One important property
in event-triggered control is avoiding Zeno behavior. Zeno
behavior occurs according to [19] when there is an infinite
number of events triggered in finite time.

B. Problem statement

Every vehicle in the platoon is modeled as a fully actuated
point mass moving in one dimension, i.e.,

p̈i = ui, i ∈ {1, . . . , N} . (1)

The control objective is, as in [1], to keep a formation
which is specified by a fictitious reference agent and positive
constant gaps ∆(i−1,i) between vehicles i − 1 and i. The
constant velocity trajectory of reference agent 0 is given as
p∗0(t) = v0t + p0,0 and only agent 1 knows this trajectory.
Therefore the desired trajectory of agent i, i.e., p∗i (t) =
p∗0(t)−∆(0,i) = p∗0(t)−∑i

j=1 ∆(j−1,j) is not accessible to
agent i ∈ {2, . . . , N}. The desired configuration is illustrated
in Fig. 1.

Furthermore [1] states two different control schemes. In
the first one, called predecessor-following architecture, the
control of each agent only depends on relative position and

velocity measurements to its front neighbor and the desired
gap, i.e., ∀i ∈ {1, . . . , N}

ui = −f(pi − pi−1 + ∆(i−1,i))− g(ṗi − ṗi−1). (2)

Agent 1 applies the same control law with the fictitious
reference agent as its predecessor p0(t) = p∗0(t).

The other control scheme is called symmetric bidirectional
architecture and thus takes also into account relative position
and velocity measurement to the back neighbor for all
vehicles excluding the last one, since it has no following
vehicle, i.e., ∀i ∈ {1, . . . , N − 1}

ui = −f(pi − pi−1 + ∆(i−1,i))− g(ṗi − ṗi−1)

−f(pi − pi+1 −∆(i,i+1))− g(ṗi − ṗi+1),

uN = −f(pN − pN−1 + ∆(N−1,N))− g(ṗN − ṗN−1). (3)

In both cases we assume f, g : R→ R to be odd and smooth
enough to guarantee existence of a solution.

With continuous exchange of information these two con-
trol architectures are well studied in [1] according to stability
and robustness. We try to investigate them now under event-
triggered control. The basic concept is that agent i broadcasts
its state information only when a trigger function fi( · )
reaches a specific value. To state the trigger function we
introduce the transmitted errors for all t : tik ≤ t < tik+1

ei(t) = p̂i + (t− tik)ˆ̇pi − pi(t)
edi(t) = ˆ̇pi − ṗi(t), (4)

where p̂i = pi(t
i
k) and ˆ̇pi = ṗi(t

i
k) are the last transmitted

position and velocity values from agent i. From [2] we use
the trigger condition fi( · ) > 0 and the trigger function

fi(t, ei(t), edi(t)) =

∥∥∥∥[ ei(t)edi(t)

]∥∥∥∥− (c0 + c1e
−αt) . (5)

This means that agent i transmits its state to its neighbors
when fi > 0, i.e., when ‖hi(t)‖ = ‖

[
ei(t) edi(t)

]T ‖ >
c0 + c1e

−αt. In the following Sections we analyze the
behavior of the two controllers (2),(3) in an event-triggered
implementation. The controller uses a first-order hold for the
position and a zero-order hold for velocity information. In
the case of a predecessor-following control architecture this
leads to p̈i = −f(p̂i + (t− tik)ˆ̇pi − p̂i−1 − (t− ti−1k )ˆ̇pi−1 +
∆(i−1,i))− g(ˆ̇pi− ˆ̇pi−1) for all i = {1, . . . , N}. We define
the state errors

p̃i(t) = pi(t)− p∗i (t), ˙̃pi(t) = ṗi(t)− v0 (6)

and use (4), (6) to give the state error dynamics of the closed
loop with event-triggered predecessor-following control ar-
chitecture

¨̃pi(t) = −f (p̃i(t)− p̃i−1(t) + ei(t)− ei−1(t))

−g
(

˙̃pi(t)− ˙̃pi−1(t) + edi(t)− edi−1
(t)
)
. (7)



With the symmetric bidirectional control architecture the
closed-loop system is

¨̃pi(t) = −f (p̃i(t)− p̃i−1(t) + ei(t)− ei−1(t))

−g
(

˙̃pi(t)− ˙̃pi−1(t) + edi(t)− edi−1
(t)
)

−f (p̃i(t)− p̃i+1(t) + ei(t)− ei+1(t))

−g
(

˙̃pi(t)− ˙̃pi+1(t) + edi(t)− edi+1
(t)
)

¨̃pN (t) = −f (p̃N (t)− p̃N−1(t) + eN (t)− eN−1(t))

−g
(

˙̃pN (t)− ˙̃pN−1(t) + edN (t)− edN−1
(t)
)
. (8)

This is the basis for our analysis with trigger rule (5)
regarding (asymptotic) bounds on the state errors while
avoiding Zeno behavior.

III. LINEAR EVENT-TRIGGERED CONTROL IN
SYMMETRIC BIDIRECTIONAL ARCHITECTURE

Firstly the event-triggered symmetric bidirectional control
architecture with f and g being linear is investigated, i.e.,
f(z) = kz, g(z) = bz with k, b > 0. Using (8) and the stack
vectors

x(t) =
[
p̃1(t) ˙̃p1(t) . . . p̃N (t) ˙̃pN (t)

]T
,

e(t) =
[
e1(t) ed1(t) . . . eN (t) edN (t)

]T ∈ R2N

it is possible to write the closed loop dynamics in state space
form ẋ(t) = ASBx(t) + BSBe(t), x(0) = x0 ∈ R2N . The
matrices ASB and BSB can be computed as

ASB = IN ⊗A1 + Lg(GSB)⊗A2 ∈ R2N×2N ,

BSB = Lg(GSB)⊗A2 ∈ R2N×2N , (9)

with A1 =

[
0 1
0 0

]
, A2 =

[
0 0
−k −b

]
and

Lg(GSB) =


2 −1 0

−1
. . . . . .
. . . 2 −1

0 −1 1

 . (10)

For the later analysis of the influence of the transmitted error
e on the position and velocity errors x the following Lemma
is helpful.

Lemma 1: Suppose ASB is given as in (9) with b > 0 and
k > 1

4λmax(Lg)b
2, where Lg is the grounded Laplacian of

the symmetric bidirectional communication graph (10) and
λmax( · ) denotes the eigenvalue with the largest real part.
Denote the least stable eigenvalue as λ1(ASB). Then, for all
vectors v ∈ R2N and all t ≥ 0 the inequality

∥∥eASBtv
∥∥ ≤

eRe(λ1(ASB))tcVSB
‖v‖ holds.

Proof: By applying Theorem 1 and 2 from [9] on
Lg(GSB) and ASB we conclude that the 2N eigenvalues
of ASB , sl1,2(ASB) with l ∈ {1, . . . , N} satisfy sl1,2 =

−λl(Lg)b
2

(
1±

√
1− 4k

λl(Lg)b2

)
. With k > 1

4λmax(Lg)b
2

we have N different complex conjugated pairs of eigen-
values sl1,2 = −λl(Lg)b

2 ± = where = is the imagi-
nary part of sl1,2 and Re(sj) < 0 ∀j ∈ {1, . . . , 2N} .
Thus ASB is diagonalizable with the orthogonal matrix

VSB =
[
v11 , v12 , . . . , vN,2

]
, i.e., ASB = VSBDSBV

−1
SB ,

where vli is the eigenvector corresponding to the eigenvalue
sli . Hence with ‖VSB‖

∥∥V −1SB

∥∥ = cVSB
we can compute∥∥eASBtv

∥∥ =
∥∥∥eVSBDSBV

−1
SB tv

∥∥∥ ≤ ∥∥eDSBt
∥∥ cVSB

‖v‖ ≤
eRe(λ1(ASB))tcVSB

‖v‖.
The foregoing Lemma can be seen as a counterpart to

Lemma 5.1 in [2]. Now we can state our first main result.
Theorem 2: Assume the vehicle platoon of double inte-

grator agents (1) with linear symmetric bidirectional event-
based control architecture, b > 0, k > 1

4λmax(Lg)b
2,

combined with the trigger function (5) with c0, c1 ≥ 0,
c0 + c1 > 0 and 0 < α < |Re(λ1(ASB))|. Then
x(t) converges to a ball around the origin with radius
rSB = cVSB

√
N‖BSB‖ c0

|Re(λ1(ASB))| and Zeno behavior is
excluded.

Proof: The proof follows similar steps as the
proof of Theorem 5.2 in [2]. Firstly we compute an
upper bound on the norm of the state error vector ‖x(t)‖ =∥∥∥eASBtx(0) +

∫ t
0
eASB(t−s)BSBe(s)ds

∥∥∥. Now we can apply

Lemma 1 to compute ‖x(t)‖ ≤ eRe(λ1(ASB))tcVSB
‖x(0)‖+

‖BSB‖
∫ t
0
eRe(λ1(ASB))(t−s)cVSB

‖e(s)‖ds. From
(5) we derive ‖e(s)‖ ≤

√
N(c0 + c1e

−αs).
Using this bound and calculating the integral
leads to ‖x(t)‖ ≤ eRe(λ1(ASB))tcVSB

‖x(0)‖ +

‖BSB‖ cVSB

√
N
(

c1
|Re(λ1(ASB))+α|e

−αt + c0
|Re(λ1(ASB))|

)
.

Under the given assumptions (0 < α < |Re(λ1(ASB))|) we
see that

lim
t→∞

‖x(t)‖ ≤ ‖BSB‖ cVSB

√
N

c0
|Re(λ1(ASB))| = rSB

and therefore x(t) converges to a ball around the origin with
radius rSB .

The next step is to exclude Zeno behavior. Therefore it is
the goal to give a lower bound on the time τ = tik+1 − tik
between two events. At time tik we know that hi(tik) = 0
and therefore with (4), for tik ≤ t < tik+1, we have

‖hi(t)‖ ≤
∫ t

tik

∥∥∥∥[ ėi(s)ėdi(s)

]∥∥∥∥ds =

∫ t

tik

∥∥∥∥[ edi(s)−ui(s)

]∥∥∥∥ds.

Using (5) we compute
∥∥∥ḣi(t)∥∥∥ ≤ |edi(t)| + |ui(t)| ≤

c0 + c1e
−αt + |ui(t)|, where |ui(t)| = | − k(−p̃i−1 +

2p̃i − p̃i+1 − ei−1 + 2ei − ei+1) − b(− ˙̃pi−1 + 2 ˙̃pi −
˙̃pi+1 − edi−1 + 2edi − edi+1)| ≤ 4(k + b)(‖x‖ +
‖hi(t)‖). Using the bound on ‖x(t)‖ from above we
can compute

∥∥∥ḣi(t)∥∥∥ ≤ (c0 + c1e
−αt) (4 (k + b) + 1) +(

rSB + k2e
−αt + k3e

Re(λ1(ASB))t
)

4 (k + b) with k2 =

‖BSB‖ cVSB

√
N c1
|Re(λ1(ASB))+α| and k3 = cVSB

‖x(0)‖.
In the following we will investigate two different cases,
depending on c0.
Case 1: c0 6= 0

For tik ≤ t < tik+1 we have
∥∥∥ḣi(t)∥∥∥ ≤ (c0 + c1) +

(c0 + c1 + rSB + k2 + k3) 4 (k + b) =: C1 and therefore we
know ‖hi(t)‖ ≤ C1(t − tik) and the next event will not be
triggered before time t∗ fulfills C1(t∗−tik) = C1τmin = c0 ≤
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c0+c1e
−αt. Hence we have a lower bound τmin = c0/C1 on

the time between two events and Zeno behavior is excluded
in this case.
Case 2: c0 = 0
Setting c0 = 0 we compute the upper bound∥∥∥ḣi(t)∥∥∥ ≤

(
k2e
−αtik + k3e

Re(λ1(ASB))tik

)
4 (k + b) +

c1e
−αtik (4 (k + b) + 1) =: C1(tik) for tik ≤ t < tik+1.

Same computation as in case 1 (C1(tik)τmin = c1e
−αt∗ ) and

multiplying this equation with eαt
i
k leads to the equation((

k2 + k3e
α+Re(λ1(ASB))tik

)
4 (k + b)

c1 (4 (k + b) + 1) +) τmin = c1e
−ατmin .

The left side of the equation is a linear function in τmin

with finite gain since α+Re(λ1(ASB)) < 0, while the right
side exponentially decreases from c1. Therefore there exists
a lower bound τmin > 0 which solves this equation and Zeno
behavior is excluded for the case c0 = 0, c1 > 0.

Observe that it is possible to set c0 = 0 if c1 > 0 and
therefore the closed-loop system can be made asymptotically
stable.

IV. NONLINEAR EVENT-TRIGGERED CONTROL
IN PREDECESSOR-FOLLOWING ARCHITECTURE

Due to [1] the predecessor-following control architecture
works better if a nonlinear controller is applied. For that
reason we give an analysis for the case that f, g : R → R
are nonlinear. In this analysis we use the concepts of input-
to-state stability (ISS), comparison functions (class K,KL)
and sector nonlinearities, which are defined in [13].

Firstly we state a Proposition that gives a bound on the
states of an interconnection like in Fig. 2.

Proposition 3: Referring to Fig. 2 assume system Σ1 is
ISS with respect to input e1 with class KL function β1 and
class K function γ1, i.e.,

‖x1(t)‖ ≤ β1 (‖x1(t0)‖ , t− t0) + γ1

(
sup

t0≤τ≤t
‖e1(τ)‖

)
(11)

and Σ2 is ISS with respect to its inputs ei−1, ei and xi−1,
with β2 ∈ KL, γ(ei)2 , γ

(ei−1)
2 , γ

(xi−1)
2 ∈ K and γ

(xi−1)
2 (r)

being linear in r, i.e., γ(xi−1)
2 (r) = cγr, for all i = 2, . . . , N .

If there is an interconnection of these systems like shown
in Fig. 2, then for all t > t0 it holds that

‖xj(t)‖ ≤ β2 (‖xj(t0)‖ , t− t0) + cj−1γ β1 (‖x1(t0)‖ , 0)

+

j−1∑
k=2

cj−kγ β2 (‖xk(t0)‖ , 0)

+

(
cj−1γ γ1 +

j−2∑
l=0

clγ

(
γ
(ei)
2 + γ

(ei−1)
2

))

◦

 sup
t0≤τ≤t

∥∥∥∥∥∥∥
e1...
ej

 (τ)

∥∥∥∥∥∥∥
 , ∀j ∈ {2, . . . , N} . (12)

Proof: The Proposition is proven by induction. Firstly
we show, that (12) holds for j = 2. Because Σ2 is
ISS we know that ‖x2(t)‖ ≤ β2 (‖x2(t0)‖ , t− t0) +

γ
(ei)
2

(
supt0≤τ≤t ‖e2(τ)‖

)
+ γ

(ei−1)
2

(
supt0≤τ≤t ‖e1(τ)‖

)
+

γ
(x1)
2

(
supt0≤τ≤t ‖x1(τ)‖

)
. Applying the bound from (11),

using the linearity of γ
(xi−1)
2 and the fact that β1 ∈

KL and ‖e1(t)‖ , ‖e2(t)‖ ≤
∥∥∥[e1(t) e2(t)

]T∥∥∥, we get
‖x2(t)‖ ≤ β2 (‖x2(t0)‖ , t− t0) + cγβ1 (‖x1(t0)‖ , 0) +(
cγγ1 + γ

(ei)
2 + γ

(ei−1)
2

)
◦
(

supt0≤τ≤t

∥∥∥[e1(τ) e2(τ)
]T∥∥∥)

and therefore (12) is true for j = 2.
Assuming it is also true for j > 2 it suffices then to show

that it is also valid for j + 1. By the assumptions we know
that the ISS property for ‖xj+1‖ holds and we know the
bound (12) holds for ‖xj‖. Hence similar computation to
the previous case and some index changes lead to

‖xj+1(t)‖ ≤ β2 (‖xj+1(t0)‖ , t− t0) + cjγβ1 (‖x1(t0)‖ , 0)

+

j∑
k=2

cj+1−k
γ β2 (‖xk(t0)‖ , 0)

+

(
cjγγ1 +

j−1∑
l=0

clγ

(
γ
(ei)
2 + γ

(ei−1)
2

))

◦
(

sup
t0≤τ≤t

∥∥∥[e1 . . . ej+1

]T
(τ)
∥∥∥) .

This shows that (12) holds for j + 1 under the assumption
that it holds for j > 2. Thus the induction step is verified
and the Proposition holds for all j ∈ {2, . . . , N}.

The next step is to give a Lemma which helps to compute
the ISS gains for Σ1 and Σ2.

Lemma 4: Assume that f, g are globally Lipschitz with
Lipschitz constants L1,L2 and that they fulfill the following
sector nonlinearities, f ∈ [ε1,K1] and g ∈ [ε2,K2], where
ε1, ε2,K1,K2 > 0. Then the system

ẏ1 = y2

ẏ2 = −f(y1 − u1)− g(y2 − u2) (13)

is ISS with respect to u =
[
u1 u2

]T
with γ(u)(r) = cγr.

The value for cγ can be computed as

cγ =

√
λmax(P ) + ηK1

2λmin(P )

4ηmax {L1, L2}
θmin {ε1, (ηε2 − 1)} , (14)

with η > max
{

1, 1
ε2

+ (1+K2)
2

ε1ε2

}
, P =

[
1 1
1 η

]
, 0 < θ < 1

and λmin /max(P ) refers to the smallest/largest eigenvalue
of P .

Proof: From Proposition 1 in [1] it is known that
system (13) is ISS. However, there is no computation for the
ISS gain. Nevertheless we can use the Lyapunov function



given in [1], V (y) = 1
2y
TPy + η

∫ y1
0
f(z)dz, with η >

max
{

1, 1
ε2

+ (1+K2)
2

ε1ε2

}
and P =

[
1 1
1 η

]
to compute this

gain. It is also shown, that α1 (‖y‖) = λmin(P )‖y‖2 ≤
V (y) ≤ λmax(P )+ηK1

2 ‖y‖2 = α2 (‖y‖). Now we compute
the derivative of V along trajectories of (13):

V̇ =
[
y1 + y2 y1 + ηy2

] [ẏ1
ẏ2

]
+ f(y1)ẏ1η

= −y1f(y1)− ηy2g(y2) + y22 + y1y2 − y1g(y2)︸ ︷︷ ︸
(∗)

+ηy2 (f(y1)− f(y1 − u1) + g(y2)− g(y2 − u2))

+y1 (f(y1)− f(y1 − u1) + g(y2)− g(y2 − u2))

From [1] we know that with our assumptions (∗) ≤
− 1

2 min {ε1, ηε2 − 1} ‖y‖2. We also use the global Lipschitz
property to compute V̇ ≤ − 1

2 min {ε1, (ηε2 − 1)} ‖y‖2 +
(η|y2|+ |y1|) (L1|u1|+ L2|u2|)︸ ︷︷ ︸

(∗∗)

. Further investigation yields

(∗∗) ≤ ηmax{L1, L2}‖
[
|y1| |y2|

] [
|u1| |u2|

]T ‖ +

ηmax{L1, L2}‖
[
|y1| |y2|

] [
|u2| |u1|

]T ‖. Applying
Hoelder’s inequality with p = q = 2 to compute V̇ ≤
− 1

2
(1− θ) min{ε1, (ηε2 − 1)}‖y‖2︸ ︷︷ ︸

W3(y)

− 1
2θmin{ε1, (ηε2 −

1)}‖y‖2 + 2ηmax{L1, L2}‖u‖‖y‖ with 0 < θ < 1. Thus
V̇ ≤ −W3(y) for all ‖y‖ ≥ 4ηmax{L1,L2}

θmin{ε1,(ηε2−1)}‖u‖ =: ρ‖u‖
with W3(y) being positive definite. Therefore we can
apply Theorem 4.19 from [13] to show that system
(13) is ISS with γ(u)(r) = α−11 ◦ α2 ◦ ρ(r) =√

λmax(P )+ηK1

2λmin(P )
4ηmax{L1,L2}

θmin{ε1,(ηε2−1)}r = cγr

Remark 5: If we extend system (13) with further inputs
v =

[
v1 v2

]T
and w =

[
w1 w2

]T
, such that

ẏ1 = y2

ẏ2 = −f(y1 − u1 + v1 − w1)− g(y2 − u2 + v2 − w2) (15)

the system is ISS with respect to u, v and w with γ(u)(r) =
γ(v)(r) = γ(w)(r) = cγr.

Now we are able to state the main Theorem of this Section.
Theorem 6: Let the multi-agent system of double integra-

tor agents (1) with predecessor-following event-based control
architecture, where f ∈ {ε1,K1} and g ∈ {ε2,K2} are
globally Lipschitz with constants L1, L2 combined with the
trigger function (5) with c0 > 0, c1 ≥ 0 and α > 0. Then
for all agents j, xj(t) =

[
p̃j(t), ˙̃pj(t)

]
is bounded by

‖xj(t)‖ ≤ β (‖xj(t0)‖ , t− t0) +

j−1∑
k=1

cj−kγ β (‖xk(t0)‖ , 0)

+

(
cjγ + 2

j−1∑
l=1

clγ

)√
j (c0 + c1) , ∀t > t0 (16)

with cγ =
√

λmax(P )+ηK1

2λmin(P )
4ηmax{L1,L2}

θmin{ε1,(ηε2−1)} , where η, P , β
and θ are given in Lemma 4 and Zeno behavior is excluded.

Proof: The predecessor-following control scheme has
the same structure as the one in Fig. 2. Additionally we
get the ISS gains for Σ1 and Σ2 from Lemma 4 (and
Remark 5) with y =

[
p̃j ˙̃pj

]T
, u =

[
p̃j−1 ˙̃pj−1

]T
,

v =
[
ej edj

]T
and w =

[
ej−1 edj−1

]T
. Therefore we

can apply Proposition 3 to conclude that the norm of agent
j is bounded by (16) for all t > t0.

The second part of the proof is to exclude Zeno behavior.
We first try to give a bound on

∥∥∥ḣj∥∥∥ ≤ ‖hj‖ + |uj |.
Therefore we look at |uj(t)|. Using the global Lipschitz
property we derive the bound |uj(t)| ≤ (L1 + L2)(‖xj‖ +
‖xj−1‖ + ‖hj‖ + ‖hj−1‖) and in combination with trigger
law (5), the bound on the state and the assumption c0 > 0
we conclude ‖ḣj‖ ≤ (1 + 2L1 + 2L2)(c0 + c1) + (L1 +

L2) · (β(‖xj−1(t0)‖, 0) +
∑j−2
k=1 c

j−1−k
γ β(‖xk(t0)‖, 0) +

(cj−1γ + 2
∑j−2
l=1 c

l
γ)
√
j − 1(c0 + c1) + β(‖xj(t0)‖, 0) +∑j−1

k=1 c
j−k
γ β(‖xk(t0)‖, 0)+(cjγ+1

∑j−1
l=1 c

l
γ)
√
j(c0+c1)) =:

C1. Hence similar arguments as in the proof of Theorem 2
leads to the bound τmin ≥ c0

C1
and therefore Zeno behavior

is excluded since c0 > 0 by assumption.
The following Corollary adds an asymptotic statement to the
boundedness result from Theorem 6.

Corollary 7: The nonlinear event-triggered predecessor-
following controller has the converging input converging
state (CICS) property, which is defined in [20], with respect
to the input e = [e1, ed1 , . . . , edN ]

T , i.e., if e(t) converges
to zero we know limt→∞ x(t) = 0.

Proof: From [1] we know that the platoon with non-
linear predecessor-following controller is globally asymptot-
ically stable with input e = 0 (0-GAS). Boundedness of
‖xj(t)‖ for every j is guaranteed through (16) and hence we
conclude ‖x(t)‖ ≤

√
N maxj ‖xj(t)‖ is bounded. Therefore

the closed-loop system has the converging input bounded
state property (CIBS) and we can derive the CICS property
directly from the Proposition in [20].

V. SIMULATION RESULTS

In this Section we show simulation results for both pre-
sented controllers. We simulate a platoon with five cars,
where the desired velocity is 1 and the desired distance
between each car is 1. The vehicles initially stand in the
desired spacing. For the controller from Section III the
parameters k = 1.84, b = 1.4, resulting in |Re(λ1(ASB))| =
0.0567 as well as c0 = 10−4, c1 = 1 and α = 0.0561 are
chosen. Therefore Theorem 2 guarantees convergence to a
ball around the origin with radius rSB = 0.7197. In Fig. 3
one can see how the norm of x(t) evolves and which agent
broadcasts its state at which time instant. The average time
between two broadcasts in this simulation can be computed
as τavg = 0.995s. If we simulate the platoon with the
same controller and trigger the state information of each
agent after a constant time τc the system is unstable already
with τc = 0.33s. Therefore at least in this simulation the
event-triggered controller leads to a significant decrease of
network load. Now we investigate the nonlinear predecessor-
following controller with g(z) = tanh(z)+0.01z and f(z) =
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Fig. 3. Evolution of ‖x(t)‖ and inter-event times with event-triggered
linear symmetric bidirectional controller

0 10 20 30 40 50 60

1
2
3
4
5

0 10 20 30 40 50 60
0
2
4
6
8
10

||x(t)||

0 10 20 30 40 50 60
0

5

10

15

time [s]

||xtt(t)||

Fig. 4. Evolution of ‖x(t)‖ with event- and time-triggered nonlinear
predecessor-following controller and inter-event times

0.1g(z). In this case the conditions of Theorem 6 are satisfied
with L2 = K2 = 1.01, ε2 = 0.01, L1 = K1 = 0.1L2 and
ε1 = 0.1ε2. Since we use the trigger rule with c0 = 10−4,
c1 = 1 and α = 0.08 the boundedness of the state error x is
guaranteed. The evolution of the state is shown in the upper
part of Fig. 4. We see that ‖x(t)‖ is not only bounded, it also
converges to 0. In this simulation we compute τavg = 1.910s.
As a comparison we simulate the same platoon with a
constant exchange of information every 1.9s. One can see
that the performance is worse in this case in the lower subplot
of Fig. 4.

VI. CONCLUSIONS

We proposed two event-triggered controllers for platoon-
ing. The linear symmetric bidirectional controller is shown
to achieve convergence to a ball around the origin, which
can be made arbitrarily small while Zeno behavior is still
excluded. For the nonlinear predecessor-following controller
we derived a bound on the norm of every agent’s state
and Zeno behavior is also excluded if the trigger rule has
a positive offset. Furthermore we show that if the trigger
error converges to zero, then also the state error converges

to zero. For both controllers simulation results show that it is
possible to achieve an event-triggered controller with a good
performance that decreases the network load compared to a
time-triggered controller with the same performance.
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