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Abstract

We study the problem of plan synthesis for multi-agent systems, to achieve complex, high-level, long-term goals that are
assigned to each agent individually. As the agents might not be capable of satisfying their respective goals by themselves,
requests for other agents’ collaborations are a part of the task descriptions. We consider that each agent is modeled as
a discrete state-transition system and its task specification takes a form of a linear temporal logic formula. A traditional
automata-based approach to multi-agent plan synthesis from such specifications builds on centralized team planning and full
team synchronization after each agents’ discrete step, and thus suffers from extreme computational demands. We aim at
reducing the computational complexity by decomposing the plan synthesis problem into finite horizon planning problems that
are solved iteratively, upon the run of the agents. We introduce an event-based synchronization that allows our approach to
efficiently adapt to different time durations of different agents’ discrete steps. We discuss the correctness of the solution and find
assumptions, under which the proposed iterative algorithm leads to provable eventual satisfaction of the desired specifications.

Key words: Temporal logic, finite state machines, formal verification, path planning, synchronization, decentralized control,

robot control.

1 Introduction

In recent years, a considerable amount of attention has
been devoted to synthesis of robot controllers for com-
plex, high-level missions, such as “periodically survey
regions A, B, C, in this order, while avoiding region D”,
specified as temporal logic formulas. Many of the sug-
gested solutions to variants of this problem rely on a hi-
erarchical procedure [3,11, 13, 21]: First, the dynamics
of the robotic system is abstracted into a finite transi-
tion system using e.g., sampling or cell decomposition
methods. Second, leveraging ideas from formal verifica-
tion, a discrete plan that meets the mission is synthe-
sized. Third, the plan is translated into a controller for
the original system. In this work, we focus on a multi-
agent version of the above problem. We consider a het-
erogeneous team of robots, that are assigned a temporal
logic mission each. As the robots may not be able to ac-
complish their missions without the help of the others,
the specifications may contain requirements on the other
team members’ behavior. For instance, consider a ware-
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house solution with two mobile robots. A part of the first
robot’s mission is to load an object in region A, but it is
not able to load it by itself. Therefore, the mission also
includes a task for the second robot, to help loading. The
goal of this paper is to efficiently synthesize a plan for
each agent, such that each agent’s mission is met. We fol-
low the hierarchical approach to robot controller synthe-
sis as outlined above and we narrow our attention to the
second step of the approach, i.e., to generating discrete
plans. The application of the algorithm that we propose
is, however, not restricted to discrete systems: For the
first step of the hierarchical approach, numerous meth-
ods for discrete modeling of robotic systems can be used
(see, e.g., [11,13,14,21] and the references therein); for
the third step, low-level controllers exist that can drive a
robot from any position within a region to a goal region
(see, e.g., [2]). The agents can, but do not have to, mu-
tually synchronize after the execution of their respective
discrete steps. The desired plans thus comprise not only
of the agents’ discrete steps to be taken, but also their
synchronizations. Besides the satisfaction of all agents’
missions, our goal is to avoid unnecessary synchroniza-
tion in order to improve the team performance.

As a mission specification language, we use Linear

Temporal Logic (LTL), for its resemblance to natural
language [9], and expressive power. Here, we built LTL
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formulas over services, i.e., events of interest associ-
ated with execution of certain actions rather than over
atomic propositions, i.e., inherent properties of the sys-
tem states. Instead of evaluation of the specification as
a conjunction of LTL formulas over the whole team be-
haviors, we propose the notion of satisfaction of an LTL
formula from local perspective. This way, the problem
of finding a collective team behavior is decomposed into
several subproblems, enabling us to avoid the straight-
forward, but expensive fully centralized planning. The
contribution of this paper can be summarized as the
introduction of an efficient, iterative, finite horizon
planning technique in the context of bottom-up plan
synthesis for multi-agent systems from local LTL speci-
fications. To our best knowledge, such an approach has
not been taken to address the multi-agent LTL planning
before. Our algorithm is adaptive in the sense that even
if the real behavior of the team is not as planned due to
unpredictable time durations of the agents’ steps, the
event-based synchronization and replanning still guar-
antees the satisfaction of all the tasks. This feature can
be especially beneficial in heterogeneous multi-robot
motion and task planning problems, where individual
robots traverse their common environment at different
speeds. This paper builds on our earlier work in [18].
In addition, it relaxes the assumption that the agents
synchronize after every discrete step of theirs and intro-
duces the event-based synchronization and replanning.

Multi-agent planning from temporal logic specification
has been explored in several recent works. Planning from
computational tree logic was considered in [16], whereas
in [12,15], the authors focus on planning behavior of
a team of robots from a single, global LTL specifica-
tion. A fragment of LTL has been considered as a spec-
ification language for vehicle routing problems in [10],
and a general reactivity LTL fragment has been used
in [20]. Decentralized control of a robotic team from lo-
cal LTL specification with communication constraints
is proposed in [7]. However, the specifications there are
truly local and the agents do not impose any require-
ments on the other agents’ behavior. Thus, the focus
of the paper is significantly different to ours. As op-
posed to our approach, in [4,19], a top-down approach
to LTL planning is considered; the team is given a global
specification and an effort is made to decompose the
formula into independent local specifications that can
be treated separately for each robot. In [8], bottom-up
planning from LTL specifications is considered, and a
partially decentralized solution is proposed that takes
into account only clusters of dependent agents instead
of the whole group. A huge challenge of the previous ap-
proach is its extreme computational complexity, which
we tackle in this work by applying receding horizon ap-
proach to multi-agent planning. Receding horizon ap-
proach was leveraged also in [21] to cope with uncertain
elements in an environment in single-robot motion plan-
ning. To guarantee the satisfaction of the formula, we use
an attraction-type function that guides the individual

agents towards a progress within a finite planning hori-
zon; similar ideas were used in [6,17] for a single-agent
LTL planning to achieve a locally optimal behavior.

The rest of the paper is structured as follows. In Sec. 2,
we fix the preliminaries. Sec. 3 introduces the problem
and summarizes our approach. In Sec. 4, the details of
the solution are provided. In Sec. 5, we provide analysis
and discussion of the solution. We present simulation
results in Sec. 6, and we conclude in Sec. 7.

2 Preliminaries

Given a set S, let 25, and S* denote the set of all subsets
of S, and the set of all infinite sequences of elements of
S, respectively. A finite or infinite sequence of elements
of S is called a finite or infinite word over S, respectively.
The i-th element of a word w is denoted by w(i). A sub-
sequence of an infinite word w = w(1)w(2) ... is a finite
or infinite sequence of its elements w(i1 )w(iz) . . ., where
V1 < 5.1 <4; <ij41. Afactor of wis a continuous, finite
or infinite, subsequence w(i)w(i + 1) ..., where 1 <i. A
prefix of w is a finite factor starting at w(1), and a suf-
fix of w is an infinite factor. N and RS’ denote positive
integers and non-negative real numbers, respectively.

A transition system (TS) is a tuple T = (S, Sinit, A, T),
where S is a finite set of states; s;n;+ € S is the initial
state; A is a finite set of actions; and T C Sx A — Sisa
partial deterministic transition function. For simplicity,
we denote a transition T'(s, o) = s’ by s = s". A trace of
T is an infinite alternating sequence of states and actions
T = 8118205 . . ., such that s1 = s, and for all 7 > 1,
s; — Si+1- A trace fragment T is a finite factor of a
trace 7 that begins and ends with a state.

A linear temporal logic (LTL) formula ¢ over the set of
atomic propositions IT is defined inductively: (i) = € ITis
a formula, and (ii) if ¢1 and ¢ are formulas, then ¢, V ¢o,
=1, X1, ¢p1 U o, F1, and G ¢; are each a formula,
where — and V are standard Boolean connectives, and
X, U, F, and G are temporal operators. The semantics
of LTL are defined over infinite words over 2. 7 € II is
satisfied on w = wyws ... if 7 € wy. X ¢ holds true if ¢ is
satisfied on the word that begins in the next position wo,
01 U ¢ states that ¢; has to be true until ¢2 becomes
true, and F ¢ and G ¢ are true if ¢ holds on w eventually,
and always, respectively. We denote the satisfaction of ¢
on a word w as w |= ¢. The set of all words accepted by
an LTL formula ¢ is L(¢). For full details see, e.g., [1].

An automaton is a tuple A = (Q, Ginit, 3, 6, F'), where Q
is a finite set of states; g;ni: € @ is the initial state; X is
an input alphabet; 6 C Q x X x @) is a non-deterministic
transition relation; and F' is an accepting condition. It
is deadlock-free if Vg € Q,0 € X. §(q,0) # . We de-
fine the set of states Sk(q) reachable from ¢ € @ in ex-

actly k steps inductively as 6°(¢) = {q}, and 6*(¢q) =



Uq,egk,l(q){q” | 30 € 2.(¢,0,¢") € 6},Vk > 1. A
Biichi automaton (BA) is an automaton with the accept-
ing condition F' C Q. A run of the BA B from ¢; € Q
over w = 0105 ... € X* is a sequence p = ¢143 - . ., such
that Vi > 1. (g, 0i,¢i41) € 6. A run p is accepting if
it intersects F' infinitely many times. A word w is ac-
cepted by B if there exists an accepting run over w from
the state g;ns:. The set of all words accepted by B is
L(B). Any automaton (Q, ¢init, 3, 6, F') can be viewed as
a graph (V, E') with the vertexes V = @Q and the edges F
given by ¢ in the expected way. The standard notation
then applies: A path is a finite alternating sequence of
states and transition labels ¢;0;q;41 - . . gxk—10%—1qx, such
that Vi < j < k. (¢;,0j,q;4+1) € 6. dist(g,¢’) denotes
the length of the shortest path between ¢ and ¢/, i.e.,
the minimal number of states in a path ¢...q". If no
such path exists, then dist(q,q’) = oo. If ¢ = ¢/, then
dist(gq, ¢') = 0. The shortest path can be computed using
Dijkstra algorithm (see, e.g., [5]).

3 Problem Formulation and Approach

Two general viewpoints can be taken in multi-agent
planning: either the system acts as a team with a com-
mon goal, or the agents have their own, independent
tasks. Although we permit each agent’s task to involve
requirements on the others, we adopt the second view-
point; to decide whether the agents’ tasks are met, we
do not look at the global team behavior. In contrast, we
propose the concept of local specification satisfaction to
determine whether an agent’s task is fulfilled from its
own perspective. Our goal is to synthesize a plan for each
agent that comprises of (i) the actions to be executed and
(ii) the synchronization requests imposed on the other
agents. Together, the strategies have to ensure the local
satisfaction of each of the task specifications regardless
of the time duration of the planned action executions.

We consider N agents (e.g., robots in a partitioned en-
vironment). Each agent ¢ € N, where N' = {1,...,N}
has action execution and synchronization capabilities.

Action Execution Capabilities. The agent i’s
action execution capabilities are modeled as a TS
Ti = (Si, Sinat,i» Ai, T;), whose states correspond to
states of the agents (e.g., the locations of the robots in
the regions of their environment). The actions A; repre-
sent abstractions of the agent’s low-level controllers, and
the transitions T; correspond to the agent’s capabilities
to execute the actions (e.g., the ability of the robots
to move between two regions). The traces are, roughly
speaking, the abstractions of the agents’ long-term be-
haviors (e.g., the robots’ trajectories). For the simplicity
of the presentation, we assume that each state s € S; is
reachable from all states s’ € S; via a sequence of tran-
sitions. Each of the agents’ action executions takes a
certain amount of time. Given a trace 7 = sy 8202 . . .
of T;, we denote by A, € R{ the time duration of the

transition s; 24, sj+1. Note that a transition duration
is arbitrary and unknown prior its execution, and that
the execution of the same action o may induce different
transition durations in its different instances on a trace.
The durations are not explicitly modeled in the TS 7T;
due to the fact that they are unknown, but, as we will
discuss later on, their history plays an important role
in defining the semantics of the agent’s behaviors, their
interactions and satisfaction of their tasks.

Synchronization Capabilities. The agents have also
the ability to synchronize, i.e., to wait for each other and
to proceed with the further execution simultaneously.
Through the simultaneous execution of certain transi-
tions, the agents have the ability to collaborate (e.g., an
agent loading heavy goods may need a second agent si-
multaneously helping to load it). The synchronization
is modeled through the synchronization requests, but
the particular implementation of the synchronization
scheme is beyond the scope of this paper. While being in
a state s, an agent i can send a request sync; to the set
of agents N notifying them that it is ready to synchro-
nize. Then, before proceeding with the execution of any
action a € A;, it has to wait till sync; has been sent by
each agent i’ € NV, i.e., till the moment when each agent
i’ € N isready to synchronize, too. The synchronization
is immediate once each of the agents i/ € A has sent its
request sync; and all agents in N start executing the
next action at the same time. Alternatively, an agent ¢
indicates that it does not need to synchronize through re-
questing nosync,. The set of all synchronization requests
of an agent i is thus Sync; = {sync;, nosync;}. For sim-
plicity, we assume that each agent sends a synchroniza-
tion request instantly once it completes an action execu-
tion and that it starts executing an action instantly once
it synchronizes with the other agents. In other words,
no time is spent idling in our system model. This does
not prevent us to capture the agents’ abilities of staying
in their respective states. Instead of idling, we include a
so-called self-loop s — s for some a € A;, all s € S;,
and all 7;, i € V. Given a trace 7; = $;10,18i,202 - - -
of T;, we denote by A, . € Rar the time duration of the
synchronization requested in the state s; ;. Note that if
the request nosync; has been sent in s; j, then Ay, . = 0.
Remark 1 In order to accomodate synchronization with
a subset of agents, we can parametrize the synchroniza-
tion requests Sync; = {sync,(M) | {i} € M C N'}. The
use of such a definition is discussed later in Remark 3.

Services. Each of the agents’ tasks is given in terms of
temporal requirements on events of interest, which we
call services. The set of all services that can be provided
by an agent ¢ € A is II;. Services are provided within the
agents’ transitions; each action « € A; is labeled either
with (i) a service set w € 2! provided upon the execu-
tion of «, or (ii) a special silent service set & = {&;},
g; ¢ II; indicating that « is not associated with any
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Fig. 1. An example of an environment partitioned into cells with
rooms Ry, ..., Rs. Loading/unloading points are in green (light).
Simple tasks t1,...,t5 can be executed in purple (dark) regions.

event of interest. Hence, two additional components of
the agent i’s model are the set of all available services
II; and the action-labeling function L; : A; — 2% U 28,
Note that we specifically distinguish between a silent ser-
vice set £ and an empty service set {}. The self-loops

of type s = s introduced above to model staying are
naturally labeled with &;. Without loss of generality, we
assume that II; N1I;; = 0, for all 4,7" € N, i # i'. As
it will become clear later, the choice of non-silent and
silent services in place of the traditional atomic proposi-
tions is motivated by the nature of multi-agent planning,
where the agents are concerned about each other only
at selected times, e.g., when collaboration is required.

Finally, we model an agent ¢ € N as the tuple M; =
(7;7 Syncia Hi7 Lz)

Example 1 An illustrative example of three mobile
robots in a common partitioned workspace is depicted
in Fig. 1. The agents can transit between the adjacent
cells that are not separated by a wall or stay where they
are. The former transitions are labeled with &;, while
non-silent services are associated with some of the latter
ones. Namely, agent 1 can load (lg,la,lp), carry, and
unload (ug,ua,up) a heavy object H or a light object
A, B, in the green cells. Agent 2 can help to load object
H (hy ), and execute simple tasks in the purple regions
(t1 —t5). Agent 8 is capable of taking a snapshot of the
rooms (s1 — s5 ) when being present in there.

Behaviors. The behavior of an agent i is defined by the
actions it executes, its synchronizations with the other
agents, and the time instants when the action executions
and the synchronizations take place.

Definition 1 (Behavior) A behavior of an agenti is a
tuple ;i = (73,7, Ti), where 7, = $;106,15;202 ... 1S @
trace of T;; v; = Ti,174,2 - . . 15 a synchronization sequence,
where r; ; € Sync, is the synchronization request sent

at the state s;5; and T; = ts, Lo, 1 ts; slas o - -+ 15 G MON-
decreasing behavior time sequence, wherets, ; is the time
instant when the synchronization request r; ; was sent,
and tq, , 15 the time instant when the action oy ; started
being executed. The following hold: ts, , = 0, and for all

j > 1: ts;,,j+1 - tai,,j = Am,]? and tm,j - tSz\j = Asi,j'

The notion of behavior, however, does not reflect the
above described synchronization scheme. To that end,
we define compatible behaviors. In what follows, the
behavior of i € N is denoted by B8; = (7,7, Ts),
where Ty = Si,104,18;2042 ..., Vi = Ti1T52 ..., and

Ty = ts, \tas i siatass -« -

Definition 2 (Compatible behaviors) A set of be-
haviors of the agents in N is compatible, if the following
holds for alli € N, and j > 1: Suppose that r; j = sync;.
Then for all i’ € N, there erists a matching index
J' > 1, such that ryr j» = syncy, and to, , = ta, - Fur-
thermore, there exists i’ € N, such that oy o = bay s
i.e., such that Asi/_,‘f = 0, for the matching indezx j'.

Suppose that the trace 7;, the synchronization sequence
7i, and the transition time durations Ay, ,, Aq, ,, . .. are
all fixed for all ¢ € N. Then there exists at most one col-
lection of synchronization time durations Ag, | Ag, , ...,
i € N that yields a set of compatible behaviors {ﬂl =
(73,7, Ti) | © € N'}. In other words, if the agents follow
the synchronization scheme, the existence and the values
of their synchronization time durations and hence also
their behavior time sequences are uniquely determined
by 7i, Vi, and Ag, ,, Aa, ,, - given for all i € N.

Specifications. The individual agents’ tasks may con-
cern the respective agent’s services as well as the ser-
vices of the others. Formally, each of the agents is given
an LTL formula ¢; over II; = Ui’eDi II;/, for some
{i} € D; C N. Loosely speaking, the satisfaction of an
agent’s formula depends on, and only on the behavior of
the subset of agents D;, including the agent itself.

Example 1 (continued) The robots are assigned the
following collaborative tasks. Agent 1 needs the help of
agent 2 with loading the heavy object. Then, it should
carry the heavy object to an unloading point and un-
load it. Then, it should periodically load and unload both
light objects (p1 = F(lg ANhg AXug A /\ie{A’B} GF (I; A
Xu;))). Agent 2 should periodically execute the simple
tasks ti,...,ts, in this order. Furthermore, it requests
agent 3 to witness the execution ts, by taking a snap-
shot of the room R4 at the moment of the execution
(¢2 = GF (tl AX (tg/\x (t3/\X (t4/\X t5/\54)))))) Agent 3

should patrol rooms Ro, Ry, Rs (3 = ie{2,4,5} GF s; ).

Let us now introduce the notation needed for formal-
izing the specification satisfaction. Consider for a mo-
ment a single agent M; = (75, Sync;,1;, L;), and its
behavior (3;, where, for simplicity of notation in the fol-
lowing paragraphs, we use 8; = (7,7, T), where 7 =
sja18202 ..., and T = t5,tq,ts,la, ... We denote by
Vy = W1Wy... = Li(al)Li(ag) RS (2Hi U 2&)0.) the
unique service set sequence associated with 7. The word



w, produced by 7 is the subsequence of the non-silent el-
ements of this sequence; w, = w@,,@,, ... € (2!1)¥, such

that @y,..., @, 1 = &, and for all j > 1, w,; # &
and @, 41,...,@,,,,-1 = &. With a slight abuse of no-
tation, we use T(7) = t1ta... = ta,ta, - - - to denote the

trace time sequence, i.e., the subsequence of T when the
(both silent and non-silent) services are provided. Fur-
thermore, T(w,) = t,,t,, ... denotes the word time se-
quence, i.e., the subsequence of T(7) that corresponds
to the times when the non-silent services are provided.
The word w, and the word time sequence T(w,) might
be finite as well as infinite. Since in this work we are
interested in infinite, recurrent behaviors, we will con-
sider as walid traces only those that produce infinite
words. Consider a trace 7 of 7; with the service set se-
quence v, = wiws..., and the trace time sequence
T(7) = tita . ... The service set v, (t) € 2 U2% provided
at time t € Rsr is v, (t) = w; if t = t; for some j > 1,
and &; otherwise. The satisfaction of each LTL formula
¢; is interpreted locally, from the agent i’s point of view,
based on the word w;, it produces and on the services
of agents i € D; provided at the time instances T(w;,)
when ¢ provides a non-silent service set itself.

Definition 3 (Local LTL satisfaction) Let 7 be a
trace of T; with the word time sequence T(w;) = t,,t,, .. ..
The word produced by a set of compatible behaviors
B, = {B | i/ € D;} is wy, = w,w,..., where
W, = (Ui’eDi Vs, (tLj)) NII;, forallj > 1. The set of
behaviors B, 1s valid if we, is infinite. The set of com-
patible behaviors B; locally satisfies ¢; for the agent i,
B, = ¢, iff B, is valid and ws, = ¢i.

Note that even if B = B; = B, it may be the case that
ws, # wes; and B; = ¢, but B = ¢.

Problem 1 Consider a set of agents N = {1,...,N},
and suppose that each agent i € N is modeled as a
tuple M; = (T;, Sync;,I1;, L;), and assigned a task in
the form of an LTL formula ¢; over II; = Ui,eDi I,/
for some {i} € D; C N. For each ¢ € N find a
trace T; = ;104315202 ... of T, and a synchroniza-
tion sequence vy; over Sync,;, with the property that re-
gardless of the values of the transition time durations
Ao, 1, Dayy .. ERY, i €N, the set of the agents’ be-
haviors {8; = (7,7, Ti) | i € N} is compatible, and
B, = {Bir | V' € D;} locally satisfies ¢;, for alli € N.

As each of the LTL formulas ¢;, i € {1,..., N} over II;
can be algorithmically translated into a deadlock-free
language equivalent BA [1], from now on, we pose the
problem with the task specification of each agent ¢ given
as a BA B; = (Q;, Ginit.i, i, i = 2™, F;) and the local
task satisfaction condition formulated as wey, € L(B;).

Remark 2 Collisions can be resolved either (i) through
an LTL formula that forbids two agents to occupy the

same cell of the environment or to exchange positions if
they are in two neighboring cells, or (i) through low-level
controllers that implement the agents’ transitions. This
topic is however, beyond the scope of this paper.

A solution to Prob. 1 can be obtained by imposing full
synchronization and modifying the standard control
plan synthesis procedure for TS from LTL specification
(see, e.g., [11]): (1) The set of agents is first partitioned
into dependency classes similarly as in [8] by the it-
erative application of the rule that if i/ € D;, then 4
belongs to the same dependency class I, as i; (2) For
each dependency class Iy = {1,...,ny} and each agent
1 € Iy, we set y; = r; 1752 . .., where r; ; = sync;. This
step yields compatible behaviors of all agents in A
independently of their traces and transition time du-
rations. (3) For each Iy = {1s,...,n¢}, a TS T; with
S¢ = 51, x ... x 8y, is constructed that represents the
stepwise-synchronized traces of the agents within the
class. (4) A product Py of Ty and By,,..., By, is built
that captures only the agents’ traces that are admissi-
ble by 7, and result into behaviors that locally satisfy
®1,5- - Pn,, respectively. The product P, is analyzed
using graph algorithms to find its accepting run that
projects onto the desired traces of 7;, for all i € I,. The
outlined procedure is correct and complete. Although a
certain level of decentralization is achieved via depen-
dency partition, the algorithm suffers from a exponen-
tial growth of the product automaton state space with
the increasing number of dependent agents, making the
approach infeasible in practice. Furthermore, the solu-
tion requires that the agents synchronize after every
single action execution, which potentially slows down
the overall system performance.

In this work, we aim to reduce the computational de-
mands of the above solution and to prevent the unneces-
sarily frequent synchronization. We propose to decom-
pose the infinite horizon planning problem into an infi-
nite sequence of finite horizon planning problems that
are solved iteratively, upon the execution of the system.
We build the dependency classes dynamically at each
iteration. These classes are then often smaller than the
offline ones, which has a dramatic impact on the effi-
ciency of the planning procedure. We show that the step-
wise synchronization scheme can replaced with an event-
triggered one. Finally, we prove, that under certain as-
sumptions, the repetitive execution and recomputation
of the plans leads to the satisfaction of all specifications.

4 Problem Solution

This section provides the details of the proposed iter-
ative solution to Prob. 1. In Sec. 4.1, we set the pre-
liminary synchronization sequences to be followed. In
Sec. 4.2 we present a finite horizon plan synthesis al-
gorithm that consists of four steps: (1) partitioning the



agents into classes based on their dependency; and then
for each of the classes separately: (2) building an inter-
section specification automaton up to a predefined hori-
zon; (3) building a product capturing system behaviors
admissible by the all agents within the class and by the
intersection specification automaton up to a predefined
horizon and evaluating the states of the product to re-
flect their respective profit towards the satisfaction of the
specifications; and (4) finding and projecting a path in
the product that leads to the most profitable state onto
finite trace fragments of the individual agents. Sec. 4.3
discusses the iterative execution and recomputation.

Without loss of generality, let us assume that all agents
in AV form a single offline dependency class from Sec. 3.

4.1 Preliminary Synchronization Sequence

We set v; = 13,172 . . ., where r; ; = sync;, i.e., the pre-
liminary synchronization sequence ensures full synchro-
nization of all the agents after every single action execu-
tion. The behaviors of agents in N are thus compatible
regardless of their traces and transition time durations.
Namely, we have directly from Def. 1 and Def. 2:

Lemma 1 Let~y; = ri1ri2..., where r; j = sync;, for
alli € N. Fortracest; = $; 1061 ..., Tir = St 1Qr 1 - .. Of
Ti, Tir, i7" € N, it holds that t; o, = tir o, for all j > 1.

4.2 Finite Horizon Planning

Besides the set of agents N = {1,..., N} modeled
as M; = (T;, Sync;,11;, L;) and the specification BAs
Bi = (Qi,qimt,i,éi,Ei = 2Hi,F), for all ¢ € N, the
inputs to the finite horizon planning algorithm are: the
current states of 71, ..., Ty, denoted s1, . .., s, initially
equal to Sipit1,--.,Sinit,N, respectively; the current
states of By,..., By, denoted q1, ..., qy, initially equal
t0 Qinit,1,- - -, Qinit,N, Tespectively; a linear ordering <
over N, initially arbitrary; fixed horizons h, H € N,
which, loosely speaking, set the depth of planning in
each BA and TS, respectively.

Dependency Partitioning. We start with partition-
ing ® = {By,...,By} into the smallest possible sub-
sets @1, ..., Py, such that none of the transitions of any
B; € ¥, that appears within the horizon A from the cur-
rent state q; of B; imposes restrictions on any agent 4’,
where B;; ¢ ®,. This partition corresponds to the nec-
essary and sufficient dependency up to the horizon h.

Definition 4 (Participating services) We call a set
of services Iy, i € D; participating in ¢ € Q; if i/ =1,
or there exist ¢ € Q;, 0 € X;, and ¢ C Il such that
(Q7 a, q,) € 5i7 and (Q7 (J \ HZ/) U Ss q/) g 51

Given q € Q;, the alphabet X of B; up to the horizon
his Bl(q) = 211 () yhere

o= U

q'€87(q),0<5<h

{IL;/ | 1L;s is participating in q'},

where 53 (q) denotes the set of states reachable from q in
j steps (see Sec. 2).

Definition 5 (Dependency partition) Given that
di,---,qn are the respective current states of BAs
Bi,...,Bn, the dependency partition of ® is induced
by the equivalence ~" defined on ®: (i) B; ~" B;,
and (ii) if there exists Bj, such that B; ~" Bj;, and
I, C H?(qj) or II; C T (qs), then also B; ~" By.
The dependency partition of ® is then {®1,...,DPp},
where (B; ~" By) <= (B; € &y < By € ¥).
The dependency partition of the set of all agents N is
T =A{l,...,1y}, where a dependency class I, is such
thati € Iy <= B; € @y, foralll e {1,...,M}.

The dependency partition is the function of the current
states qi,...,qn. Hence it is dynamically recomputed
in each iteration of our solution. Although the local sat-
isfaction of ¢; for ¢« € I, depends on the traces of all
the agents j € D, it is not influenced by the agents
j € D; \ Iy within the horizon h. Thus, when we now
concentrate on planning within the horizon h, we can
safely treat each dependency class Iy = {1y,...,n4} sep-
arately. In the worst case, the dynamic dependency par-
tition equals to the offline one from Sec. 3. This is how-
ever, often not the case and even splitting a single of-
fline dependency class into two online ones triggers an
exponential improvement in terms of computational de-
mands of further steps. For an example, see Sec. 6.

Intersection Automaton. For each dependency class
Iy, we construct a finite automaton that represents the
language intersection of the BAs in &y = {By,,..., By, }
up to the pre-defined horizon h. In this step, we rely on
the fact that the preliminary synchronization sequence
set in Sec. 4.1 guarantees step-by-step synchronization.
We label the states of the intersection automaton with
values that indicate the progress towards the satisfaction
of the desired tasks. Later on, these values are used to
set temporary goals in the finite horizon plan synthesis.

Without loss of generality, let the automata in ¢, be
ordered according to <, i.e. iy < jy,foralll <i < j < n.

Definition 6 (Intersection automaton) The  in-
tersection automaton of Bi,,...,Bn, up to the hori-
zon h’ 18 Ah = (Q.A7 qi’nit,A7 2A7 5./47 F.A)7 where
Qa CQ1, %...xQpn, xNis a finite set of states, gener-
ated as described below; ginit. A = (1,5 qn,, 1); 24 =

{Ui,er, oic | 00 € @M U250) ) Let Q% = {qunir, a}-



For all 1 < j < h, we define (q1,,---,q,,,k') € Qil
and ((QI[7"’7Q’nz7k)ao—7(qll[j"’aq;ka/)) € 634 lﬁ

(i) (@iys--rang k) € QY. (i) for all iy € Iy,
either(qi,, 0 NIL;,,q;,) € 04, or qi, = q;,, and &;, € 0,
and (iii) k' = k+1if qs, € Fy;,, where k = kmodng and
k' =k otherwise. Finally, Q4 = Uy< <, @4 and 64 =

Ulgjgh 6?47 FA = {(qua"'aqnmk) S Q.A \ {sz’t,A} ‘
G, € Fipy, where k = kmodny}.

The intersection automaton is not interpreted over in-
finite words and hence, it is not a BA. However, it
is an automaton and as such, it can be viewed as a
graph (see Sec. 2). A path in A" from the initial state
(d1,5---,qn,, 1) to a state (qi,,.-.,qn,, k) corresponds
to a path from q;, to ¢;, in each B;, and vice versa. For-
mally, these two lemmas follow from the construction:

Lemma 2 Consider a path ¢101¢205 . . . Op—1Gm in A",
where q; denotes the tuple (q1,.5, -, qn,,j, k) € Qa, for
alll < j < m. Let w;, ; = o; N (II;, UE;,) denote the
range restriction of o; to the services of agent iy, for all
1<j<m-—1landletw,,,, ...@,,, bethe subsequence
of non-silent elements of w;, 1 ..., m—1. Finally, let
wiyj = 0, NI, for all 1 < j < p. Then there exists
a corresponding run p;, = Gi,1 - - - Gig,put1 - - - 0f By, over
each word W;, = Wi, 1 ... Wi, u-- -, With the property that
(1) Gie1 = G0 = Qigs (2) Qigyj+1 = Giyyjt+1, for all
1< < p, (3) Qiy,j+1 = Gigj, foralll < j<m-—1,
such that j # vjr, for any 1 < j' < p.

Lemma 3 Consider a run p;, = i, 1¢i,2 - - - of B;, over
a word w;, = Wi, 1Wi,2--- € (2M)* where ¢i,1 = qi,.
Let 0105 ... be a word over 3 4 with the property that
there exists its subsequence o,,0,, ..., such that o, N
Hig = Wiy,j» f07’ (lll] Z 1, while 0j N (Hiz U 81‘2) = (c:iw
forallj > 1, j # ¢, for any j' > 1. Then there exists
a path G101G205 . . . op_1Gn in A", where g; denotes the
tuple ((jlevﬁ .. ~"jne7jvkj) € Q_A, such that: (1) (?u,l =
Qiy1 = Qigs (2) Qigy+1 = Giyj+1, for all1 <u; < h, and
(8) Giy.j+1 = iy, j, for all1 < j,uj < h, where j # ;1.

Through k, we remember the progress towards the sat-
isfaction of the individual specifications ordered accord-
ing to <; for k < ny, an accepting state is guaranteed
to be present on a the projected finite path of each B;,,
1 < i < k. For k > ny, an accepting state is surely
present on each projected run of each 5;,, at least [n%] -
times for all 1 < ¢ < k, and at least L%J—times for
all Kk < i < ny, where kK = kmodny. To be able to
identify “profitable” actions/transitions of the agents
w.r.t. 4, and thus also w.r.t. ®, we assume that at least
a state which represents a step towards the satisfaction
of the highest-order specification Bj, is present in A".
In Sec. 4.2 this fact will allow us to set short-term goals
in TSs T1,, ..., Tn,. We discuss its relaxation in Sec. 5.

Assumption 1 Assume that F 4 is not empty.

Definition 7 (Automaton progressive function)
The progressive function V4 Qa — No x Zy s
for a state ¢ = (qu,,---,Gn,, k) defined as: Va(q) =
(k,—mianepA dist(q7qf)).

The increasing value of V4 indicates a progress towards
the satisfaction of the individual local specifications in
®y, ordered according to <. No progress can be achieved
from a state ¢, such that V4(q) = (k, —oc) within the
horizon h, and hence, we remove such states from A",
From Assump. 1, Va(qinit,a) = (1,d), where d # —oc.

Product System. The intersection automaton and its
progressive function allow us to assess which service sets
should be provided in order to maximize the progress to-
wards the satisfaction of the specifications. The remain-
ing step is to plan the transitions of the individual agents
to reach states in which these services are available. We
do so through the definition of a product system P,
Besides the behaviors permitted by the task specifica-
tions, the product system captures the allowed behav-
iors (finite trace fragments) of the agents from I, up to
the horizon H. Similarly as the states of A", the states
of PH are evaluated to indicate their progress towards
the specifications satisfaction.

Definition 8 (Product system) The product sys-
tem up to the horizon H of the agent TSs T;,, i, € Iy,
and the intersection automaton A" from Def. 6 is
an automaton PH = (Qp, it p, Xp,0p), where
Qp C S1, X ... xS, X Q4 s a finite set of states, gener-
ated as described below; Qinit,p = (S145-- -, 50y, Qinit, A);
27) = Al[ X ... X An[ X EA; Let Q% = {qmit.ﬂ?}'
For all 1 < j < H, ¢ = (S1,5-++,8n,,qA), 0 =
(alzv s 704712740-./4)7 ql = (Sllp B S’lﬁ,g? Q_/A)7 we deﬁne
that ¢ € Qp and (¢,0,q)) € & iff (i) q € Qp ",
(ii)for all i, € Iy, it holds that T'(s;,,c;,) = s;,, and
oan (I, U&,) = Li,(as,), and (iii)(qa,04,q4) € da.
Finally, Qp = Up<j<nr Qp and op = Ui<j<n 0.

The set of accepting states Fp is not significant for the
further computations, hence we omit it from P¥. Anal-
ogously as A" PH can be viewed as a graph (see Sec. 2).
A path in PH can be projected onto a finite trace prefix
of each T;,, a finite run prefix of A" and further through
Lemma 2 onto a finite run prefix of each BA B;,, too.

Definition 9 (Projection) Consider a path o =
Q10162 - - - Gm—10m—1Gm in P, where g1 = qini.p. 0 can
be projected onto a finite trace prefix 7;,(0) of each T;,,
ig € Iy in the expected way: for all 1 < j < m, the j-th
state and action of 7;,(0) s si,,; and oy, ; if the j-th state
and transition label of ¢ is ¢; = (S1,,5- -+ Sne,js A;);



and o; = (0, j,...,0m, j,04,;), respectively. Further-
more, for all 1 < j < m, the j-th state of the pro-
jected run prefiz pa(o) of A" is qa j if the j-th state
of 0 is q¢j = (S1,,--,5n,,q4,;); and assuming that
qa; = (qy.4,- -+ qne,js k), the state of the corresponding
state sequence p;,(0) in B, 1 i, ;-

Although p;,(p) is a projection of qA,j, i.e., a sequence
of states of B;,, it might not be a run of B;, as such.
However, thanks to Lemma 2, p;,(0) maps to a unique
corresponding run p;, (e) of gs,,. Note that in what fol-

lows, we distinguish between p;,(9) and p;, ().

Definition 10 (Progressive function and state)
The progressive function Vp Qr — No x Zy
is inherited from the intersection automaton A"
(Def. 7), i.e., for all ¢ = (S1,y--+,5n,,q4) € Qp,
Vp((su,...,sw,qA)) = Va(ga). A state q € Qp is a
progressive state if Vp(q) > Vp(ginit,p). A maximally
progressive state is a progressive state q, with the prop-
erty that for all ¢ € Qp, it holds Vp(q) > Vp({').

Finite Horizon Plan Synthesis. To find a suitable
finite horizon plan, we impose the following assumption
and discuss its relaxation in Sec. 5. It states that within
H, at least one service set can be provided that makes
at least one step towards the local satisfaction of the
highest-priority formula ¢, .

Assumption 2 Assume that there is a progressive state
gp reachable in PH wvia a finite path qi07 ...0m—1Gm,
where @1 = Qunit,ps Gm = Gps and L{as, ;) # E1, 5, for
some o = (1,5, 0nyj,04,), 1 <j<m-—1.

We compute a suitable finite horizon plan as the
shortest path 0 = ¢i01¢2...G¢mOmGm in PH from
g1 = Qinit,p to a maximally progressive state ¢, = ¢maq-
Such a path can be found in linear time with respect
to the size of PH (see Sec. 2). The projection of o
onto the individual TSs gives finite trace fragments
721'2(@) = 5,0, 15ip,2 - - Sigm—1%iy m—1Si,,m, to be fol-
lowed by each agent i, € I;. Alg. 1 summarizes the
proposed finite horizon planning for the set of all agents
N. Since this algorithm will be run iteratively, starting
from its second execution on, it also takes as an input
the fragments 71, ...,7n, p1,- - -, v and the progressive
function value of the maximally progressive state from
the previous iteration. In comparison to the solution
from Sec. 3, we treat separately each dynamic depen-
dency class (lines 2-13). These classes are often smaller
than the offline dependency classes, thereby increasing
the level of decentralization of the planning procedure.

4.8 Infinite Horizon Replanning

To complete the solution, we discuss the infinite, itera-
tive execution and recomputation of the finite horizon

Algorithm 1 Procedure short_horizon_plan

Input: a set of agents N' = {1,..., N}, their models
Mi,...,Mn;BAs Bi,...,Bn; current states s1,...,5n,
q1,---,0qn; an ordering < over N; and planning horizons
h, H € N, previous fragments 71, ..., 7~, f1, .. ., PN, Pre-
vious maximal progressive function value Vp mao

Output: finite trace fragments 71,...,7n of T1,..., Tn; fi-
nite state sequences pi,...,pn of Bi,...,Ba; and a
maximal progressive function value Vp max

1: compute the partition Z = {I1,...,Ian} (Def. 5)
2: forall £€{1,...,M} do
3:  construct A" (Def. 6) and construct P# (Def. 8)
4:  find a maximally progressive state ¢mae in P¥
5: if Vp (Qmax) > V’P,mam then
6 find the shortest path g to gmae» and update Vp maa
7 for all i, € I, do
8: %i, :=Ti,(0) and pi, := piy (@) (Def. 9)
9: end for

10: else

11: remain 7i,...,7N,P1, . .-, PN, VP ,maz unchanged
12: end if

13: end for

14: return 71,...,7n8,01,---, PN, VP, maz

plans. We present two recomputation strategies: a step-
wise one, and later on in Sec. 4.3.2 an event-triggered
one, where we adjust the preliminary synchronization
sequences to reduce the synchronization frequency.

4.8.1 Stepwise Solution

In each iteration of the stepwise solution, the finite
horizon plans are executed as summarized in Alg. 2.
Each agent ¢ € NV first sets its preliminary synchroniza-
tion sequence 7; = 71172 ... and synchronizes with
the other agents, i.e., sends r;7 = sync;, and waits
for the reception of sync, from all i’ € N. Second, it
computes the finite horizon plans by Alg. 1.Third, it ex-
ecutes the first action o; 1 of the planned trace fragment
Ti = 5i0;15i2 - - . Sim—10 m—15im along with the first
silent or non-silent service set L(«;1). It transitions to
state s; o and the current state s; is updated. The previ-
ous synchronization through r; ; has ensured that each
agent i’ € I, executes its respective action oy 1 simulta-
neously. At the same time, the current state of the BAs
B;, is updated to the second state g; 2 of the run fragment
pi- Note, that if L(a; 1) = €;, then ¢; 2 = ¢;,1 by Def. 6
and Def. 8. Furthermore, if ¢; 2 € F;, then we update
the ordering < so that ¢ becomes of the lowest priority
(the highest order), while maintaining the mutual or-
dering of all the other agents. This change reflects that a
step towards the local satisfaction of B; has been made
and in the next iteration, progressing towards another
agent’s specification will be prioritized. Finally, all the
agents start another iteration of the algorithm simulta-
neously as prescribed by the synchronization sequence.
For the simplicity of the presentation, we assumed that
the computation of short_horizon_plan does not take any
time. In practice, we would cope with different compu-
tation times via synchronization both before and after



running the procedure short_horizon_plan.

Algorithm 2 Stepwise solution to Prob. 1

Input: a set of agents N' = {1,..., N}, their models
My, ..., Mn; BAs Bi,...,Bn; and horizons h, H € N
QOutput: traces 71,...,7~ and synchronization sequences
Y1,...,y¥~n that are a solution to Problem 1, and se-
quences p1, ..., pn of states of BAs Bi,...,Bn.
: for all i € N do
: initialize <:=(1,...

1
2 s N); 85 i= Sinit,s Qi = Qinit,

3 initialize 7; := empty; p; := empty; Vp masz := (0,0)
4:  initialize synchronization sequence 7; (Sec. 4.1)

5:  send 75,1 := sync; and wait for sync; from all i’ € N
6: ]

7

8

9

: Ji = 2

: end for

: while true do

i T, TN, P, -, PN, VP mas ¢ = short_horizon_plan
10: for all i € NV do
11: execute 1, provide L, 1); §i := 8i,2; i = qi,2
12: if qi € F; then
13: reorder <, s.t. ¢’ <4, forall ¢ € {1,..., N} \ {i}
14: VP maz := (0,0)
15: end if
16: send 7; ;, = sync;, wait for sync,; from all i’ € N’
18: end for
19: end while
20: return Ti,..., TN, Yi,-- -, Vn, Ply---5Pn

The motivation for replanning after every iteration on
line 11 of Alg. 2 is to gradually shift the planning hori-
zon in order to keep the planning procedure sufficiently
informed about the future possibilities. Less frequent re-
planning may be more efficient in terms of computational
demands, at the cost of inefficiency of the resulting plans.
Although the TSs and the BAs are finite and hence there
are a finite number of different finite horizon problems
to solve, the considered LTL formulas are interpreted
over infinite time and the number of iterations cannot
be generally upper-bounded due to the arbitrary transi-
tion durations. An alternative to the infinite number of
executions would be to remember how the finite horizon
problem has been resolved for every single combination
of the T'Ss and BAs states; however, this is generally not
feasible due to the fact that the number of these com-
binations grows quickly with the number of agents, the
size of the environment and the complexity of the tasks.

4.8.2  FEwvent-Triggered Solution

In the stepwise solution, the synchronization takes place
after every single transition of every agent, which might
be more frequently than necessarily needed. For exam-
ple, if the first m actions in the planned trace fragment
7; of an agent i are all associated with silent services,
then this agent does not need to synchronize with the
others nor to recompute its planned trace fragment. In
what follows, we adapt the preliminary synchronization
sequence so that the synchronization and recomputation
are triggered by the need of collaboration.

Assume that for agent ¢ the procedure short_horizon_plan
executed on line 9 of Alg. 2 has returned a trace and a
run fragment denoted by 7; = s; 10;,18:,204,2 . - . 8i,m and
Pi =Gi14i2 - - Gim, for some m > 2. The main idea is to
postpone the synchronization with the others from after
the execution of «; 1 till the time g, ; right before the
execution of the action oy j,j > 1 with one of the follow-
ing properties: L(«; ;) is non-silent, or ¢; ; is accepting,
Or ¢ j = ¢4,m, Or there exists an agent ¢’, such that sync,,
has been received during (t, ;_,, s, . If one of the con-
ditions is met, the agent sends sync;, and waits for re-
ceiving sync,,, from all ' € A/. The finite horizon plans
are recomputed and the event-triggered recomputation
procedure repeats. On the other hand, if none of the con-
ditions is met, the agent i substitutes the synchroniza-
tion action sync; planned within the preliminary syn-
chronization sequence 7; with nosync;. Note that thanks
to the enforced compatibility of the behaviors, a dead-
lock is prevented. The solution is summarized in Alg. 3.

Algorithm 3 Event-triggered solution to Prob. 1

Input: a set of agents N' = {1,..., N}, their models
My, ..., Mn; BAs Bi,...,Bn; and horizons h, H € N
Output: traces 7i,...,7n and synchronization sequences
Y1,...,¥~ that are a solution to Problem 1, and se-
quences pi, ..., pn of states of BAs B1,...,Bn.
1: for all i € N do
:  initialize <:=(1,...

2 s N); S0 0= Sinit,i i 1= Qinit,i
3 initialize 7; := empty; p; := empty; Vp maz := (0,0)
4 initialize synchronization sequence ~; (Sec. 4.1)
5 send r; 1 := sync, and wait for sync; from all i’ € N/
7: end for

8: while true do

9: Tly.--y TN, P1,- .-, PN : = short_horizon_plan
10 for all i € N do

11 execute a;,1 and provide service set L(a,1)

12 §; 1= S8¢,25 Qi ‘= qi,2; k‘L =2

13 while L(a; ;) = €; and q; € F; and g; is not the
last element of p; and sync,, was not received from
any i' € N'\ {i} during the last iteration do

14: send r; 5, 1= nosync;; ji := ji +1

15: execute a,, and provide service set L(a ;)
16: Si 1= Sik;+15 Gi i= Qiki41; ki = ki + 1

17: end while

18: if qi € F; then

19: reorder <, s.t. j <, for all j € {1,..., N} \ {¢}
20: Vp maz := (0,0)

21: end if

22: send 75,5, 1= sync;, wait for sync,; from all ¢’ € N
24:  end for

25: end while

26: return Ti,...,7TN, Y1,---,Vn, Ply---3Pn

Remark 3 In Remark 1, we introduced parametrized
synchronization requests. Assume thatZ = {Iy,...,In}
is an offline dependency partition from Sec. 8. Then for
each agent i € I, we can replace sync; with sync;(Iy),
and every nosync, with sync;({i}). However, an analo-
gous step cannot be applied in the case of dynamic classes.



5 Solution Analysis and Discussion

Lemma 4 Let 7y,...,TN, Y1,---sVn, Pl,---,Pn be the
traces, the synchronization sequences and the corre-
sponding state sequences returned by Alg. 2. Then p;
contains infinitely many states f; € Fi, foralli e N.

Proof. Denote 7; = si18i2..., pi ¢i1¢i2- .., and
T(7;) =t by .-, for all i e N Conszder o time in-
stance ts, , where j > 1 and assume that © is the most
pmomtzzed agent at ts, ,, i.e., thati < 4', for alli’ € N.
Let o be the path to a mammally progressive state Gmax
of PH at time t,, .., computed on line 4 of Alg. 1 and
let 7 and p; be the corresponding finite trace prefix of
Ti, and the state sequence of B; computed on lines 7-9.
Assume for a moment that the dependency partition T
remains the same at time t, ;. ,. Regardless of the steps
taken in Alg. 2, the state qmas is also present in PH at
time ts, ;. , hence if condition on line 5 is not satisﬁed
this state remains the progressive goal. Now, let o' be
the path to a mazimally progresswe state qlpan of PH

at time ts, .41 and let 7' and p) be the corresponding
ﬁmte trace preﬁa: of T, and the state sequence ofB If
qmaz 7& dmaz then VP(Qmaw) > Vp(qmax) and qma,z S,
loosely speaking, closer to reaching an accepting state of
B;. Thanks to Assump. 1 and Assump. 2 and the finite
number of states of P, by repetitive reasoning we get
that there exists time ts, , , when a state ¢* of Py is
reached, such that Vp(q*) > Vp(qmaz). Inductively, a

state q; of PH that projects onto an accepting state of B;
will eventually be reached. Similar holds even if the de-
pendency partition T has changed at time ts, .., andi is
present in a dependency class Iy # Iy. The state Qmaz =
(51(,m7 sy Sng,ms ((Ju,m, <o Qng,my km)) can be mapped
onto a state of the new PH at time t

siji1s b€, Oonto
Qmaz 00 = (Slez,m’u ey

Snyrm’s (q1£/,m/7 ~ oy Qnym/y km’))7
where Sy = Sims, Nd Qi = Git.m, for all
i € Iy N Iy, The remainder of the proof is analogous to
the above. Finally, it is ensured that at least one non-
silent service is provided by T; on the executed path to
qy. Lines 12-15 of Alg. 2 ensure that each i € N will
repeatedly become the most prioritized one. Altogether,
@; contains infinitely many states f; € F;, for alli € N.

In summary, Lemma 1 gives us the existence of compat-
ible behaviors regardless of the traces of the agent TSs
and the transition time durations. Lemma 4 together
with Lemmas 2, and 3, and Def. 8 yield that m,...,7n
produce words that are accepted by each B;.

Theorem 1 ThetracesTy,...,
chronization sequencesvyi, . . .
vide a solution to Prob. 1.

TN together with the syn-
, YN returned by Alg. 2 pro-

To prove the correctness of the event-triggered solution,
we have to prove that the computed traces and synchro-
nization sequences (i) yield compatible behaviors and
(ii) locally satisfy the LTL formulas:
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Lemma 5 Thetracesty,...,Tn, whereT; = s; 1051 .. .,

foralli € N, together with the synchronization sequences

Y1y ..., YN returned by Alg. 3 yield compatible behaviors

regardless of the values of the transition time durations
Q1) =g e

Proof. Follows immediately from the condition of the

while loop on line 13 of Alg. 3.

Lemma 6 Let7y,..., TN, Y1,---,7YN, P1,---, PN be the
traces, the synchronization sequences and the correspond-
ing state sequences returned by Alg. 8. Then p; con-
tains infinitely many states f; € F;, for all i € N.
Proof. Denote 1; = s;1041..., pi = ¢i1Gi2-.., and
T; = ts, ta, tsistais - for alli € N. To prove the
lemma, we prove that at each time t, it holds that an ac-
cepting state f; € F; will be eventually reached for the
most prioritized agent i at time t. First, considert = 0.
Without loss of generality, assume that i < i, for all
i’ € N. Denote I; € T the dependency class i belongs
to. Let 71,...,7n and p1,..., PN be the finite trace pre-
fixes of T1, ..., Ty, and the state sequences of By, ..., By
computed on line 9 of Alg. 3, respectively. Specifically for
1y, these were obtained from the projections of the short-
est path gg that leads to a mazximally progressive state
dmaz.t = (Slg,m y Ang,ms km)) Of the
product system PH computed on line 4 of Alg. 1. Let the
execution proceed as described in Alg. 8 and let ts denote
the first time instance aftert = 0 with one of the proper-
ties triggering the synchronization, i.e., with one of the
conditions of line 18 of Alg. 8 being false. Note that t,
is finite and after the requested synchronization is per-
formed, the time to equals to some ts, = in Ty, for all
i € N. Let s;; and q; denote the respective states of Ty
and By at time t,, and let Ty and py denote the respec-
tive suffixes of 7, and py starting at s, and qq, for all
i' € N. Denote by I the dependency class i belongs to at
time to, and by P} the corresponding product system. We
now show the existence of a mapping between the suffizes
T and Py of agents i' € Iy N Iy onto a single finite path
ov in Pl , whose length is strictly smaller than the length
of 00 in PH. Trivially, if $is = 841, for all i’ € Iy N1,
the path pp is empty. Suppose that s;: n, 7# S, for some
i € Ip N 1,. We propose gy to be the path whose projec-
tions onto the states of T and By are the respective se-
quences $;r ... 84Ty and Qs . .. Qi Py, such that the length
of these two sequences, and hence also the length of o4,
equals to the length of the suffix T;» that is the longest
one among the agents agents 1" € Iy N I,. This path is
strictly shorter than oy. At the same time, it exists in PZI/{

due to the assumption that s — s, for alls € Sy, i’ € N,
and some o € Ay. The existence of o ensures that a
progress towards some f; € F;. Thanks to Assump. 1 and
Assump. 2 and the finite number of states of the the prod-
uct system, by repetitive reasoning we get that during the
execution of Alg. 3, since a certain moment on, the last
state of gy, will be the mazimally progressive state qmag o
mn Pﬁ, until this state is reached. Inductively, a state q¢
that projects onto an accepting state of B; will eventu-

.. Sng,ma (q1g7m7 ..



ally be reached. At the same time, at least one non-silent
service is provided by T; on the path to q¢. Furthermore,
lines 18-21 of Alg. 3 ensure, that each i € N will repeat-
edly become the most prioritized one. Altogether, we p;
contains infinitely many states f; € F;, for alli € N.

Theorem 2 The traces Ty, ..
chronization sequences i, . . .
vide a solution to Prob. 1.

., TN together with the syn-
, YN returned by Alg. 2 pro-

The complexity of one iteration of the solution is lin-
ear with respect to the size of P, as the applied graph
search algorithms are linear (see, e.g. [5]). The size of
the intersection automaton A" is in O(n!el+1), where
n is the maximal set of states reachable in some B;,
i € I, within horizon h. The size of the product P¥ is
O(nle1+1) where n is the maximal set of states reach-
able in some B; or 7T;, i € I, within the horizon H. In
the worst case, when n reaches the sizes of B; or 7; re-
spectively, and when the number of dependency classes
ng = 1, the complexity of one iteration reaches the one
of the straightforward solution, i.e., the complexity of
one iteration is in O(N - [,y |Til - [Bil), where |T;| and
|B;]| is the size of T; and B;, respectively. However, as we
demonstrate in Sec. 6, a dramatic improvement of com-
putational times can be achieved in practice.

Assump. 1 may be violated for two different reasons:
First, if the selected horizon h is too short, and although
F4 =0 in A", there exists ' > h, such that F4 # () in
A Second, if F4 = 0 even for h — co. We propose to
systematically extend the horizon h and update the au-
tomaton A" until a set of states F4 becomes nonempty,
or until the extension does not change the automaton
A" any more. In the former case, the automaton A"
with the extended horizon satisfies Assump. 1 and thus
is used in constructing P, maintaining the remainder
of the solution as described in Sec. 4.2 and 4.3. In the
latter case the specification has become infeasible, indi-
cating that a wrong step has been made in past. There-
fore, we backtrack along the executed solution to a point
when another service could have been executed instead
of the one that has been already done. Intuitively, we
“undo” the service and mark this service as forbidden in
the specification automata. The backtracking procedure
is roughly summarized in Alg. 4. In order to perform the
backtracking, the system execution prefixes have to be
remembered. To reduce the memory requirements, note
that cycles between two exact same system execution
states can be removed from the system execution pre-
fixes without any harm. As there are only finitely many
transitions possible in each system state of each TS and
each BA, the backtracking procedure will ensure that
eventually, the agents’ trace prefixes will be found by
Alg. 1 without further backtracking. Once Assump. 1
holds, there is only one reason for violation of Assump. 2,
which is that the planning horizon H is not long enough.
To cope with this, we systematically extend the horizon
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H similarly as we extended h in the BA. Eventually, a
progressive state will be found.

Algorithm 4 Backtracking

Input: Transition systems 71,...,7n; BAs Bi,...,Bn;
System execution prefix (T1,...,Th,pi,...,PN) up to
the current time t, where 7; = s;,1@;,1 . .. @i 1—18i,¢, and
Pt =pi1...pit, forallie {1,...N}.

Output: Updates to BAs Bi,...,Bx

1: k=t

2: while solution not found do

3: ki=k—1

4:  Check, if the execution of Ule{l,m,N} w;,i; can lead to
a different set of states of BAs than to q1+,...,qn¢.
If so, apply the change and goto line 6.

5:  Forbid U, ¢y, . n} @ik in the states ik, ..., qn .k of
each respective automaton Bi,..., By

6: Execute one iteration of Alg. 1 from s =
S1,ky-+ 385N = SN,k 1 = q1,k,---, N = N,k

7 If a plan was found in line 5, continue with execution
of Alg. 1, otherwise goto line 2 of Backtracking.
8: end while

Note, that Assump. 1 and 2 can be enforced by the se-
lection a large enough h and H, respectively. Particu-
larly, h > max;en |Q;|, and H > max;ecn |S;| ensures
the completeness of our approach. However, in such a
case, the complexity of the proposed approach meets the
complexity of the straightforward solution in Sec 3. A
good guidance criterion for the choice of appropriate size
of the receding horizon is the maximum, the average,
or the mean of the shortest distance (i.e., the smallest
number of transitions) between two actions labeled with
non-silent service sets in the given TSs. If the selected
horizon is too short, there is frequently no action labeled
with a non-silent service set present in the intersection
automaton, and the horizon gets frequently extended by
the algorithm from Sec. 4.5.1. If the horizon is slightly
longer, the resulting intersection automata contain only
a few actions labeled with non-silent service sets, and
the backtracking from Sec. 4.5.2 might take place quite
often. On the other hand, if the selected horizon is too
long, then the intersection automaton might be too large
to be efficiently handled. The goal is to select a horizon
to achieve a reasonable size of the intersection automa-
ton (according to our experience, hundreds to thousands
of states maximally) while containing as many actions
labeled with non-silent services as possible.

6 Example

To demonstrate our approach and its benefits, we con-
sider the system from Example 1. We have implemented
the proposed solution in MATLAB, and we illustrate
snapshots of the resulting trace under stepwise synchro-
nization in Fig. 2 (A)-(D). It can be seen that the agents
make progress towards satisfaction of their respective
formulas. In the computation, the default values of plan-
ning horizons were h = 3, and H = 5. In several cases,



the latter value had to be extended as described in Sec.5.
The maximum value needed in order to find a solution
was H = 9. The sizes of the product automata handled
in each iteration of the algorithm have significantly re-
duced in comparison to the straightforward centralized
solution from Sec. 3, where all three agents belong to
the dependency class yielding thus a synchronized TS
with 1443 ~ 3 million states. With our dynamic decom-
position, at most two agents belong to the same depen-
dency class at the time, resulting into product automata
sizes in order of thousands states and the computation
of each iteration took seconds. When the agents are not
dependent on each other within h the sizes of product
automata are tens to hundreds states and the compu-
tation of each iteration took seconds to minutes. The
durations of all agents’ transitions were randomly gen-
erated from {5,...,10} time units. The first 7 services
in the plan of agent 2 have been completed after 54 it-
erations, with average duration of ~ 477.1 time units.
In the event-triggered solution, the individual resulting
traces did not change, however, as indicated in Fig 2.(E),
the randomized transition durations caused some of the
agents progress more and some of them less in compar-
ison to the stepwise solution. Average number of itera-
tions to provide the 7 services of agent 2 was 30.3, and
average time of completion was 494.2 time units (com-
puted from 20 simulation cases). Finally, Fig 2.(F) shows
the outcome of the event-triggered solution after 477
time units when the duration of transitions of agent 2
was changed to a random number between in {1,...,5}.
The average number of iterations to provide the first 7
services of agent 2 was 26.3, and average time of com-
pletion was 355.6 time units (from 20 simulations). The
outcome of the stepwise solution for this case did not
change, except for the average time of completion, which
is now ~ 457.5. This case thus demonstrates better suit-
ability of the event-triggered solution for heterogeneous
multi-agent systems.

7 Summary and Future Work

We have proposed an automata-based receding hori-
zon approach to solve the multi-agent planning problem
from local LTL specifications. The solution decomposes
the infinite horizon planning problem into finite hori-
zon planning problems that are solved iteratively. It en-
ables each agent to restrict its focus only on the agents
that are constrained by its formula within a limited hori-
zon, and hence to decentralize the planning procedure.
Moreover, via considering the finite horizon, we reduce
the size of handled state space. Stepwise synchronization
can be substituted with less frequent event-based syn-
chronization, increasing the independence of the agents
during the plan execution. Future research directions in-
clude involving various optimality requirements, or ro-
bustness to small perturbations as well as evaluation of
the approach using mobile robots.
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