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Abstract—In this paper we propose a new event-triggered
scheme for nonlinear continuous-time systems with additive
bounded disturbances. Unlike existing results, the proposed
event-triggered strategy is not derived from Lyapunov stability
analysis. Instead, it is obtained from the time interval when the
state reaches a local region around the origin. By guaranteeing
that this time interval becomes smaller as the optimal control
problem is solved, we ensure that the state converges to the
prescribed set in finite time.

I. INTRODUCTION

Model Predictive Control (MPC) has been one of the most
popular control strategies for both linear and nonlinear systems
[1]. In this control scheme, the control action is determined
by solving an Optimal Control Problem (OCP) online, based
on the knowledge about the dynamics and the current state
of the plant. Many results haveen obtained over the last
decades, such as stability, feasibility and robustness in the
face of disturbances, which are all critical to many control
applications, see e.g., [2]–[4].

In another direction of research from networked control
systems, an aperiodic formulation of executing control tasks
in contrast to typical periodic executions has been receiving
attention in recent years. This control strategy is known as
‘Event-triggered control’, and the reader may refer to [5], [6].
The application of event-triggered control is motivated by the
fact that by reducing the frequency of executing control tasks,
we may achieve the reduction of over-usage of communication
resources and the energy consumption of battery powered
devices. Event-triggered strategies have been derived from
different performance guarantees, such as L2 and L∞ gain
stability [7], [8] and Input to State Stability (ISS) [9].

In this paper, we are interested in applying event-triggered
strategy to MPC, where the OCP is solved only when certain
prescribed performances cannot be guaranteed. Introducing the
aperiodic formulation to the MPC framework, not necessarily
limited to the scope of networked control systems, has poten-
tial advantages over the conventional periodic MPC, since it
could alleviate computation load by reducing the number of
solving OCPs. The aperiodic framework for MPC has been
recently examined in [10]–[12] for the linear case, [13] for
the nonlinear case with no disturbances, and [14], [15] for the
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nonlinear case with additive disturbances. In this paper, we
limit the scope to the nonlinear case with additive disturbances.
For nonlinear systems, stability has been mainly analysed by
checking if the optimal cost, regarded as a Lyapunov function
candidate, is decreasing. In the formulation of event-triggered
MPC, therefore, the OCP is solved only when the optimal cost
is not guaranteed to decrease as proposed in [14], [15].

In contrast to the above event-triggered strategies, we take
another approach which does not use the Lyapunov stability
analysis. The main motivations of this are as follows:

(i) In case of nonlinear systems, the stability analysis and
the corresponding event-triggered rules involve several
parameters that are in general not known explicitly,
if there are no state constraints. An example of such
parameters is the Lipschitz constant of the stage cost,
see e.g., [3], [14]. Thus, it is sometimes not suitable to
include the parameters in the event-triggered strategies.

(ii) Checking if the optimal cost is decreasing may provide
a complex structure of the event-triggered condition,
which could yield delays due to the computation time.
This may be critical when the triggering rule is ‘event-
based’ case, where the condition needs to be checked
continuously by monitoring the current state measure-
ment.

Motivated by the above problems, our approach does not
involve the optimal cost as a Lyapunov function candidate;
instead, the performance will be evaluated by the time interval,
from the current time to when the state reaches to a local re-
gion around the origin. By guaranteeing that this time interval
becomes smaller as the OCP is solved, the state becomes closer
to the origin and eventually converges to a prescribed set in
finite time. The event-triggered rule is then proposed as one
of the general types of event-triggered strategies, in which the
OCP is solved only when the error between the actual and
predictive state exceeds a certain threshold.

The remainder of this paper is organized as follows: in
Section II the optimal control problem is formulated. In
Section III, we provide the event-triggering rule and show
the corresponding feasibility. In Section IV, we analyze the
convergence properties of the proposed scheme. In Section V,
we additionally propose a self-triggered strategy. In Section
VI, a simulation result is provided. Finally, in Section VII the
conclusion is given.

The notations used in the sequel are as follows. Let R,
R≥0, N≥0, N≥1 be the real, non-negative real, non-negative
integers and positive integers, respectively. We denote ||x||
as a Euclidean norm of vector x, and ||x||P as a weighted
norm of vector x, i.e., ||x||P =

√
xTPx. Given a compact set



Φ ⊆ Rn, we denote ∂Φ as the boundary of Φ. The function
ϕ(x, u) : Rn ×Rm → Rn is called Lipschitz continuous with
a weighted matrix P and Lipschitz constant Lϕ in x ∈ Ω, if
||ϕ(x1, u)− ϕ(x2, u)||P ≤ Lϕ||x1 − x2||P where x1, x2 ∈ Ω.

II. PROBLEM FORMULATION

We consider applying model predictive control to the fol-
lowing nonlinear system:

ẋ(t) = ϕ(x(t), u(t)) + w(t) (1)

subject to

u(t) ∈ U ⊆ Rm, w(t) ∈ W ⊆ Rn, (2)

where x(t) ∈ Rn is the state of the plant, u(t) ∈ Rm is
the control input, and w(t) ∈ Rn is the additive bounded
disturbance. The constraint sets for the control input and the
disturbance U , W , are assumed to be compact containing the
origin in their interiors. We let tk, k ∈ N≥0 be sampling
instants when the OCP is solved, and ∆k be the sampling
intervals, i.e., ∆k = tk+1 − tk. At tk, the controller solves
the OCP involving the predictive state trajectory denoted as
x̂(ξ) and the control input u(ξ) for ξ ∈ [tk, tk + Tp] ,
based on the current state x(tk) where Tp is the prediction
horizon. We consider the following quadratic cost function to
be minimized:

J(x(tk), u(·)) =
∫ tk+Tp

tk

||x̂(ξ)||2Q + ||u(ξ)||2Rdξ,

where Q = QT ≻ 0, R = RT ≻ 0.
Before stating the OCP, we define a set Φ given by

Φ = {x ∈ Rn : Vf (x) ≤ ε2},

where Vf (x) = xTPx and P = PT ≻ 0. Regarding the
parameter ε and the matrix P , we assume the following :

Assumption 1. There exists a local stabilizing controller
κ(x) = Kx ∈ U satisfying

dVf

dx
ϕ(x,Kx) ≤ −xT(Q+KTRK)x (3)

for all x ∈ Φ.

Many methods have been proposed to numerically calculate
ε and P satisfying (3), see e.g., [2]. Assumption 3 has been
useful to show stability of MPC for both linear and nonlinear
systems. Although this paper does not use the Lyapunov
analysis to guarantee stability, this assumption will be useful
to guarantee feasibility provided in the next section.

Regarding the nonlinear dynamics, we assume the follow-
ing:

Assumption 2. The function ϕ : Rn × Rm → Rn is C2,
ϕ(0, 0) = 0, and Lipschitz continuous with a weighted matrix
P and Lipschitz constant Lϕ in x ∈ Rn.

We further define a set Xf given by

Xf = {x ∈ Rn : Vf (x) ≤ ε2f},

Fig. 1. Graphical representation of the two regions Φ, Xf and the optimal
state trajectory x̂∗. T ∗

k denotes the time interval to reach Xf . Due to the
constraint (6), T ∗

k satisfies T ∗
k ≤ T ∗

k−1 − γ∆k−1 < T ∗
k−1.

where 0 < εf < ε. Thus the set Xf is smaller than Φ, i.e.,
Xf ⊂ Φ. The illustration of the regions Xf and Φ are depicted
in Fig. 1.

By minimizing J(x(tk), u(·)), we aim at finding an optimal
control trajectory u∗(ξ) and the corresponding state x̂∗(ξ) for
ξ ∈ [tk, tk+Tp], subject to several constraints we will define in
the following. One of the constraints imposed in this paper is
that the optimal predictive state x̂∗(ξ) converges to Xf . The
illustration of x̂∗(ξ) is also shown Fig. 1. Here, we further
denote T ∗

k , k ∈ N≥0 as the time interval when the optimal
state reaches Xf , i.e., x̂∗(tk + T ∗

k ) ∈ ∂Xf . Based on above
notations, we define the following OCP:

(Problem 1) : For tk, k ∈ N≥1, given x(tk) and T ∗
k−1, find the

optimal control and predictive state trajectory u∗(ξ), x̂∗(ξ) for
all ξ ∈ [tk, tk + Tp] that minimizes J(x(tk), u(·)), subject to

˙̂x(ξ) = ϕ(x̂(ξ), u(ξ)), ξ ∈ [tk, tk + Tp] (4)
u(ξ) ∈ U (5)
x̂(tk + T ∗

k−1 − γ∆k−1) ∈ Xf (6)

where 0 < γ < 1 and ∆k−1 = tk − tk−1. For the initial
time t0, k = 0, find u∗(ξ), x̂∗(ξ) for all ξ ∈ [t0, t0 + Tp] that
minimizes J(x(t0), u(·)) subject to (4), (5) and x̂(t0 + Tp) ∈
Xf .

Unlike the standard MPC set up presented in [2]–[4], the
constraint (6) is no longer used as a terminal constraint for
x̂(tk + Tp). Instead, it guarantees that the predictive state is
inside Xf at tk + T ∗

k−1 − γ∆k−1. Since T ∗
k denotes the time

interval to reach Xf , T ∗
k satisfies T ∗

k ≤ T ∗
k−1−γ∆k−1 < T ∗

k−1.
This means that the time interval T ∗

k becomes smaller than the
previous time T ∗

k−1, as long as Problem 1 becomes feasible.
We will make use of this property in convergence analysis that
this time interval is guaranteed to decrease and become small
enough to achieve x(t) ∈ Φ within finite time steps.

In the proposed event-triggered strategy, the obtained opti-
mal control input trajectory will be applied until the next OCP
will be solved to update the control input. This is formulated
as

u(t) = u∗(t), t ∈ [tk, tk+1) (7)

Once the state reaches Φ, we apply the local controller κ(x)



to stabilize the system such that the state stays in Φ for all the
future time. This control strategy is referred to as ‘Dual mode
MPC’, as adopted in some papers, see e.g., [4].

Remark 1. In Problem 1, we can have the state constraint if
it is needed, e.g., x(ξ) ∈ X . As shown in [3], to guarantee
the feasibility in the presence of disturbances, the constraint
for x(ξ) must be restricted to a smaller region characterized
by Lϕ, in the formulation of the OCP. For more specific
definitions of this region, see [4].

III. MAIN ALGORITHM AND FEASIBILITY

A. Main algorithm

We will in the following propose a general type of event-
triggered strategy, in which the OCP is solved when the error
between the predictive state and the actual state exceeds a
certain threshold:

(Event-triggered strategy): Consider the nonlinear system (1),
subject to (2) and the OCP in Problem 1. Suppose that the
current time is tk when the OCP is solved. The event-triggered
condition, which determines the next time tk+1 when the OCP
is again solved, is then given by

||x(t)− x̂∗(t)||P < (ε− εf )e
−LϕT

∗
k , tk < t ≤ tk + T ∗

k (8)

The OCP is solved only when (8) is violated. If (8) is satisfied
for all tk < t ≤ tk + T ∗

k , then we set tk+1 = tk + T ∗
k .

□
We would guess from (8) that, while T ∗

k is large the
condition (8) will be violated before arriving t = tk+T ∗

k , that
is, tk+1 < tk + T ∗

k . As the OCP is solved and T ∗
k becomes

smaller, then longer time will be expected to satisfy (8) and
we will obtain tk+1 = tk + T ∗

k when (8) is satisfied for all
tk < t ≤ tk + T ∗

k .
Based on the above event-triggered strategy, the main algo-

rithm is provided below.
Algorithm 1:

(i) Initialization : At initial time t0, if x(t0) ∈ Φ, then
apply the local controller κ(x) as a dual mode strategy.
Otherwise, solve Problem 1 for t0 to obtain u∗(ξ), x̂∗(ξ)
for all [t0, t0 + Tp]. Calculate T ∗

0 as the time interval to
reach Xf , i.e., x̂∗(t0+T ∗

0 ) ∈ ∂Xf . The controller u∗(ξ)
is then applied for [t0, t1), where t1 is the next time
to solve Problem 1, which is obtained from the event-
triggered strategy.

(ii) For any tk, k ∈ N≥1, solve Problem 1 to obtain u∗(ξ),
x̂∗(ξ) for all ξ ∈ [tk, tk + Tp]. Calculate T ∗

k as the time
interval when the state reaches Xf , i.e., x̂∗(tk + T ∗

k ) ∈
∂Xf .

(iii) Apply u∗(ξ) for [tk, tk+1), where tk+1 is the next time
step to solve Problem 1, which is obtained from the
event-triggered strategy. Once we obtain x(t) ∈ Φ at
a certain time t ∈ [tk, tk+1), then switch to the local
controller κ(x) as a dual mode strategy.

(iv) k ← k + 1 and go back to the step (ii).

Remark 2. Note that the proposed method does not involve
the optimal cost as a Lyapunov function to derive the event-
triggered strategy. This has some advantages over the existing
event-triggered MPC strategies, since several assumptions are
not required to obtain the event-triggered condition. For in-
stance, one of the fairly standard assumptions is the Lipschitz
continuity of the stage and terminal cost, see [3], [4], [14],
[15], [18]. However, the corresponding Lipschitz constant val-
ues depend on the supremum of the state, i.e., sup

t∈[0,∞)

{||x(t)||}

(see Lemma 3 in [18] or Lemma 3.2 in [17]). This value is,
however, difficult to be obtained since the supremum of ||x(t)||
is in general not known when there are no state constraints.
Thus, it may not be appropriate to include these parameters
in the event-triggered condition such as in (8).

Remark 3. From (8), if we set the parameter εf as small as
possible, we may obtain longer inter-event time ∆k. However,
as εf becomes smaller, then the constraint of (6) becomes
more restrictive, and thus the prediction horizon Tp may need
to be longer to guarantee the feasibility at the initial time t0.
Therefore, regarding how to select the value of εf , we need
to take the problem of feasibility into account.

B. Feasibility

Under the event-triggered strategy provided in the previous
subsection, we next show the feasibility of Problem 1. To
achieve this, we first let ū(ξ), ξ ∈ [tk+1, tk+1 + Tp] be the
control trajectory applied from tk+1 given by

ū(ξ) =

{
u∗(ξ), ξ ∈ [tk+1, tk + T ∗

k ]
κ(x̄(ξ)), ξ ∈ (tk + T ∗

k , tk+1 + Tp],
(9)

where x̄(ξ) is the predictive state obtained by applying ū(ξ),
that is, ˙̄x(ξ) = ϕ(x̄(ξ), ū(ξ)) starting from x̄(tk+1) = x(tk+1).

The following theorem guarantees that (9) is a feasible
controller for Problem 1 at tk+1, provided that the feasibility
at tk is guaranteed and the disturbances are upper bounded
accordingly:

Theorem 1. Suppose that the current time is tk, and the
feasibility of Problem 1 is guaranteed at tk. Then, Problem
1 under the proposed event-triggered strategy is guaranteed
to be feasible at tk+1 with a feasible controller (9), if the
additive bounded disturbance w satisfies

||w||P ≤
λmin(Q̂P )

2eLϕT∗
0

(1− γ)εf , (10)

where Q̂P = P−1/2(Q+KTRK)P−1/2.

To prove that (9) is a feasible controller of Problem 1, we
will show that the followings are satisfied;

(i) By applying ū(ξ), ξ ∈ [tk+1, tk + T ∗
k ], the predictive

state is in Φ by the time tk+T ∗
k . That is, x̄(tk+T ∗

k ) ∈ Φ.
This ensures that ū(ξ) is admissible for all ξ ∈ (tk +
T ∗
k , tk+1 + Tp], since the local controller κ(x̄) can be

applied.
(ii) T ∗

k − γ∆k > 0. This ensures that the time interval to
reach Xf in the constraint (6) is guaranteed to be positive



at tk+1.
(iii) By applying ū(ξ), ξ ∈ (tk + T ∗

k , tk+1 + T ∗
k − γ∆k], the

predictive state x̄ converges to Xf by the time tk+1 +
T ∗
k − γ∆k. That is,

x̄(tk+1 + T ∗
k − γ∆k) ∈ Xf

Proof: To prove (i), we first use the fact that the difference
between x̄ and x̂∗ is upper bounded by

||x̄(ξ)− x̂∗(ξ)||P ≤ ||x(tk+1)− x̂∗(tk+1)||P eLϕ(ξ−tk+1)

≤ e−LϕT
∗
k (ε− εf ) · eLϕ(ξ−tk+1)

for ξ ∈ [tk+1, tk + T ∗
k ]. The second inequality follows from

the event-triggered strategy (8). Letting ξ = tk+T ∗
k and from

the triangular inequality, we obtain

||x̄(tk + T ∗
k )||P

≤ ||x̂∗(tk + T ∗
k )||P + (ε− εf )e

−Lϕ(tk+1−tk)

≤ εf + ε− εf
= ε

Thus, x̄(tk + T ∗
k ) ∈ Φ and the proof of (i) is completed.

The proof of (ii) is obtained from the fact that we have
∆k ≤ T ∗

k from the event-triggered strategy, and thus T ∗
k −

γ∆k ≥ (1− γ)T ∗
k > 0.

By using x̄(tk + T ∗
k ) ∈ Φ and from (3), we

obtain V̇f (x̄(ξ)) ≤ −x̄T(ξ)(Q + KTRK)x̄(ξ) ≤
−λmin(Q̂P )Vf (x̄(ξ)) for ξ ∈ (tk + T ∗

k , tk+1 + T ∗
k − γ∆k].

Furthermore, from the Gronwall-Bellman inequality and the
feasibility condition (10), we obtain

||x̄(tk + T ∗
k )||P

≤ ||x̂∗(tk + T ∗
k )||P +

wmax

Lϕ
eLϕT

∗
k (1− e−Lϕ∆k)

≤ εf +
(1− γ)

2Lϕ
εfλmin(Q̂P )(1− e−Lϕ∆k)

Denoting η = (1−γ)
2Lϕ

λmin(Q̂P ), and by using comparison
lemma, we obtain

Vf (x̄(tk+1 + T ∗
k − γ∆k))

≤ Vf (x̄(tk + T ∗
k ))e

−λmin(Q̂P )(1−γ)∆k

≤ ε2f
(
1 + η(1− e−Lϕ∆k)

)2
e−2Lϕη∆k

≤ ε2f

The 3rd inequality is obtained by the fact that the function
fε(∆k) = (1 + η(1 − e−Lϕ∆k))e−Lϕη∆k is shown to be a
decreasing function of ∆k with fε(0) = 1. Thus we obtain
Vf (x̄(tk+1 + T ∗

k − γ∆k)) ≤ ε2f , and the proof of (iii) is
completed.

Based on above, Problem 1 is shown to be feasible at tk+1

with the feasible controller given by (9). This completes the
proof of Theorem 1.

IV. CONVERGENCE

Based on the event-triggered strategy and the feasibility
theorem presented in the previous section, we provide the
following theorem stating that the the state is guaranteed to
converge to Φ in finite time.

Fig. 2. Denoting tΦ, tXf
as the time when the state x̂∗ enters Φ, Xf

respectively, δmin is the minimum time interval of tXf
− tΦ.

Theorem 2. Consider the nonlinear system (1), subject to
(2) with additive disturbances satisfying (10) and Problem 1
under the proposed event-triggered strategy. Then, the state
trajectory enters Φ in finite time.

To prove convergence, let the time interval δmin be defined
by

δmin = inf{δ ∈ R≥0 | δ = tXf
− tΦ, x̂∗(tΦ) ∈ ∂Φ,

x̂∗(tXf
) ∈ ∂Xf}

(11)

That is, δmin is the minimum time interval from when the
state is on the boundary of Φ to the time when it reaches the
boundary of Xf (see Fig. 2). Note that we have δmin > 0
since the predictive state x̂∗ is a continuous function. If x(tk)
is outside of Φ, then we have T ∗

k > δmin, i.e.,

x(tk) /∈ Φ⇒ T ∗
k > δmin. (12)

By taking contraposition we obtain

T ∗
k ≤ δmin ⇒ x(tk) ∈ Φ. (13)

This means that if T ∗
k becomes small enough to fulfill T ∗

k ≤
δmin, then we obtain x(tk) ∈ Φ. The following proof illustrates
that the time to achieve T ∗

k ≤ δmin is shown to be upper
bounded by finite time steps.

Proof: As the first step to prove the convergence, we
derive the inter-event time ∆k of our proposed event-triggered
strategy (8). By using the upper bound ||x(t) − x̂∗(t)|| ≤
wmax

Lϕ
(eLϕ(t−tk) − 1) and the feasibility condition (10), a

sufficient condition to satisfy (8) is then given by

λmin(Q̂P )(1− γ)εf

2LϕeLϕT∗
0

(eLϕ(t−tk)−1) < (ε−εf )e
−LϕT

∗
k . (14)

The time t̂k+1 when the condition (14) is violated is explicitly
given by

t̂k+1 = tk +
1

Lϕ
ln(1 + ρ(T ∗

k )) (15)

≥ tk +
1

Lϕ
ln(1 + ρmin),

where ρ(T ∗
k ) and ρmin are given by

ρ(T ∗
k ) =

2Lϕ(ε− εf )e
Lϕ(T

∗
0 −T∗

k )

λmin(Q̂P )(1− γ)εf
(16)



Fig. 3. The illustration of the sequence T ∗
k

ρmin =
2Lϕ(ε− εf )

λmin(Q̂P )(1− γ)εf
> 0 (17)

and we have used T ∗
0 ≥ T ∗

k . Thus, by denoting ∆̃ = 1
Lϕ

ln(1+

ρmin), the condition (8) is satisfied for all tk ≤ t ≤ tk + ∆̃.
On the other hand, if (8) is satisfied for all tk ≤ t ≤ tk + T ∗

k ,
then we set tk+1 = tk +T ∗

k from the event-triggered strategy.
Thus, for the inter-event time ∆k = tk+1 − tk, we obtain

∆k

{
≥ ∆̃, if T ∗

k > ∆̃

= T ∗
k , if T ∗

k ≤ ∆̃
(18)

Using (18) and T ∗
k+1 ≤ T ∗

k − γ∆k, we obtain the following
recursion:

T ∗
k+1

{
≤ T ∗

k − γ∆̃, if T ∗
k > ∆̃ (19)

≤ (1− γ)T ∗
k , if T ∗

k ≤ ∆̃ (20)

meaning that T ∗
k becomes smaller as the OCP is solved. The

example of the sequence of T ∗
k is shown in Fig. 3.

Suppose now that at the initial time t0, we have T ∗
0 > ∆̃.

Furthermore, we let k1 be the first (minimum) time step when
T ∗
k becomes T ∗

k ≤ ∆̃, i.e.,

k1 = inf{k ∈ N≥0 | T ∗
k ≤ ∆̃}, (21)

see Fig. 3. From (19), k1 satisfies k1 ≤ K1, where

K1 =
1

γ

(
T ∗
0

∆̃
− 1

)
(22)

Furthermore, we also let k2 be the first step from k1, when
T ∗
k becomes T ∗

k ≤ δmin, i.e.,

k2 = inf{k ∈ N≥0, k ≥ k1 | T ∗
k ≤ δmin}. (23)

For the case δmin < ∆̃ 1), and from the recursion of the
inequality (20), k2 satisfies k2 ≤ K2, where

K2 =
ln(δmin/∆̃)

ln(1− γ)
. (24)

Therefore, we have shown that there exists a time step k when

1)For the case δmin ≥ ∆̃, we have T ∗
k1

≤ ∆̃ ≤ δmin and the convergence
to Φ is already achieved within K1. Since we want to obtain the upper bound
of time steps to achieve the convergence, here we consider δmin < ∆̃.

T ∗
k ≤ δmin, where k is upper bounded by k ≤ K1+K2 <∞.

This means that the state x(tk) converges to Φ in finite time.
This completes the proof of Theorem 2.

V. ILLUSTRATIVE EXAMPLE

As a simulation example we consider the attitude control
of single axis satellite modeled as two masses connected by
a flexible boom [18]. The state is defined on R4 and consists
of the orientation of the satellite θ1 and the angle between the
star sensor and the instrument package θ2, and their velocities
θ̇1, θ̇2. The state equation is given by ẋ = Ax+Bu+w, where

A =


0 0 1 0
0 0 0 1

−ν1/J1 ν1/J1 −ν2/J1 ν2/J1
ν1/J2 −ν1/J2 ν2/J2 −ν2/J2

 ,

BT =
[
0 0 0 L/J2

]
.

We set ν1 = 0.09 as a torque constant, ν2 = 0.08 as a viscous
damping constant, and L = 1.0 as a satellite length, and J1 =
J2 = 0.1, as the inertias. The initial state is assumed to be
given by x(t0) = [π 3π/4 0 0]. The constraint for the control
input is given by ||u|| ≤ 10. The matrices for the stage cost is
given by Q = 0.1I4, R = 0.1I1 and the prediction horizon is
Tp = 6.5. To characterize the region Φ and the local controller
κ(x), we follow the steps presented in [2] to obtain ε = 1.16.
Letting εf = 0.7 and γ = 0.1, from Theorem 1 the OCP
becomes feasible when ||w||P ≤ 0.10.

Fig. 4 shows the state trajectories under the proposed event-
triggered strategy (Blue line) and self-triggered strategy (Red
dot line) with disturbances satisfying ||w||P ≤ 0.10. The
local controller κ(x) has been applied from t = 6.84 (event-
triggered) and t = 6.87 (self-triggered), when the state enters
Φ. From this figure, the state converges to Φ under both event-
triggered and self-triggered control strategy. Fig. 5 shows the
corresponding triggering instants where the OCP is solved
when the value is 1. From this figure, the average time interval
of solving the OCP is given by 1.05 for event-triggered case
and 0.34 for the self-triggered case. Thus, the self-triggered
result requires more frequencies to solve the OCP than the
event-triggered case, and this is because it is derived from the
sufficient condition of the event-triggered strategy.

From Fig. 4 and Fig. 5, we can conclude that the state
converges to Φ by aperiodically solving the OCP.

VI. CONCLUSION

We have proposed the aperiodic formulation of MPC for
the nonlinear systems with additive disturbances. In contrast
to the existing ideas, our strategy is not derived from the
Lyapunov stability but the time interval to reach to the local
region around the origin. We have also shown the feasibility
that the OCP is guaranteed, and the convergence that the state
converges to Φ in finite time steps. Our proposed framework
was also verified through a simulation example.
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Fig. 4. State trajectories under event-triggered (Blue solid) and self-triggered
(Red dot) control strategy.
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Fig. 5. Triggering instants for event-triggered (upper) and self-triggered
(lower) strategy. The red line represents the time when the state enters Φ.
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