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Abstract— This paper treats the topic of periodic event-
triggered control (PETC) for Networked Control Systems in
a setup where the network provides a maximum sampling rate
and a maximum number of successive packet losses. The packet
loss is tackled with a non-monotonic approach, meaning that
the trigger rules are designed such that a Lyapunov function is
guaranteed to decrease only between two successful triggering
instants. The stability properties of the resulting continuous-
time sampled-data system are analyzed in two ways. The first
one uses different restricted dynamical systems and the second
one applies theory on non-monotonic Lyapunov functions.
Based on this theory an example for another trigger rule is
given that can be derived using this approach. The theoretical
results are demonstrated through a known numerical example.

I. INTRODUCTION

In Networked Control Systems (NCSs) one faces several
problems induced by the network, as described in [1]. One of
the interesting challenges is how to sample the measurements
before sending them to the controller. An approach to reduce
the amount of transmissions is the event-based sampling
approach, introduced in [2]. In [3] a Lyapunov based frame-
work for event-triggered control was presented that initiated
a huge amount of work in this area. Again when dealing with
NCSs it is of special interest to analyze how event-triggered
control behaves in combination with other network induced
imperfections such as packet loss. This interplay was first
studied in a stochastic framework. For instance in [4] the
behavior of systems with integrator dynamics is analyzed and
problems with the unstructured data traffic of event-triggered
control have been identified. To generate a more structured
data traffic is one of the main benefits of periodic event-
triggered control (PETC). In PETC, introduced in [5], the
state of the plant is sampled at periodic time instants and
the information is sent to the controller if a trigger condition
is violated at one of those instants.

An early work on the design of trigger rules for NCSs
is given in [6] in a distributed setup. Another distributed
approach is shown in [7], where losses are modeled as
additional delays. A stochastic formulation of packet loss
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Institute for Systems Theory and Automatic Control, Uni-
versity of Stuttgart, Stuttgart, Germany, {linsenmayer,
allgower}@ist.uni-stuttgart.de

2Dimos V. Dimarogonas is with the ACCESS Linnaeus Centre, School
of Electrical Engineering, KTH Royal Institute of Technology, Stockholm,
Sweden, dimos@kth.se

due to random loss and jamming attacks is given in [8],
where a trigger rule is designed to guarantee almost sure
asymptotic stability for a deterministic discrete-time system.
A more recent approach in event-triggered control is to
allow thresholds to be dynamically generated. This method
is known as dynamic event-triggered control and it is used to
deal with packet loss in NCSs in [9]. To deal with network-
induced imperfections in a PETC framework is the goal of
[10] which focuses on communication delays as well as
packet loss. The main contribution therein is to come up
with a new Lyapunov-Krasovskii functional that significantly
improves the behavior under delay. The packet loss is then
covered by lowering the generated threshold such that the
condition that guarantees H∞ stability in the delayed setup
is guaranteed to hold at every sampling instant albeit the
occurrence of packet loss.

In this paper we will show that one can deal with packet
loss in PETC by applying stability results that employ
Lyapunov functions that are non-monotonically decreasing
along solutions of the dynamical system. Such results are
given in [11] for nonlinear time-varying and in [12] for
various system classes, including discontinuous dynamical
systems. The benefits of non-monotonic Lyapunov functions
were used in [13] with the goal to simplify computation of
Lyapunov functions, and in [14] and [15] in the context of
optimization in NCSs.

In this work we focus on PETC with packet loss. The
first goal is to derive a trigger rule with easily verifiable
conditions, dependent on the system dynamics and amount
of packet loss, to guarantee stability of the closed-loop
continuous-time system. We will derive this trigger rule
by computing conditions such that the dynamical system,
restricted to successful triggering instants, is globally expo-
nentially stable. The second contribution lies in generalizing
these results as a non-monotonic approach. We show that
stability of the closed-loop system can be proven using a the-
orem for non-monotonic Lyapunov functions. Furthermore
we will show based on this theorem that the approach can
be used to synthesize other trigger rules for the given setup
than the one used in this paper.

The remainder is structured as follows. In Section II a
precise definition of the problem is given. Following this
we derive a trigger rule for stabilization in the presence of
packet loss based on different discretizations in Section III. In
Section IV we generalize our approach using non-monotonic
Lyapunov functions and give an example for a trigger rule
from literature that can be designed using this approach. The
paper closes with a numerical example in Section V and a
conclusion in Section VI.



II. PROBLEM SETUP

In this paper we consider the LTI System

ẋc(t) = Acxc(t)+Bcuc(t), xc(0−) = xc,0 (1)

with xc(t) ∈ Rn, uc(t) ∈ Rp for all t ≥ 0− and matrices
Ac,Bc with suitable dimensions, where t = 0− stands for
limt→0,t<0 t. We assume (Ac,Bc) to be stabilizable. We ob-
serve a scenario where the control loop is closed over a
communication network that provides a certain service guar-
antee. This guarantee tuple (h,m) consists of the maximum
sampling time h and the maximum number of successive
packet losses m. We assume h such that the discretized
system with sampling time h is stabilizable as well (see e.g.
[16] for sufficient conditions on h, Ac, Bc). To generate the
control input, we use a sampled-data controller whose update
sequences are determined through a periodic event-triggered
scheme. A new element of this sequence is added when a
certain trigger rule is violated at the periodic time instants,
with period h, it is being evaluated, i.e.,

T̃ = {t ≥ 0 : t = kh ∧ trigger rule is violated at t} (2)

where k ∈N and T̃ =: {τ̃0, τ̃1, τ̃2, . . .}. Due to the possibility
of packet loss the actual resulting sequence of update times

T = {t ≥ 0 : t ∈ T̃ ∧ triggering successful}, (3)

with T =: {τ0 = τ̃0,τ1,τ2, . . .}, is a subset of T̃ where
at most m successive elements of T̃ are not contained in
T . Without loss of generality, we assume τ0 = τ̃0, i.e., the
first instant when triggering is necessary is assumed to be
successful. Furthermore we define indices that represent the
same time instants in T and T̃ . Starting with a nonnegative
integer kτ that specifies due to (3) the kτ

th instant when
triggering is successful, there exists kτ |τ̃ ∈ N0 such that the
kτ |τ̃ th instant when triggering is necessary happens at the
same time as the kτ

th successful instant, i.e., τkτ
= τ̃kτ |τ̃ .

Using T we can define the last successfully transmitted state
x̂c(t) that is initialized with x̂c,0 and updated at all successful
triggering instants, i.e., x̂c(t) = x̂c,0 for t ∈ [0−,τ0) and for
all kτ ∈ N0

x̂c(t) =

{
xc(t), t ∈T

x̂c(τkτ
), t ∈ (τkτ

,τkτ+1).
(4)

Using (4) the resulting periodic event-triggered controller is
then given as

uc(t) = Kx̂c(t). (5)

Note that for xc(t) it holds, due to continuity of the solution,
that xc(0) = xc(0−) = xc,0.

To design the controller and trigger rules we will use the
discretized system with sampling time h, i.e.,

xk+1 = Axk +Buk, k ∈ N0 (6)

with A = eAch, B =
∫ h

0 eAcsBcds, uk = uc(t = kh := tk) and
x0 = xc,0, thus xk = xc(t = tk). According to the definition of
kτ and kτ |τ̃ above we define kτ |h := τkτ

h . For analysis purposes
we define another discretization of the sampled-data system

(1) that is a restriction to the successful trigger times, i.e., it
is defined on T as

x̃kτ+1 = f (x̃kτ
,kτ), kτ ∈ N0 (7)

with f (·, ·) such that x̃kτ
= xkτ |h = xc(t = τkτ

) for all kτ ∈N0.
For the case T = T̃ , i.e. the case of no packet loss,

[5] states suitable trigger rules such that global exponen-
tial stability of the continuous-time sampled-data system is
guaranteed. In this work we want to derive trigger rules
and easily verifiable conditions, dependent on the system
dynamics, service guarantees and the chosen controller, to
check if there exist parameters for them such that global
exponential stability can still be guaranteed under the given
tuple (h,m) provided by the network. To derive these rules
we will at first use an approach using standard Lyapunov
techniques for the different discretizations introduced above.
Later in Section IV we will show, that this approach can
be generalized using non-monotonic Lyapunov functions as
described in [12].

III. APPROACH BASED ON DIFFERENT
DISCRETIZATIONS

The idea is to derive a controller and triggering setup
for system (6). This setup will be analyzed to compute
bounds on the parameters of the trigger rule using system
(7), to guarantee exponential stability of this restriction
despite packet loss. The last step is to draw conclusions from
stability properties of (7) for system (1).

A. Design controller and state trigger rule
First of all we define trigger errors ec(t) = x̂c(t)− x(t)

and their discrete counterpart ek = ec(tk) = x̂c(tk)− xc(tk) =
x̂k−xk. Using this trigger error ek we can compute a closed-
loop representation of the discretized system (6) between two
successful triggering instants, i.e.,

xk+1 = (A+BK)︸ ︷︷ ︸
A1

xk + BK︸︷︷︸
B1

ek

ek+1 = (I−BK)︸ ︷︷ ︸
A2

ek +(I− (A+BK))︸ ︷︷ ︸
B2

xk (8)

for all k ∈ [kτ |h,kτ +1|h) with kτ ∈N0, where kτ |h and kτ +
1|h represent the discrete-time indices of the kτ

th and (kτ +
1)th successful triggering instant as defined in Section II. We
use this representation now to derive an explicit formula for
the evolution of xk and ek.

Lemma 1: Observe the closed-loop representation from
equation (8). Then for natural numbers j,k ∈ [kτ |h,kτ +1|h),
kτ ∈ N0 and j > k, it holds that

x j = A1| j−kxk +B1| j−kek

e j = A2| j−kek +B2| j−kxk (9)

with A1|1 = A1,B1|1 = B1,A2|1 = A2,B2|1 = B2 and for i≥ 1

A1|i+1 = A1A1|i +B1B2|i, B1|i+1 = A1B1|i +B1A2|i,

A2|i+1 = A2A2|i +B2B1|i, B2|i+1 = A2B2|i +B2A1|i.
Proof: We prove Lemma 1 via induction. Using the ini-

tial matrices we see that (9) equals (8) for j−k = 1. Now we
assume (9) holds for some j > k. Thus we have to show that



under this assumption (9) holds for j+1 as well. Combining
(8) and (9) we compute x j+1 = A1x j +B1e j = A1A1| j−kxk +
A1B1| j−kek + B1A2| j−kek + B1B2| j−kxk and e j+1 = A2e j +
B2x j = A2A2| j−kek + A2B2| j−kxk + B2A1| j−kxk + B2B1| j−kek.
Thus, one observes that (9) holds for all natural numbers
j,k ∈ [kτ |h,kτ +1|h), j > k, kτ ∈ N0.
As mentioned in the beginning we assume stabilizability of
(Ac,Bc) and h to be such that (A,B) is stabilizable. Thus, we
can compute a controller K and accordingly P > 0 such that
the condition

V (xk+1)−V (xk)≤−θ
2‖xk‖2 +‖ek‖2 (10)

where V (xk) = x>k Pxk and θ > 0 holds for all k ∈ N0. Thus
it also holds that

λmin(P)‖xk‖2 ≤V (xk)≤ λmax(P)‖xk‖2. (11)

We start our derivations with a trigger rule where trigger-
ing is necessary when

‖ek‖2 > σ
2‖xk‖2. (12)

In case of no packet loss the condition σ < θ is known to
be sufficient for global exponential stability, cf. [5], [17]. We
will compute a new bound on σ in the following for the case
of m successive packet losses. Our derivations will lead to
a trigger rule that does not guarantee that (12) with σ < θ

holds despite packet loss. We will also add another condition
later that will be only active after packets have been lost and
will not change the behavior in the nominal case.

B. Compute bounds on inter-event intervals
It is clear that in a PETC setup the inter-event times are

lower bounded by the sampling time h. In the next result
we will state and prove that the inter-event times are also
uniformly upper bounded, since this will be needed in the
stability proof.

Lemma 2: Assume system (1) is controlled with the pe-
riodic event-triggered controller (5) according to trigger rule
(12) where σ < θ . Then the interval between two successful
triggering instants in case of at most m successive packet
losses is uniformly upper bounded, i.e.,

τkτ+1− τkτ
≤ η ∀kτ ∈ N0. (13)

Proof: The proof consists of three steps. In the first step
an upper bound on the time between a successful triggering
instant and the next necessary triggering instant will be given,
i.e., η1 will be computed such that η1 ≥ τ̃kτ |τ̃+1 − τkτ

=
τ̃kτ |τ̃+1− τ̃kτ |τ̃ for all kτ ∈N0. In the second step it is shown
that an upper bound on the time between a necessary but
not successful instant and the next necessary instant can be
computed, i.e., η2 such that η2 ≥ τ̃kτ̃+1− τ̃kτ̃

for all kτ̃ that
satisfy τ̃kτ̃

/∈ T . The proof is concluded by the observation
that the overall bound is a finite sum of these bounds since
there are at most m unsuccessful triggering attempts, i.e.,
(13) holds with η = η1 +mη2.

We will start with the computation of η1. According to
trigger rule (12) we know ‖e j‖2 ≤ σ2‖x j‖2 until the next
triggering is necessary. Thus from σ < θ , the dissipation
inequality (10) and the bound (11) one can conclude, using
standard Lyapunov arguments, that an exponential decrease
holds until the next triggering is necessary, i.e., there exist

r ≥ 1 and λ > 0 such that ‖x j‖ ≤ re−λh( j−kτ |h)‖xkτ |h‖,
for all j ∈

[
τkτ

h = kτ |h,
τ̃kτ |τ̃+1

h

]
. By the definition of the

trigger error we know that ‖x̂ j‖ = ‖xkτ |h‖ = ‖e j + x j‖ ≤
‖e j‖+ ‖x j‖ until a new successful triggering instant re-
sets the trigger error to zero, thus ‖e j‖ ≥ ‖xkτ |h‖−‖x j‖ ≥(

1− re−λh( j−kτ |h)
)
‖xkτ |h‖, for all j ∈

[
kτ |h,

τ̃kτ |τ̃+1
h

)
. Due

to these calculations we notice that ‖x j‖ and ‖e j‖ are
strictly decreasing respectively increasing. Thus, if we can
compute kη1 ∈ N such that σ‖x j‖ ≥ ‖e j‖ for j = kτ |h +
kη1 we know that for η1 = (kη1 +1)h trigger rule (12)
is violated in any case. It remains to compute kη1 ∈ N
such that σre−λhkη1‖xkτ |h‖ ≥ (1− re−λhkη1 )‖xkτ |h‖ . Thus
kη1 =

⌈ 1
hλ

ln(r(σ +1))
⌉

and η1 = h
(⌈ 1

hλ
ln(r(σ +1))

⌉
+1
)
.

It remains to compute η2. This bound can be computed
essentially using the same method as before but considering
the following aspects. Either the case τ̃kτ̃

+h = τ̃kτ̃+1 holds,
i.e., the next necessary triggering instant is immediately after
one period (then η2 = h holds) or the trigger rule is not vio-
lated in the next step, i.e., ‖e τ̃kτ̃

h +1
‖ ≤ σ‖x τ̃kτ̃

h +1
‖. Then we

know ‖x τ̃kτ̃
h +1
‖ ≤ ‖xkτ |h‖+‖e τ̃kτ̃

h +1
‖ ≤ ‖xkτ |h‖+σ‖x τ̃kτ̃

h +1
‖

and therefore ‖x τ̃kτ̃
h +1
‖ ≤ 1

1−σ
‖xkτ |h‖. Using this inequality

we can compute η2 with the same methods as η1 and thus
the proof is complete.

Remark 3: Using the same calculation as in Lemma 2
together with the fact that the first instant when triggering
is necessary is assumed to be successful one can observe
τ0− t0 < η holds as well.

C. Stability analysis of the restricted system
To analyze stability of system (7) we use the general

derivative of the Lyapunov function along trajectories of (7)
as in [18], i.e.,

DV :=
1

τkτ+1− τkτ

[V (x̃kτ+1)−V (x̃kτ
)] ∀kτ ∈ N0. (14)

As mentioned above to guarantee stability of this system we
introduce an additional trigger rule. This trigger rule forces
to trigger an event when

V (xk)−V (xkτ |h)>−θ
2‖xkτ |h‖

2, ∀k ∈ [kτ |h,kτ +1|h) . (15)

Notice that in the case of no packet loss nothing changes,
since the demanded decrease is guaranteed already after one
time instant due to the dissipation inequality (10) and the
fact that ekτ |h = 0 due to successful triggering. Furthermore
notice that the bound derived in Lemma 2 still holds since
an additional trigger rule cannot increase an upper bound on
the inter-event times in general.

Now we can establish a condition on the parameter σ

such that the origin of the restricted system (7) is globally
exponentially stable despite m successive packet losses.

Theorem 4: Assume one can find r > 0 and 0 < σ < θ

such that for all l ∈ {1, . . . ,m}

r−θ
2 +

l

∑
j=1

c j(0)

−θ
2

l

∑
j=1

max

{
0,

λmin(P)− r−∑
l
i= j ci(0)

λmax(P)

}
≤ 0 (16)



and

r−θ
2− θ 2−σ2

(1+σ)2 +
l

∑
j=1

c j(σ)

−θ
2

l

∑
j=1

max

{
0,

λmin(P)− r−∑
l
i= j ci(σ)

λmax(P)

}
≤ 0 (17)

are satisfied with

ci(σ) =

(
1

1−σ

)2 (
‖A2|i‖σ +‖B2|i‖

)2
, ci(0) = ‖B2|i‖2.

Then the equilibrium at x̃ = 0 of the restricted discrete
time system (7) with periodic event-triggered controller (5),
where triggering is attempted when either (12) or (15) with
threshold σ is violated, and with at most m successive packet
losses is globally exponentially stable.

Proof: To prove the statement we use the Lyapunov
function V (x̃kτ

) = x̃>kτ
Px̃kτ

and analyze the general derivative
DV defined in (14). To show global exponential stability of
the restricted dynamical system (7) we have to show that
there exists a positive constant r̃ such that

1
τkτ+1− τkτ

[V (x̃kτ+1)−V (x̃kτ
)]≤−r̃‖x̃kτ

‖2 (18)

for all kτ ∈N0 since the Lyapunov function can be bounded
as in (11).

From Lemma 2 we know τkτ+1− τkτ
≤ η for all kτ ∈N0.

Thus, if one can show existence of r > 0 such that V (x̃kτ+1)−
V (x̃kτ

)≤−r‖x̃kτ
‖2, one can immediately conclude that (18)

holds with r̃ = r
η

. Therefore we will now focus on the
term V (x̃kτ+1)−V (x̃kτ

) = V (xkτ+1|h)−V (xkτ |h). At first we
observe which scenarios are possible to happen in between
two successful triggering instants. Without loss of generality
every successful triggering instant is followed by q ∈ N0
time instants where no triggering is necessary. In the notation
introduced above this translates to τ̃kτ |τ̃+1 = tkτ |h+q+1, i.e., the
next instant when triggering is necessary is q+1 time instants
after tkτ |h . Since we have to observe the cases when packets
are lost these q instants are followed by l ∈ {1, . . . ,m} time
instants when triggering is necessary but not successful, i.e.,
τ̃kτ |τ̃+p = tkτ |h+q+p, where p ∈ {1, . . . , l} and l ∈ {1, . . . ,m}.
These l time instants are then followed either by an instant
when no triggering is necessary or by a successful triggering
instant. In the case that no triggering is necessary we know
according to trigger rule (15) that V (xkτ |h+q+l+1)−V (xkτ |h)≤
−θ 2‖xkτ |h‖

2 and thus V (xkτ+1|h)−V (xkτ |h)≤−θ 2‖xkτ |h‖
2 +[

V (xkτ+1|h −V (xkτ |h+q+l+1)
]

where the term in brackets once
again consists of q ∈ N0 instants where no triggering is
necessary and at most m− l instants where triggering is
necessary but not successful. Thus, it suffices to analyze
the case where triggering is necessary and successful at the
time instant following the l (at most m) time instants when
packets are lost, i.e., τkτ+1 = τ̃kτ |τ̃+l+1 = tkτ |h+q+l+1. Still
this scenario provides two different cases that have to be
analyzed, depending on the question of q being positive or
zero, resulting in condition (17) and (16).

As stated above, to show (18) we have a closer look on
V (xkτ |h+q+l+1)−V (xkτ |h). Due to the fact that triggering is
only necessary at t = tk+q+p for 1 ≤ p ≤ l, the fact that

ekτ |h = 0 and the dissipation inequality (10) one can compute
V (xkτ |h+q+l+1) − V (xkτ |h) ≤ −θ 2‖xkτ |h‖

2 − ∑
kτ |h+q
j=kτ |h+1(θ

2 −
σ2)‖x j‖2+∑

kτ |h+q+l
j=kτ |h+q+1 ‖e j‖2−θ 2‖x j‖2. At first we observe

the case where q > 0. We compute a bound on ‖e j‖ for
kτ |h +q+1≤ j ≤ kτ |h +q+ l in this case. Due to Lemma 1
we have

‖e j‖= ‖A2| j−(kτ |h+q)ekτ |h+q +B2| j−(kτ |h+q)xkτ |h+q‖
≤ ‖A2| j−(kτ |h+q)‖‖ekτ |h+q‖+‖B2| j−(kτ |h+q)‖‖xkτ |h+q‖
≤
(
‖A2| j−(kτ |h+q)‖σ +‖B2| j−(kτ |h+q)‖

)
‖xkτ |h+q‖

≤
√

c j−(kτ |h+q)(σ)‖xkτ |h‖ (19)

where we used the fact that triggering is not necessary at
tkτ |h+q and the definition of the trigger error for the last
inequality. Additionally using that the trigger rule holds at
tkτ |h+1 combined with (19) leads to V (xkτ |h+q+l+1) −
V (xkτ |h) ≤

(
−θ 2− θ 2−σ2

(1+σ)2 +∑
l
j=1 c j(σ)

)
‖xkτ |h‖

2 −
∑

l
j=1 θ 2‖xkτ |h+q+ j‖2 where we focus now on the last

sum. If there exist j ∈ {1, . . . , l} and r > 0 such that
V (xkτ |h+q+ j)−V (xkτ |h) ≤ −r‖xkτ |h‖

2 −∑
k+q+l
i=kτ |h+q+ j ‖ei‖2, it

holds that V (xkτ |h+q+l+1)−V (xkτ |h) ≤ −r‖xkτ |h‖
2. If not,

we know that for all j ∈ {1, . . . , l} and r > 0 it holds that
V (xkτ |h+q+ j)−V (xkτ |h) > −r‖xkτ |h‖

2 − ∑
k+q+l
i=kτ |h+q+ j ‖ei‖2 =

−(r + ∑
l
i= j ci(σ))‖xkτ |h‖

2 and thus, due to (11) and
nonnegativity of the norm

‖xkτ |h+q+ j‖2 ≥max

{
0,

λmin(P)− r−∑
l
i= j ci(σ)

λmax(P)

}
‖xkτ |h‖

2 .

Using this together with (17) one observes that
V (xkτ |h+q+l+1) − V (xkτ |h) ≤ −r‖xkτ |h‖

2 holds in this
case as well, and thus in general for q≥ 1. As stated before
we know due to Lemma 2 that τkτ+1− τkτ

≤ η , ∀kτ ∈ N0
and thus (18) holds with r̃ = r

η
for q≥ 1.

It remains to show that the things shown for q ≥ 1
using (17) also hold for q = 0 using (16). We first recall
that in this case the difference of the Lyapunov function
simplifies to V (xkτ |h+q+l+1) − V (xkτ |h) ≤ −θ 2‖xkτ |h‖

2 +

∑
kτ |h+l
j=kτ |h+1 ‖e j‖2− θ 2‖x j‖2. Due to the fact that ‖ekτ |h‖ =

0 and Lemma 1 one observes that ∑
kτ |h+l
j=kτ |h+1 ‖e j‖2 ≤

∑
kτ |h+l
j=kτ |h+1 ‖B2| j−kτ |h‖

2‖xkτ |h‖
2 = ∑

l
i=1 ci(0)‖xkτ |h‖

2 and thus

V (xkτ |h+q+l+1) − V (xkτ |h) ≤
(
−θ 2 +∑

l
j=1 c j(0)

)
‖xkτ |h‖

2 −

∑
kτ |h+l
j=kτ |h+1 ‖x j‖2. The same arguments that have been used

above can be used to show that as in the case q ≥ 1 either
V (xkτ |h+q+l+1)−V (xkτ |h) ≤ −r‖xkτ |h‖

2 holds directly or the
bound

‖xkτ |h+ j‖2 > max

{
0,

λmin(P)− r−∑
l
i= j ci(0)

λmax(P)

}
‖xkτ |h‖

2

can be derived. Thus with (16), (18) holds for all kτ ∈N0 with
r̃ = r

η
and the equilibrium x̃ = 0 of the discretized system,

restricted to successful triggering instants is shown to be
globally exponentially stable under the given assumptions.



Remark 5: Although conditions (16) and (17) look quite
complicated, verification of given σ or finding a suitable σ

is not too elaborate. One starts with fixing a value for r that
corresponds to a desired convergence rate. Afterwards (16)
is an inequality independent of σ that needs to be fulfilled.
Regarding (17) one proceeds with a line search to find the
maximal value σ such that the inequality is not violated.

D. Consequences for continuous-time sampled-data system
To analyze the continuous-time system, one can use an

approach similar to [19]. It uses the uniform upper and
lower boundedness of the time intervals between successful
triggering from Lemma 2 to compute a uniform upper bound
on the increase in between them. Together with exponential
stability of the restricted system as shown in Theorem 4
global exponential stability of the sampled-data system can
be shown. The details of the proof are omitted here due to
space limitations. The result that can be derived is summa-
rized in the following Corollary.

Corollary 6: Assume the continuous-time sampled-data
system controlled in the same setup as in Theorem 4.
Then there exist kc > 1 and λc > 0 such that ‖xc(t)‖ ≤
kce−λct‖xc(0)‖ for all xc,0, x̂c,0 ∈ Rn and t ≥ 0.

IV. STABILITY RESULT USING NON-MONOTONIC
LYAPUNOV FUNCTIONS

The approach given in this paper was described to be a
non-monotonic approach, since one demands the evolution
of V to decrease only between successful triggering instants.
Indeed, one can derive the results in a second way using
theory on non-monotonic Lyapunov functions as described
in [12]. It is shown by an example that this is a general
approach to PETC with packet loss.

A. Proof based on non-monotonic Lyapunov functions
The particular result that we use from [12] is Theo-

rem 6.4.7. The Theorem uses a Lyapunov function that is
non-monotonically decreasing along solutions of the sys-
tem to show global exponential stability of the origin of
a continuous-time sampled-data system that needs to be
formulated as a discontinuous dynamical system (DDS).
With Theorem 6.4.7 from [12] we can give a second proof
for the main result of the paper.

Theorem 7: Assume 0 < σ < θ fulfills the assumptions of
Theorem 4. Then the equilibrium at the origin

[
x>c e>c

]>
=[

0> 0>
]> of the continuous-time sampled-data system (1),

(5), where triggering is attempted when either (12) or (15)
with threshold σ is violated, with at most m successive
packet losses is globally exponentially stable.

Proof: As stated above we need to model the sampled-
data system as a discontinuous dynamical system. We use
ξ =

[
x>c e>c

]> and the sequence of successful triggering
instants to rewrite the closed-loop sampled-data system as

ξ̇ (t) =
[

A+BK BK
−(A+BK) −BK

]
︸ ︷︷ ︸

Aξ

ξ (t), τk−1 ≤ t ≤ τk

ξ (t) =
[

I 0
0 0

]
ξ (t−), t = τk, k ∈ N0 (20)

with ξ (0−) =
[
x>c,0 x̂>c,0− xc,0

]>
and τ−1 := 0− = t0. As a

Lyapunov function we use v(ξ , t) = ξ>
[

P 0
0 I

]
ξ with P as

in Section III. We observe that we can now use Theorem
6.4.7 to analyze the stability of (20) where the unbounded
discrete subset from [12] with E = {ρ1,ρ2, . . .} equals the
set of successful triggering instants T = {τ0,τ1, . . .} and
ρ0 = t0 = τ−1 = 0−. It remains now to show that equations
(6.59), (6.60), and (6.62) from [12] hold. At first one can
see that (6.59) holds with r1 = min{λmin(P),1} and r2 =
max{λmax(P),1} due to positive definiteness of P (ri replaces
ci in the notation of [12]).

We will now start with checking (6.62) for ρk
with k ∈ N, or equivalently τk with k ∈ N0, i.e.,

1
τk+1−τk

[v(φ(τk+1, t0,ξ0),τk+1) − v(φ(τk, t0,ξ0),τk)] ≤
−r̃‖xc(τk)‖2 = −r̃‖ξ (τk)‖2, where we used the fact that
ec(τk) = 0 for all k ∈ N0 and the knowledge from the proof
of Theorem 4 that (18) holds for all kτ ∈ N0 under the
assumptions of Theorem 4. Furthermore we have to analyze

1
τ0− τ−1

[v(φ(τ0, t0,ξ0),τ0)− v(φ(τ−1, t0,ξ0),τ−1)] . (21)

We note that if triggering is necessary immediately after
initialization, i.e., τ0 = 0 we know ‖ec(0−)‖2 > σ2‖xc(0−)‖2

and xc(τ0) = xc(τ−1). Thus one can compute
(21) = − 1

τ0−τ−1

[
σ2

1+σ2 ‖ec(τ−1)‖2 + 1
1+σ2 ‖ec(τ−1)‖2

]
≤

− 1
η

σ2

1+σ2

[
‖ec(τ−1)‖2 +‖x(τ−1)‖2

]
=: −r̃‖ξ (τ−1)‖2.

If no triggering is necessary after initialization we
know by assumption that ‖ec(τ−1)‖2 ≤ σ2‖xc(τ−1)‖2,
thus (21) ≤ − 1

η

[
(θ 2−σ2)‖xc(τ−1)‖2 +‖ec(τ−1)‖2

]
≤

−r̃′′‖ξ (τ−1)‖. Thus we showed that (6.62) holds under
the given assumptions with r3 = min{r̃, r̃′, r̃′′}. It remains
to show that (6.60) holds for all ρk with k ∈ N0. We
know that v(ξ , t) ≤ r2‖ξ (t)‖2. Furthermore we know
that ξ̇ (t) = Aξ ξ (t) for t ∈ (τk−1,τk),k ∈ N0. Thus
we can use µ(Aξ ) := λmax(

1
2 (A

>
ξ
+ Aξ )) to derive

‖ξ (t)‖2 = ‖eAξ (t−τk)ξ (τk)‖2 ≤ ‖eµ(Aξ )(t−τk)‖2‖ξ (τk)‖2.
Using Lemma 2 and the subsequently given Remark
we know τk − τk−1 ≤ η for all k ∈ N0. Thus,
r2‖ξ (t)‖2 ≤ r2‖eµ(Aξ )η‖2‖ξ (τk)‖2. Due to the fact that
‖ξ (τk)‖2 ≤ 1

r1
v(ξ (τk),τk) it follows that v(ξ (t), t) ≤

r2
r1
‖eµ(Aξ )η‖2v(ξ (τk),τk) for all t ∈ (τk−1,τk),k ∈ N0. Thus,

(6.60) holds with f (r) = r2
r1
‖eµ(Aξ )η‖2r.

B. Remarks on general non-monotonic framework
If this approach is to be used to generate trigger rules that

guarantee stability despite packet loss, the main challenges
are as follows. One needs to design a trigger rule that
guarantees uniform upper and lower boundedness of the
inter-event intervals. Additionally the trigger rule needs to
guarantee a limited increase of a Lyapunov function in the
sense of (6.60) and a decrease between successful triggering
instants in the sense of (6.62).

Example 8: In [8] the instants when triggering is neces-
sary are given, according to our notation, as τ̃k+1 = min{t ∈
{τ̃k + h, τ̃k + 2h, . . .} : t ≥ τ̃k + ν or V (Ax(t) + Bu(τ̃k)) >
βV (x(τ̃k))}. Thus the inter-event times are explicitly uni-
formly upper bounded by mν in the case of at most m



TABLE I
DERIVED BOUNDS ON σ > 0 FOR h = 0.02 AND DIFFERENT VALUES OF m

m 0 1 2 3 4 5
σmax 0.1683 0.1450 0.1060 0.0770 0.0520 0.0300

0 2 4 6 8 10

0
0.5

1

t [s]

x(
t)

Fig. 1. Evolution of the state x under PETC with packet loss.

successive packet losses. In the setup of that paper control
input zero is applied when a packet loss occurs. Thus the con-
ditions βP− (A+BK)>P(A+BK)≥ 0 and ϕP−A>PA≥ 0
demand a desired decrease when no triggering is necessary or
triggering is successful as well as a maximum increase, that
satisfies (6.60) when packets are lost. Thus, if additionally
the requirement ϕmβ < 1 is fulfilled, the Lyapunov function
decreases between successful triggering instants and global
exponential stability can be shown using Theorem 6.4.7.

V. NUMERICAL EXAMPLE

In this section we consider the numerical example used

in [5] with Ac =

[
0 1
−2 3

]
, Bc =

[
0
1

]
and K =

[
1−4

]
. We

consider a network that provides a maximum sampling time
h = 0.02s. According to the rules in Theorem 4 we can
now compute bounds on σ for different values of m such
that the continuous-time sampled-data system is globally
exponentially stable despite the possibility of at most m
successive packets being lost. The bounds on σ > 0 that
can be derived are given in Table I.

In the following we assume a network that guarantees
a maximal sampling rate of h = 0.02s and at most m = 3
successive packet losses. According to Table I we select
σ = 0.077 and simulate the system with initial conditions
xc,0 = [−0.309,0.951]> and x̂c,0 = [−0.306,0.942]>. The
evolution of the sates is shown in Figure 1, where one can
observe that the origin is indeed stabilized. Additionally
it is of interest to observe how the trigger error evolves.
In Figure 2 the evolution of ‖ec(t)‖

‖xc(t)‖ is shown. Furthermore
the value chosen for σ due to Table I as well as the value
for σ known to be sufficient in absence of packet losses is
shown. The red asterisks mark time instants where the trigger
rules are evaluated and the trigger rule with σ = 0.1683,
known to be sufficient for 0 packet loss, is violated. The
existence of these instants shows the conceptual difference of
our approach to deal with packet loss in PETC. As mentioned
before, in other works, e.g. [10], a bound for σ in the case of

0 2 4 6 8 10
0

0.1
0.2
0.3

time [s]

‖ec‖
‖xc‖
σ for m = 3
σ for m = 0

Fig. 2. Evolution of the trigger error and different thresholds.

no packet loss is computed. Afterwards this bound is lowered
such that the original trigger rule is never violated despite
the fact that packet loss is considered. Thus a behavior as in
Fig. 2 implies that we investigate a different approach here
that can be used to stabilize the continuous-time system.

VI. CONCLUSIONS
In this paper we presented a new approach to deal with

packet loss in PETC. First a detailed derivation for a specific
trigger rule was presented. Building up on this analysis the
procedure was generalized as a non-monotonic approach.
An example was given to show that other trigger rules can
be generated within this framework. This observation gives
rise to possible further work including more general network
specifications and system dynamics in the setup. Furthermore
a constructive development of the framework should focus
on including other network-induced imperfections as well.
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[4] R. Blind and F. Allgöwer, “On time-triggered and event-based control
of integrator systems over a shared communication system,” Mathe-
matics of Control, Signals, and Systems, vol. 25, no. 4, pp. 517–557,
2013.

[5] W. P. M. H. Heemels, M. C. F. Donkers, and A. R. Teel, “Periodic
event-triggered control for linear systems,” IEEE Trans. Automat.
Contr., vol. 58, no. 4, pp. 847–861, 2013.

[6] X. Wang and M. D. Lemmon, “Event-triggering in distributed net-
worked control systems,” IEEE Trans. Automat. Contr., vol. 56, no. 3,
pp. 586–601, 2011.

[7] M. Guinaldo, D. Lehmann, J. Sánchez, S. Dormido, and K. H.
Johansson, “Distributed event-triggered control with network delays
and packet losses,” in Proc. 51st IEEE Conf. Dec. and Contr., 2012,
pp. 1–6.

[8] A. Cetinkaya, H. Ishii, and T. Hayakawa, “Event-triggered control over
unreliable networks subject to jamming attacks,” in Proc. 54th IEEE
Conf. Dec. and Contr., 2015, pp. 4818–4823.

[9] V. S. Dolk and W. P. M. H. Heemels, “Dynamic event-triggered control
under packet losses: The case with acknowledgements,” in Proc. Conf.
on Event-based Contr., Comm., and Signal Proc., 2015, pp. 1–7.

[10] C. Peng and T. C. Yang, “Event-triggered communication and H∞

control co-design for networked control systems,” Automatica, vol. 49,
pp. 1326–1332, 2013.

[11] D. Aeyels and J. Peuteman, “A new asymptotic stability criterion for
nonlinear time-variant differential equations,” IEEE Trans. Automat.
Contr., vol. 43, no. 7, pp. 968–971, 1998.

[12] A. N. Michel, L. Hou, and D. Liu, Stability of dynamical systems,
2nd ed. Springer, 2008.

[13] A. A. Ahmadi and P. A. Parrilo, “Non-monotonic lyapunov functions
for stability of discrete time nonlinear and switched systems,” in Proc.
47th IEEE Conf. Dec. and Contr., 2008, pp. 614–621.

[14] R. Gielen and M. Lazar, “Stabilization of networked control systems
via non-monotone control lyapunov functions,” in Proc. 48th IEEE
Conf. Dec. and Contr., 2009, pp. 7942–7948.

[15] M. Lazar, “Flexible control lyapunov functions,” in Proc. American
Contr. Conf. , 2009, pp. 102–107.

[16] E. D. Sontag, Mathematical Control Theory. Springer, 1990.
[17] A. Eqtami, D. Dimarogonas, and K. Kyriakopoulos, “Event-triggered

control for discrete-time systems,” in Proc. American Contr. Conf. ,
2010, pp. 4719–4724.

[18] W. Hahn, Stability of Motion. Springer, 1967.
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