
Cooperative Planning for Coupled Multi-Agent Systems under Timed
Temporal Specifications

Alexandros Nikou, Dimitris Boskos, Jana Tumova and Dimos V. Dimarogonas

Abstract— This paper presents a fully automated procedure
for controller synthesis for multi-agent systems under coupled
constraints. Each agent has dynamics consisting of two terms:
the first one models the coupled constraints and the other one
is an additional control input. We aim to design these inputs
so that each agent meets an individual high-level specification
given as a Metric Interval Temporal Logic (MITL). First,
a decentralized abstraction that provides a time and space
discretization of the multi-agent system is designed. Second,
by utilizing this abstraction and techniques from formal veri-
fication, we provide an algorithm that computes the individual
runs which provably satisfy the high-level tasks. The overall
approach is demonstrated in a simulation example.

I. INTRODUCTION

Cooperative control of multi-agent systems has tradition-
ally focused on designing distributed control laws in order
to achieve global tasks such as consensus, formation and
rendez-vous ([1]–[5]) and at the same time fulfill properties
such as network connectivity ([6], [7]). Over the last few
years, multi-agent control under complex high-level specifi-
cations has been gaining significant attention. In particular,
coordination of multi-robot teams under qualitative temporal
tasks constitutes an emerging application in this field. In this
work, we aim to additionally introduce specific time bounds
into these tasks, in order to include specifications such as
“Visit region A within 5 time units” or “Periodically survey
regions A1, A2, A3, avoid region X and always keep the
longest time between two consecutive visits to A1 below 20
time units”.

The specification language that has primarily been used
to express the tasks is Linear Temporal Logic (LTL) (see,
e.g., [8]). LTL has been proven a valuable tool for controller
synthesis, because it provides a compact mathematical for-
malism for specifying desired behaviors of a system. There is
a rich body of literature containing algorithms for verification
and synthesis of multi-agent systems under temporal logic
specifications ([9], [10]). A common approach in multi-agent
planning under LTL specifications is the consideration of a
centralized, global task for the team, which is then decom-
posed into local tasks to be accomplished by the individual
agents (see [11], [12]). A three-step hierarchical procedure to
address this problem is described as follows ([13]): first, the
robot dynamics is abstracted into a discrete transition system
using sampling or cell decomposition methods based on

The authors are with the ACCESS Linnaeus Center, School of Electrical
Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm,
Sweden and with the KTH Center for Autonomous Systems. Email:
{anikou, boskos, tumova, dimos}@kth.se. This work
was supported by the H2020 ERC Starting Grant BUCOPHSYS, the
Swedish Research Council (VR) and the Knut och Alice Wallenberg
Foundation.

triangular, rectangular or other partitions. Second, invoking
ideas from formal verification, a discrete plan that meets
the high-level task is synthesized. Third, the discrete plan
is translated into a sequence of continuous controllers for
the original system.

Time constraints in the system modeling have been con-
sidered e.g., in [14]–[16]. Both the aforementioned, as well
as most existing works on multi-agent planning, consider
temporal properties which treat time in a qualitative manner.
However, for real applications, a multi-agent team might be
required to perform a specific task within a certain time
bound, rather than at some arbitrary time in the future, i.e. in
a quantitative manner. Timed specifications have been con-
sidered in [17]–[21]. However, all these works are restricted
to single agent planning and they are not extendable to multi-
agent systems in a straightforward way.

The multi-agent case has been considered in [22], where
the vehicle routing problem was addressed, under Metric
Temporal Logic (MTL) specifications. The corresponding
approach does not rely on automata-based verification, as it is
based on a construction of linear inequalities and the solution
of a Mixed-Integer Linear Programming (MILP) problem.
An automata-based solution was proposed in our previous
work [23], where Metric Interval Temporal Logic (MITL)
formulas were introduced in order to synthesize controllers
such that every agent fulfills an individual specification and
the team of agents fulfill a global specification.

In [23], the abstraction of the dynamics was given and
an upper bound of the time that each agent needs to finish
a transition from one region to another was assumed. Fur-
thermore, potential coupled constraints between the agents
were not taken into consideration. In this work, we aim to
address the aforementioned issues. The dynamics of each
agent consists of two parts: the first part is a consensus type
term representing the coupling between the agent and its
neighbors, and the second one is an additional control input
which will be exploited for high-level planning. Hereafter, it
will be called a free input. A decentralized abstraction pro-
cedure is provided, which leads to an individual Transition
System (TS) for each agent and provides the basis for high-
level planning. Additionally, this abstraction is associated to
a time quantization which allows us to assign precise time
durations to the transitions of each agent.

There is a rich literature on abstractions for dynamical sys-
tems (see e.g., [24]–[27]). Multi-agent abstractions have been
addressed in [28]–[32]. Motivated by [32], we start from the
dynamics of each agent and we construct a TS for each agent
in a decentralized manner. An individual task is assigned to
each agent and we aim to design the free inputs so that each

agent performs the desired individual task within specific
time bounds. To the best of the authors’ knowledge, this is
the first time that a fully automated framework for multi-
agent systems consisting of both constructing an abstraction
and conducting high-level timed temporal logic planning is
considered. Hence, this works lies in the intersection of the
fields of multi-agent systems, abstractions and timed formal
verification.

The contribution of this paper is to provide an automatic
controller synthesis method of a general framework of cou-
pled multi-agent systems under high-level tasks with timed
constraints. Compared to the existing works on multi-agent
planning under temporal logic specifications, the proposed
approach yields the first solution to the problem of planning
of dynamically coupled multi-agent systems under timed
temporal specifications in a distributed way.

The remainder of the paper is structured as follows. In
Sec. II a description of the necessary mathematical tools, the
notations and the definitions are given. Sec. III provides the
dynamics of the system and the formal problem statement.
Sec. IV discusses the technical details of the solution. Sec. V
is devoted to a simulation example. Finally, the conclusions
and the future work directions are discussed in Sec. VI.

II. NOTATION AND PRELIMINARIES

A. Notation
We denote by R,Q+,N the set of real, nonnegative

rational and natural numbers including 0, respectively. Also,
define T∞ = T ∪ {∞} for a set T ⊆ R. Given a set S,
we denote by |S| its cardinality and by 2S the set of all its
subsets. For a subset S of Rn, we denote by cl(S), int(S)
and ∂S = cl(S)\int(S) its closure, interior and boundary,
respectively and \ is used for set subtraction. The notation
‖x‖ is used for the Euclidean norm of a vector x ∈ Rn and
‖A‖ = max{‖Ax‖ : ‖x‖ = 1} for the induced norm of a
matrix A ∈ Rm×n. Given a matrix A, the spectral radius of
A is denoted by λmax(A) = max{|λ| : λ ∈ σ(A)}, where
σ(A) is the set of all the eigenvalues of A.

B. Multi-Agent Systems
Consider a set of agents I = {1, 2, . . . , N} operating in

Rn. The topology of the multi-agent network is modeled
through a static undirected graph G = (I, E), where I is
the set of nodes (agents) and E ⊆ {{i, j} : i, j ∈ I, i 6= j}
is the set of edges (denoting the communication capability
between neighboring respective agents). For each agent, its
neighbors’ set N (i) is defined as N (i) = {j1, . . . , jNi} =
{j ∈ I : {i, j} ∈ E} where Ni = |N (i)|.

Given a vector xi = (x1
i , . . . , x

n
i) ∈ Rn, the component

operator c(xi, k) = xki ∈ R, k = 1, . . . , n gives the
projection of xi onto its k-th component (see [33]). Similarly,
for the stack vector x = (x1, . . . , xN) ∈ RNn the component
operator is defined as c(x, k) = (c(x1, k), . . . , c(xN , k))
∈ RN , k = 1, . . . , n. By using the component operator, the
norm of a vector x ∈ RNn can be computed as ‖x‖ ={∑n

k=1 ‖c(x, k)‖2
} 1

2 .
The Laplacian matrix L(G) ∈ RN×N of the graph G

is defined as L(G) = D(G)D(G)τ where D(G) is the

N × |E| incidence matrix ([33]). The graph Laplacian L(G)
is positive semidefinite and symmetric. By considering an
ordering 0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λN (G) = λmax(G) of
the eigenvalues of L(G) then we have that λ2(G) > 0 iff G
is connected ([33]).

We denote by x̃ ∈ R|E|n the stack column vector of the
vectors xi − xj , {i, j} ∈ E with the edges ordered as in the
case of the incidence matrix. Thus, the following holds:

x̃ = D(G)τx. (1)

C. Cell Decompositions
In the subsequent analysis a discrete partition of the

workspace into cells will be considered which is formalized
through the following definition.

Definition 1. A cell decomposition S = {S`}`∈I of a set
D ⊆ Rn, where I ⊆ N is a finite or countable index set, is
a family of uniformly bounded convex sets S`, ` ∈ I such
that int(S`) ∩ int(Sˆ̀) = ∅ for all `, ˆ̀ ∈ I with ` 6= ˆ̀ and
∪`∈IS` = D.

Example 1. An example of a cell decomposition with I =
{1, 2, 3, 4, 5, 6} and S = {S`}`∈I = {S1, S2, S3, S4, S5, S6}
is depicted in Fig. 1. This cell decomposition will be used
as reference for the following examples.

S1 S2 S3

S4S5S6

Fig. 1: An example of a cell decomposition with |I| = 6
cells

D. Time Sequence, Timed Run and Weighted Transition
System

In this section we review some basic definitions from
computer science that are required in the sequel.

An infinite sequence of elements of a set X is called
an infinite word over this set and it is denoted by χ =
χ(0)χ(1) . . . The i-th element of a sequence is denoted by
χ(i).

Definition 2. ([34]) A time sequence τ = τ(0)τ(1) . . . is an
infinite sequence of time values τ(j) ∈ T = Q+, satisfying
the following properties:
• Monotonicity: τ(j) < τ(j + 1) for all j ≥ 0.
• Progress: For every t ∈ T, there exists j ≥ 1, such that
τ(j) > t.

An atomic proposition p is a statement that is either True
(>) or False (⊥).

Definition 3. ([34]) Let AP be a finite set of atomic proposi-
tions. A timed word w over the set AP is an infinite sequence
wt = (w(0), τ(0))(w(1), τ(1)) . . . where w(0)w(1) . . . is an
infinite word over the set 2AP and τ(0)τ(1) . . . is a time
sequence with τ(j) ∈ T, j ≥ 0.

Definition 4. A Weighted Transition System (WTS) is a tuple
(S, S0, Act,−→, d, AP,L) where S is a finite set of states;
S0 ⊆ S is a set of initial states; Act is a set of actions; −→⊆
S×Act×S is a transition relation; d :−→→ T is a map that
assigns a positive weight (time values in this framework) to
each transition; AP is a finite set of atomic propositions;
and L : S → 2AP is a labeling function. For simplicity, the
notation s

α−→ s′ is used to denote that (s, α, s′) ∈−→ for
s, s′ ∈ S and α ∈ Act. Furthermore, for every s ∈ S and
α ∈ Act the operator Post(s, α) = {s′ ∈ S : (s, α, s′) ∈−→
} is defined.

Definition 5. A timed run of a WTS is an infinite sequence
rt = (r(0), τ(0))(r(1), τ(1)) . . ., such that r(0) ∈ S0, and
for all j ≥ 1, it holds that r(j) ∈ S and (r(j), α(j), r(j +
1)) ∈−→ for a sequence of actions α(1)α(2) . . . with α(j) ∈
Act,∀ j ≥ 1. The time stamps τ(j), j ≥ 0 are inductively
defined as

1) τ(0) = 0.
2) τ(j + 1) = τ(j) + d(r(j), r(j + 1)), ∀ j ≥ 1.

Every timed run rt generates a timed word w(rt) =
(w(0), τ(0)) (w(1), τ(1)) . . . over the set 2AP where w(j) =
L(r(j)), ∀ j ≥ 0 is the subset of atomic propositions that
are true at state r(j).

E. Metric Interval Temporal Logic

The syntax of Metric Interval Temporal Logic (MITL) over
a set of atomic propositions AP is defined by the grammar

ϕ := p | ¬ϕ | ϕ1∧ϕ2 | ©I ϕ | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2 (2)

where p ∈ AP , and ©, ♦, � and U are the next,
eventually, always and until temporal operator, respectively.
I ⊆ T is a non-empty time interval in one of the following
forms: [i1, i2], [i1, i2), (i1, i2], (i1, i2), [i1,∞], (i1,∞) where
i1, i2 ∈ T with i1 < i2. MITL can be interpreted either in
continuous or point-wise semantics [35]. The latter approach
is utilized, since the consideration of point-wise (event-
base) type semantics renders a framework that includes
Transition Systems and automata construction, namely our
current approach, more natural. The MITL formulas are
interpreted over timed runs such as the ones produced by
a WTS (Def. 5).

Definition 6. ([35], [36]) Given a timed word wt =
(w(0), τ(0))(w(1), τ(1)) . . . and an MITL formula ϕ, we
define (wt, i) |= ϕ, for i ≥ 0 (read wt satisfies ϕ at position
i) as follows:

(wt, i) |= p⇔ p ∈ w(i)

(wt, i) |= ¬ϕ⇔ (wt, i) 6|= ϕ

(wt, i) |= ϕ1 ∧ ϕ2 ⇔ (wt, i) |= ϕ1 and (wt, i) |= ϕ2

(wt, i) |=©I ϕ⇔ (wt, i+ 1) |= ϕ and τ(i+ 1)− τ(i) ∈ I
(wt, i) |= ♦Iϕ⇔ ∃j ≥ i, s.t. (wt, j) |= ϕ, τ(j)− τ(i) ∈ I
(wt, i) |= �Iϕ⇔ ∀j ≥ i, τ(j)− τ(i) ∈ I ⇒ (wt, j) |= ϕ

(wt, i) |= ϕ1 UI ϕ2 ⇔ ∃j ≥ i, s.t. (wt, j) |= ϕ2,

τ(j)− τ(i) ∈ I and (wt, k) |= ϕ1 for every i ≤ k < j.

It has been proved that MITL is decidable in both finite
and infinite words [37] and in both pointwise and contin-
uous semantics [38]. The model checking and satisfiability
problems are EXPSPACE-complete.

s0 s1 s2

1.0

2.0

1.5

0.5

Fig. 2: An example of a WTS

Example 2. Consider the WTS T with S =
{s0, s1, s2}, S0 = {s0}, Act = ∅,−→= {(s0, ∅, s1),
(s1, ∅, s2), (s1, ∅, s0), (s2, ∅, s1)}, d((s0, ∅, s1)) =
1.0, d((s1, ∅, s2)) = 1.5, d((s1, ∅, s0)) = 2.0,
d((s2, ∅, s1)) = 0.5, AP = {green}, L(s0) =
{green}, L(s1) = L(s2) = ∅ depicted in Fig. 2.

Let two timed runs of the system: rt1 =
(s0, 0.0)(s1, 1.0)(s0, 3.0)(s1, 4.0) . . . , rt2 =
(s0, 0.0)(s1, 1.0)(s2, 2.5)(s1, 3.0) . . . and two MITL
formulas ϕ1 = ♦[2,5]{green}, ϕ2 = �[0,5]{green}.
According to the MITL semantics, it can be seen that the
timed run rt1 satisfies the formula ϕ1 (we formally write
rt1 |= ϕ1), since at the time stamp 3.0 ∈ [2, 5] we have that
L(s0) = {green} so the atomic proposition green occurs
at least once in the given interval. On the other hand, the
timed run rt2 does not satisfy the formula ϕ2 (we formally
write rt2 6|= ϕ2) since the atomic proposition green does not
always hold at every time stamp of the runs (it holds only
at the time stamp 0.0).

F. Timed Büchi Automata

Timed Büchi Automata (TBA) were introduced in [34]. In
this work, the notation from [39], [40] is partially adopted.
Let C = {c1, . . . , c|C|} be a finite set of clocks. The set of
clock constraints Φ(C) is defined by the grammar

φ := > | ¬φ | φ1 ∧ φ2 | c ./ ψ (3)

where c ∈ C is a clock, ψ ∈ T is a clock constant and
./ ∈ {<,>,≥,≤,=}. An example of clock constraints for a
set of clocks C = {c1, c2} can be Φ(C) = {c < c1∨c > c2}.
A clock valuation is a function ν : C → T that assigns a
value to each clock. A clock ci has valuation νi for i ∈
{1, . . . , |C|}, and ν = (ν1, . . . , ν|C|). By ν |= φ is denoted
the fact that the valuation ν satisfies the clock constraint φ.

Definition 7. A Timed Büchi Automaton is a tuple A =
(Q,Qinit, C, Inv,E, F,AP,L) where Q is a finite set of
locations; Qinit ⊆ Q is the set of initial locations; C is
a finite set of clocks; Inv : Q → Φ(C) is the invariant;
E ⊆ Q × Φ(C) × 2C × Q gives the set of edges; F ⊆ Q
is a set of accepting locations; AP is a finite set of atomic
propositions; and L : Q → 2AP labels every state with a
subset of atomic propositions.

A state of A is a pair (q, ν) where q ∈ Q and ν satisfies
the invariant Inv(q), i.e., ν |= Inv(q). The initial state
of A is (q(0), (0, . . . , 0)), where q(0) ∈ Qinit. Given two

states (q, ν) and (q′, ν′) and an edge e = (q, γ,R, q′), there
exists a discrete transition (q, ν)

e−→ (q′, ν′) iff ν |= γ,
ν′ |= Inv(q′), and R is the reset set, i.e., ν′i = 0 for ci ∈ R
and ν′i = νi for ci /∈ R. Given a δ ∈ T, there exists a
time transition (q, ν)

δ−→ (q′, ν′) iff q = q′, ν′ = ν + δ
(δ is summed component-wise) and ν′ |= Inv(q). We
write (q, ν)

δ−→ e−→ (q′, ν′) if there exists q′′, ν′′ such that
(q, ν)

δ−→ (q′′, ν′′) and (q′′, ν′′)
e−→ (q′, ν′) with q′′ = q.

An infinite run of A starting at state (q(0), ν) is an infinite
sequence of time and discrete transitions (q(0), ν(0))

δ0−→
(q(0)′, ν(0)′)

e0−→ (q(1), ν(1))
δ1−→ (q(1)′, ν(1)′) . . ., where

(q(0), ν(0)) is an initial state. This run produces the timed
word w = (L(q(0)), τ(0))(L(q(1)), τ(1)) . . . with τ(0) = 0
and τ(i+1) = τ(i)+δi, ∀ i ≥ 1. The run is called accepting
if q(i) ∈ F for infinitely many times. A timed word is
accepted if there exists an accepting run that produces it.
The problem of deciding the emptiness of the language of a
given TBA A is PSPACE-complete [34]. In other words, an
accepting run of a given TBA A can be synthesized, if one
exists.

Any MITL formula ϕ over AP can be algorithmically
translated to a TBA with the alphabet 2AP , such that the
language of timed words that satisfy ϕ is the language of
timed words produced by the TBA ([37], [41], [42]).

Example 3. The TBA A with Q = {q0, q1, q2}, Qinit =
{q0}, C = {c}, Inv(q0) = Inv(q1) = Inv(q2) = ∅, E =
{(q0, {c ≤ c2}, ∅, q0), (q0, {c ≤ c1∨c > c2}, c, q2), (q0, {c ≥
c1 ∧ c ≤ c2}, c, q1), (q1,>, c, q1), (q2,>, c, q2)}, F =
{q1}, AP = {green},L(q0) = L(q2) = ∅,L(q1) =
{green} that accepts all the timed words that satisfy the
formula ϕ = ♦[c1,c2]{green} is depicted in Fig. 3. This
formula will be used as reference for the following examples
and simulations.

q0 q1

q2

>, c := 0

>, c := 0

c ≤ c2, ∅

c ≥ c1 ∧ c ≤ c2
c := 0

c < c1 ∨ c > c2
c := 0

{green}

Fig. 3: A TBA A that accepts the runs that satisfy formula
ϕ = ♦[c1,c2]{green}.

An example of a timed run of this TBA is
(q0, 0)

δ=α1−→ (q0, α1)
e=(q0,{c≥c1∧c≤c2},c,q1)−→ (q1, 0) . . .

with c1 ≤ α1 ≤ c2, which generates the timed
word wt = (L(q0), 0)(L(q0), α1)(L(q1), α1) . . . =
(∅, 0)(∅, α1)({green}, α1) . . . that satisfies the formula ϕ.

The timed run (q0, 0)
δ=α2−→ (q0, α2)

e=(q0,{c≤c1∨c>c2},c,q2)−→ (q2, 0) . . . with α2 < c1, generates
the timed word wt = (L(q0), 0)(L(q0), α2)
(L(q2), α2) . . . = (∅, 0)(∅, α2)(∅, α2) . . . that does not
satisfy the formula ϕ.

III. PROBLEM FORMULATION

A. System Model

We focus on multi-agent systems with coupled dynamics
of the form

ẋi = −
∑

j∈N (i)

(xi − xj) + vi, xi ∈ Rn, i ∈ I. (4)

where vi ∈ Rn, i ∈ I. The dynamics (4) consists of two
parts; the first part is a consensus protocol representing the
coupling between the agent and its neighbors, and the second
one is a control input which will be exploited for high-level
planning and is called free input. In this work, it is assumed
that the free inputs are bounded by a positive constant vmax.
Namely, ‖vi(t)‖ ≤ vmax, ∀ i ∈ I, t ≥ 0.

Assumption 1. We assume that the communication graph
G = (I, E) of the system is undirected and static i.e., every
agent preserves the same neighbors for all times.

Notice that the system (4) can be also expressed in the
form c(ẋ, k) = −L(G) c(x, k) + c(v, k), k ∈ {1, . . . , n}
where x, v ∈ RNn are obtained by invoking the definition
of the component operator from Sec. II-B.

B. Specification

Our goal is to control the multi-agent system (4) so
that each agent obeys a given individual specification. In
particular, it is required to drive each agent to a sequence
of desired subsets of the workspace Rn within certain time
limits and provide certain atomic tasks there. Atomic tasks
are captured through a finite set of services Σi, i ∈ I. Hence,
it is desired to relate the position xi of each agent i ∈ I in the
workspace with the services that are offered at xi. Initially,
a labeling function

Λi : Rn → 2Σi (5)

is introduced for each agent i ∈ I which maps each state
xi ∈ Rn to the subset of services Λi(xi) which hold true
at xi i.e., the subset of services that agent i can provide in
position xi. It should be noted that although the term labeling
function it is used, these functions should not be confused
with the labeling functions of a WTS as in Definition 4. The
union of all the labeling functions as Λ(x) =

⋃
i∈I Λi(x) is

also defined.
Without loss of generality, we assume that Σi∩Σj = ∅, for

all i, j ∈ I, i 6= j which means that the agents do not share
any services. Let us now introduce the following assumption
which is important for defining the problem properly.

Assumption 2. There exists a partition S = {S`}`∈I of the
workspace which forms a cell decomposition according to
Definition 1 and respects the labeling function Λ i.e., for
all S` ∈ S it holds that Λ(x) = Λ(x′),∀ x, x′ ∈ S`. This

assumption intuitively and again without loss of generality,
means that the same services hold at all the points that belong
to the same cell of the partition.

Define now for each agent i ∈ I a labeling function

Li : S → 2Σi (6)

which denotes the fact that when agent i visits a region S` ∈
S, it chooses to provide a subset of services that are being
offered there i.e., it chooses to satisfy a subset of Li(S`).

The trajectory of each agent i is denoted by
xi(t), t ≥ 0, i ∈ I. The trajectory xi(t), i ∈ I
is associated with a unique sequence rtxi =
(ri(0), τi(0))(ri(1), τ1(1))(ri(2), τi(2)) . . . of regions that
the agent i crosses, where for all j ≥ 0, ri(j) ∈ S` for some
` ∈ I, Λi(xi(t)) = Li(ri(j)),∀ t ∈ [τi(j), τi(j + 1)) and
ri(j) 6= ri(j + 1). The equality Λi(·) = Li(·), i ∈ I
is feasible due to assumption 2. The timed word
wtxi = (wi(0), τi(0))(wi(1), τi(1))(wi(2), τi(2)) . . ., where
wi(j) = Li(ri(j)), j ≥ 0, i ∈ I, is associated uniquely with
the trajectory xi(t) and represents the sequence of services
that can be provided by the agent i following the trajectory
xi(t), t ≥ 0.

We define the timed service word as

w̃txi = (βi(z0), τ̃i(z0))(βi(z1), τ̃i(z1))(βi(z2), τ̃i(z2)) . . .
(7)

where z0 = 0 < z1 < z2 < . . . is a sequence of integers,
and for all j ≥ 0 it holds that βi(zj) ⊆ Li(ri(zj)) and
τ̃(zj) ∈ [τi(zj), τi(zj + 1)). The timed service word is a
sequence of services that are actually provided by agent i
and it is compliant with the trajectory xi(t), t ≥ 0.

The specification task ϕi given in MITL formulas over the
set of services Σi as in Definition 6, captures requirements
on the services to be provided by agent i for each i ∈ I.
We say that a trajectory xi(t) satisfies a given formula ϕi
in MITL over the set of atomic propositions Σi if and only
if there exits a timed service word, as defined in (7), that
complies with xi(t) and satisfies ϕi according to Definition
6.

Example 4. We consider here an example in order to un-
derstand the notation and the technical terms that have been
introduced until here. Let N = 2 agents performing in the
partitioned environment of Fig. 4. The agents have the ability
to pick up, deliver and throw a different ball each. Let the
services of each agent be Σ1 = {pickUp1,deliver1, throw1}
and Σ2 = {pickUp2,deliver2, throw2}. Note that Σ1∩Σ2 6=
∅. We capture 3 points of the trajectories of the agents that
belong to different cells where different atomic propositions
hold. Let t0 = t′0 = 0 and t1 < t′1 < t2 < t2 < t′2 <
t3 < t′3. The trajectories x1(t), x2(t), t ≥ 0 are depicted
with red lines. According to Assumption 2 we have that
S = {S`}`∈I = {S1, . . . , S6} where I = {1, . . . , 6}. We

also have

Λ1(x1(t)) = L1(r1(0)) = {pickUp1}, t ∈ [0, t1),

Λ1(x1(t)) = L1(r1(1)) = {throw1}, t ∈ [t1, t2),

Λ1(x1(t)) = L1(r1(2)) = {deliver1}, t ∈ [t2, t3),

Λ1(x1(t)) = L1(r1(3)) = ∅, t ≥ t3.
Λ2(x2(t)) = L2(r2(0)) = {pickUp2}, t ∈ [0, t′1),

Λ2(x2(t)) = L2(r2(1)) = {deliver2}, t ∈ [t′1, t
′
2),

Λ2(x2(t)) = L2(r2(2)) = {throw2}, t ∈ [t′2, t
′
3),

Λ2(x2(t)) = L2(r2(3)) = ∅, t ≥ t′3.

where generally t0 = t′0, t1 6= t′1 and t2 6= t′2, t3 6= t′3. By
computing wi(j) = L(ri(j)),∀ i ∈ {1, 2}, j ∈ {1, 2, 3} the
corresponding individual timed words are given as:

wtx1
= ({pickUp1}, t0)({throw1, t1})({deliver1}, t2)(∅, t3)

wtx2
= ({pickUp2}, t′0)({deliver2}, t′1)({throw2}, t′2)(∅, t′3).

According to (7), two time service words (depicted with in
Fig. 4) are given as:

w̃t1 = (β1(z0), τ̃1(z0))(β1(z1), τ̃1(z1))

w̃t2 = (β2(z′0), τ̃2(z′0))(β2(z′1), τ̃2(z′1))

where for agent 1 we have: z0 = 0, z1 = 2, β1(z0) =
{pickUp1} ⊆ L1(r1(z0)), β1(z1) = {deliver1} ⊆
L1(r1(z1)) and τ̃1(z0) = t̃′0 ∈ [τ1(z0), τ1(z0 + 1)) =
[t0, t1), τ̃1(z1) = t̃′1 ∈ [τ1(z1), τ1(z1 + 1)) = [t2, t3).
The corresponding elements for agent 2 are z′0 =
0, z′1 = 2, β2(z′0) = {pickUp2} ⊆ L2(r2(z′0)), β2(z′1) =
{deliver2} ⊆ L2(r2(z′1)) and τ̃2(z′0) = t̃′′0 ∈
[τ2(z′0), τ2(z′1)) = [t′0, t

′
1), τ̃2(z′1) = t̃′′1 ∈ [τ1(z′1), τ1(z′1 +

1)) = [t′2, t
′
3).

x1(t0)

x1(t1)

x1(t2)

x1(t3) x2(t′2)

x2(t′1)

x2(t′0)

x2(t′3)

S1 S2 S3

S4S5S6

Fig. 4: An example of two agents performing in a partitioned
workspace.

C. Problem Statement

We are now ready to define our problem formally as
follows:

Problem 1. Given N agents that are governed by dynamics
as in (4) and N task specification formulas ϕ1, . . . , ϕN

expressed in MITL over the sets of services Σ1, . . . ,ΣN ,
respectively, the partition S = {S`}`∈I as in Assumption
2 and the labeling functions Λ1, . . . ,ΛN and L1, . . . ,LN ,
as in (5), (6) respectively, assign control laws to the free
inputs v1, . . . , vN such that each agent fulfills its individual
specification, given the bound vmax.

Remark 1. In our preliminary work on the multi-agent
controller synthesis framework under MITL specifications
[23], the multi-agent system was considered to have fully-
actuated dynamics. The only constraints on the system were
due to the presence of time constrained MITL formulas. In
the current framework, we have two types of constraints.
Primarily, due to the coupled dynamics of the system, which
constrain the motion of each agent, and, secondly, the timed
constraints that are inherently imposed from the time bounds
of the MITL formulas. Thus, there exist formulas that cannot
be satisfied either due to the coupling constraints or the
time constraints of the MITL formulas. These constraints,
make the procedure of the controller synthesis in the discrete
level substantially different and more elaborate than the
corresponding multi-agent LTL frameworks in the literature
([9]–[12]).

Remark 2. It should be noted here that, in this work,
the couplings and the dependencies between the agents are
treated by the dynamics of the form (4) and not in the discrete
level by coupling also in the services of each agent (i.e.,
Σi ∩ Σj 6= ∅, ∀i, j ∈ I). Hence, even though the agents
do not share atomic propositions, it is the constraint to their
motion due to the dynamic couplings with the neighbors that
restrict them to fulfill the desired high-level tasks. Treating
the coupling through individual atomic propositions in the
discrete level as well, constitutes another problem which is
far from trivial and a topic of current work.

Remark 3. The motivation for introducing the cell decom-
position S = {S`}`∈I in this Section, is that it is required
to know which services hold in each part of the workspace.
As will be witnessed through the problem solution, this is
necessary since the abstraction of the workspace may not be
compliant with the initial given cell decomposition, so new
partitions and cell decompositions might be required.

IV. PROPOSED SOLUTION

In this section, a systematic solution to Problem 1 is
introduced. Our overall approach builds on abstracting the
system in (4) into a set of WTSs and further the fact that
the timed runs in the i-th WTS project onto the trajectories
of agent i while preserving the satisfaction of the individual
MITL formulas ϕi, i ∈ I. We take the following steps:

1) Initially, the boundedness of the agents’ relative posi-
tions is proved, in order to guarantee boundedness of
the coupling terms −

∑
j∈N (i)(xi−xj). This property,

is required for the derivation of the symbolic models.
(Sec. IV-A).

2) We utilize decentralized abstraction techniques for
the multi-agent system, i.e., discretization of both the
workspace and the time such that the motion of each
agent is modeled by a WTS Ti, i ∈ I (Sec. IV-B).

3) In view of the definition of WTS, the run of each
agent is defined such as to be consistent in view
of the coupling constraints with the neighbors. The
computation of the product of each individual WTS
is thus also required (Sec. IV-C).

4) A five-step automated procedure for controller synthe-
sis which serves as a solution to Problem 1 is provided
in Sec. IV-D.

5) Finally, the computational complexity of the proposed
approach is discussed in Sec. IV-E.

The next sections provide the proposed solution in detail.

A. Boundedness Analysis

Theorem 1. Consider the multi-agent system (4). Assume
that the network graph is connected (i.e. λ2(G) > 0) and
let vi, i ∈ I satisfy ‖vi(t)‖ ≤ vmax, ∀ i ∈ I, t ≥ 0.
Furthermore, let a positive constant R̄ > K2vmax where
K2 = 2

√
N(N−1)‖D(G)τ‖

λ2
2(G)

> 0 and where D(G) is the
network adjacency matrix. Then, for each initial condition
xi(0) ∈ Rn, there exists a time T > 0 such that x̃(t) ∈
X , ∀t ≥ T , where X = {x ∈ RNn : ‖x̃‖ ≤ R̄} and x̃(t)
was was defined in (1).

Proof. Consider the following candidate Lyapunov function
V : RNn → R

V (x) =
1

2

N∑
i=1

∑
j∈N (i)

‖xi − xj‖2 = ‖x̃‖2 > 0. (8)

The time derivative of V along the trajectories of (4), can
be computed as

V̇ (x) = [∇V (x)]
τ
ẋ

=

n∑
k=1

{
∂V

∂xk1
ẋk1

}
+ . . .+

n∑
k=1

{
∂V

∂xkN
ẋkN

}
=

n∑
k=1

{
c

(
∂V

∂x
, k

)τ
c(ẋ, k)

}
=

n∑
k=1

{
c

(
∂V

∂x
, k

)τ
[−L(G) c(x, k) + c(v, k)]

}
(9)

where c(∂V∂x , k) =
[
∂V
∂xk1

. . . ∂V
∂xkN

]τ
. By computing the

partial derivative of the Lyapunov function with respect to
vector xi, i ∈ I we get ∂V

∂xi
=
∑
j∈N (i)(xi − xj), i ∈ I

from which we have that c
(
∂V
∂x , k

)τ
= c(x, k)τ L(G), k =

1, ..., n. Thus, by substituting the last in (9) we get

V̇ (x) =

n∑
k=1

{c(x, k)τ L(G) [−L(G) c(x, k) + c(v, k)]}

= −
n∑
k=1

{
c(x, k)τ [L(G)]

2
c(x, k)

}
+

n∑
k=1

{
c(x, k)τ [L(G)]

2
c(v, k)

}
≤ −

n∑
k=1

{
c(x, k)τ [L(G)]

2
c(x, k))

}
+∥∥∥∥∥

n∑
k=1

{c(x, k)τ L(G) c(v, k)}

∥∥∥∥∥ . (10)

For the first term of (10) we have that
n∑
k=1

{
c(x, k)τ L(G)2 c(x, k))

}
=

n∑
k=1

‖L(G) c(x, k)‖2 .

For the second term of (10) we have that∥∥∥∥∥
n∑
k=1

{c(x, k)τ L(G) c(ν, k)}

∥∥∥∥∥
=

∥∥∥∥∥
n∑
k=1

{c(x, k)τ D(G) D(G)τ c(ν, k)}

∥∥∥∥∥
≤

n∑
k=1

{‖D(G)τ c(x, k)‖ ‖D(G)τ‖ ‖c(ν, k)‖}

= ‖D(G)τ‖
n∑
k=1

{‖c(x̃, k)‖ ‖c(ν, k)‖} . (11)

By using the Cauchy-Schwarz inequality in (11) we get∥∥∥∥∥
n∑
k=1

{c(x, k)τ L(G) c(v, k)}

∥∥∥∥∥
≤ ‖D(G)τ‖

(
n∑
k=1

‖c(x̃, k)‖2
) 1

2
(

n∑
k=1

‖c(v, k)‖2
) 1

2

= ‖D(G)τ‖ ‖x̃‖‖v‖ ≤ ‖D(G)τ‖ ‖x̃‖
√
N‖v‖∞

where ‖v‖∞ = max {‖vi‖ : i = 1, . . . , N} ≤ vmax. Thus, by
combining the previous inequalities, (10) is written

V̇ (x) ≤ −
n∑
k=1

{
‖L(G)c(x, k)‖2

}
+
√
N ‖D(G)τ‖ ‖x̃‖vmax.

(12)
In order to proceed the following Lemma is required.

Lemma 1. Let x⊥ be the projection of the vector x ∈ RNn
to the orthogonal complement of the subspace H = {x ∈
RNn : x1 = . . . = xN}. Then, the following hold:

‖L(G) c(x, k)‖ ≥ λ2(G) ‖c(x⊥, k)‖, ∀ k ∈ I (13)

‖x⊥‖ ≥ 1√
2(N − 1)

‖x̃‖. (14)

Proof. See the Appendix of [43].

By exploiting Lemma 1, (12) is written

V̇ (x) ≤ −λ2
2(G)

n∑
k=1

{∥∥c(x⊥, k)
∥∥2
}

+
√
N ‖D(G)τ‖ ‖x̃‖vmax

= −λ2
2(G) ‖x⊥‖2 +

√
N ‖D(G)τ‖ ‖x̃‖vmax

≤ − λ2
2(G)

2(N − 1)
‖x̃‖2 +

√
N ‖D(G)τ‖ ‖x̃‖vmax

≤ −K1‖x̃‖ (‖x̃‖ −K2vmax) . (15)

where K1 =
λ2
2(G)

2(N−1) > 0. By using the following
implication x̃ = Dτ (G)x ⇒ ‖x̃‖ = ‖D(G)τx‖ ≤
‖D(G)τ‖‖x‖, apparently, we have that 0 < V (x) = ‖x̃‖2 ≤
‖D(G)τ‖2‖x‖2 and V̇ (x) < 0 when ‖x̃‖ ≥ R̄ > K2vmax.
Thus, there exists a finite time T > 0 such that the trajectory
will enter the compact set X = {x ∈ RNn : ‖x̃‖ ≤ R̄} and
remain there for all t ≥ T with R̄ > K2vmax. This can be
extracted from the following.

Let us define the compact set Ω ={
x ∈ RNn : K2vmax < R̄ ≤ ‖x̃‖ ≤ M̄

}
, where

M̄ = V (x(0)) = ‖x̃(0)‖2. Without loss of generality
it is assumed that it holds M̄ > R̄. Let us define the
compact sets:

S1 =
{
x ∈ RNn : ‖x̃‖ ≤ M̄

}
,

S2 =
{
x ∈ RNn : ‖x̃‖ ≤ K2vmax

}
.

From the equivalences ∀ x ∈ S1 ⇔ V (x) = ‖x̃‖2 ≤
M̄2,∀ x ∈ S2 ⇔ V (x) = ‖x‖2 ≤ K2

2v
2
max, we have that

the boundaries ∂S1, ∂S2 of sets S1, S2 respectively, are two
level sets of the Lyapunov function V . By taking the above
into consideration we have that ∂S2 ⊂ ∂S1. Hence, we get
from (15) that there exist constant γ > 0 such that:

V̇ (x) ≤ −γ < 0,∀ x ∈ Ω = S1\S2. (16)

Consequently, the trajectory has to enter the interior of the
set of S2 in finite time T > 0 and remain there for all time
t ≥ T .

It should be noticed that the relative boundedness of the
agents’ positions guarantees a global bound on the coupling
terms −

∑
j∈N (i)(xi − xj), as defined in (4). This bound

will be later exploited in order to capture the behavior of the
system in X = {x ∈ RNn : ‖x̃‖ ≤ R̄}, by a discrete state
WTS.

B. Abstraction

In this section we provide the abstraction technique that is
adopted in order to capture the dynamics of each agent into
Transition Systems. We work completely in discrete level,
which is necessary in order to solve the Problem 1.

Firstly, some additional notation is introduced. Given an
index set I and an agent i ∈ I with neighbors j1, . . . , jNi , the
mappings pri : IN → INi+1, p̄ri : IN → I are defined, where
IN = I× . . .× I︸ ︷︷ ︸

N−products

. The first one assigns to each N -tuple l =

(l1, . . . , lN) ∈ IN the Ni + 1 tuple li = (li, lj1 , . . . , ljNi) ∈
INi+1 which denotes the indices of the cells where the agent
i and its neighbors belong. The second one assigns to each

N -tuple l = (l1, . . . , lN) ∈ IN the position li ∈ I of the
agent i, i.e., the cell that the agent i occupies at the moment.

Consider a particular configuration S̄ = {S̄l}l∈Ī, where
agent i occupies the cell S̄li . We denote here with S̄ the
cell decomposition which is the outcome of the abstraction
technique that is adopted for the problem solution that will
be presented in this Section. This is not necessarily the same
the cell decomposition S from Assumption 2 and Problem 1.
Let δt be a time step. Through the aforementioned space and
time discretization S̄− δt we aim to capture the reachability
properties of the continuous system (4), in order to create
a WTS of each agent. The WTS will later on serve in the
synthesis of plans that fulfill the high-level specifications and
that map onto the desired free inputs vi, i ∈ I.

We proceed by describing the abstraction procedure. If
there exists a free input for each state in S̄li that navigates the
agent i into the cell S̄l′i precisely in time δt, regardless of the
locations of the agent i’s neighbors within their current cells,
then a transition from li to l′i is enabled in the WTS. This
forms the well-possessedness of transitions which will be
explained hereafter. A mathematical derivation can be found
in [32].

Sli xi

Slj1xj1

Slj2xj2Sl′i

System (i) System (ii)

Sli xi

Slj1xj1

Slj2xj2

xi(δt) xi(δt)

Fig. 5: Illustration of a space-time discretization which is
well posed for system (i) but non-well posed for system (ii).

We next illustrate the concept of a well-posed abstraction,
namely, a discretization which generates for each agent
a Transition System in accordance with the discussion
above and the Def. 4. Consider a cell decomposition S̄ =
{S̄l}l∈Ī={1,...,12} as depicted in Fig. 5 and a time step δt.
The tails and the tips of the arrows in the figure depict
the initial cell and the endpoints of agent’s i trajectories at
time δt respectively. In both cases in the figure we focus on
agent i and consider the same cell configuration for i and its
neighbors. However, different dynamics are considered for
Cases (i) and (ii). In Case (i), it can be observed that for the
three distinct initial positions in cell S̄li , it is possible to drive
agent i to cell S̄l′i at time δt. We assume that this is possible
for all initial conditions in this cell and irrespectively of the
initial conditions of i’s neighbors in their cells and the inputs
they choose. It is also assumed that this property holds for all
possible cell configurations of i and for all the agents of the
system. Thus we have a well-posed discretization for system
(i). On the other hand, for the same cell configuration and
system (ii), the following can be observed. For three distinct
initial conditions of i the corresponding reachable sets at

δt, which are enclosed in the dashed circles, lie in different
cells. Thus, it is not possible given this cell configuration
of i to find a cell in the decomposition which is reachable
from every point in the initial cell and we conclude that
discretization is not well-posed for system (ii).

We present at this point the sufficient conditions that relate
the dynamics of the multi-agent system (4), the time step δt
and the diameter dmax = sup{‖x − y‖ : x, y ∈ S̄l, l ∈ I} of
the cell decomposition S̄, and guarantee the existence of the
aforementioned well-posed transitions from each cell. Based
on [32] (Section III, inequality (3), Section IV, inequalities
(28, 29)), the sufficient conditions that the dynamics of a
general class of system in the form

ẋi = fi(xi,xj) + vi, i ∈ I (17)

where xj = (xj1 , . . . , xjNi) ∈ RNin, should fulfill in order
to have well-posed abstractions are the following:
(C1) There exists M > vmax > 0 such that ‖fi(xi,xj)‖ ≤
M, ∀i ∈ I,∀ x ∈ RNn : pri(x) = (xi,xj) and x̃ ∈ X , by
applying the projection operator pri for I = Rn.
(C2) There exists a Lipschitz constant L1 > 0 such that

‖fi(xi,xj)− fi(xi,yj)‖ ≤ L1‖(xi,xj)− (xi,yj)‖,
∀ i ∈ I, xi, yi ∈ Rn,xj ,yj ∈ RNin. (18)

(C3) There exists a Lipschitz constant L2 > 0 such that

‖fi(xi,xj)− fi(yi,xj)‖ ≤ L2‖(xi,xj)− (yi,xj)‖,
∀ i ∈ I, xi, yi ∈ Rn,xj ,yj ∈ RNin. (19)

From (4) and (17) we get fi(xi,xj) = −
∑
j∈N (i)(xi−xj).

By checking all the conditions one by one for fi(xi,xj) as
in (4), we have:

(C1) For every i ∈ I,∀ x ∈ RNn : x̃ ∈ X and pri(x) =
(xi,xj) we have that

‖fi(xi,xj)‖ =

∥∥∥∥∥∥−
∑

j∈N (i)

(xi − xj)

∥∥∥∥∥∥ ≤
∑

j∈N (i)

‖xi − xj‖

≤
∑

(i,j)∈E

‖xi − xj‖ = ∆x ≤ R̄. (20)

Thus, M = R̄. We have also that ‖D(G)τ‖ =√
λmax(D(G)D(G)τ) =

√
λmax(G) and λ2(G) ≤

N
N−1 min{Ni : i ∈ I} from [44]. For N > 2 it holds that
λ2(G) < N . From Theorem (1) we have that R̄ > K2vmax ⇔
M > K2vmax. It holds that M > vmax since

K2 =
2
√
N(N − 1) ‖D(G)τ‖

λ2
2(G)

=
2
√
N(N − 1)

√
λmax(G)√

λ3
2(G)

√
λ2(G)

≥ 2
√
N(N − 1)√
N3

√
λmax(G)

λ2(G)
≥ 2
√
N(N − 1)√
N3

> 1.

(C2) We have that

‖fi(xi,xj)− fi(xi,yj)‖

=
∥∥∥− ∑

j∈N (i)

(xi − xj) +
∑

j∈N (i)

(xi − yj)
∥∥∥

≤
√
Ni ‖(xi,xj)− (xi,yj)‖

≤ max{
√
Ni : i = 1, . . . , N} ‖(xi,xj)− (xi,yj)‖.

Thus, the condition (C2) holds and the Lipschitz constant is
L1 = max{

√
Ni : i = 1, . . . , N} > 0, where the inequality

(
∑ρ
i=1 αi)

2 ≤ ρ
(∑ρ

i=1 α
2
i

)
is used.

(C3) By using the same methodology with the proof of (C2)
we conclude that L2 = max{Ni : i = 1, . . . , N} > 0.

Based on the sufficient condition for well posed abstrac-
tions in [32], the acceptable values of dmax and δt are given
as

dmax ∈
(

0,
(1− λ)2v2

max

4ML

]
(21)

δt ∈

[
(1− λ)vmax −

√
(1− λ)2v2

max − 4MLdmax

2ML
,

(1− λ)vmax +
√

(1− λ)2v2
max − 4MLdmax

2ML

]
(22)

where the parameter λ stands for reachability purposes and
L = max{3L2 + 4L1

√
Ni, i ∈ I} with the dynamics bound

M and the Lipschitz constants L1, L2 as previously deduced.

Remark 4. Notice that when dmax in (21) is chosen suffi-
ciently small, it is also possible due to the lower bound on the
acceptable δt in (22) to select a correspondingly small value
of the sampling time and capture with higher accuracy the
properties of the continuous trajectories. However, this will
result in a finer discretization and increase the complexity of
the symbolic models.

Remark 5. Assume that a cell-decomposition of diameter
dmax and a time step δt which guarantee well-posed transi-
tions, namely, which satisfy (21) and (22), have been chosen.
It is also possible to chose any other cell-decomposition with
diameter d̂max ≤ dmax since, by (22), the range of acceptable
δt increases.

We showed that the dynamics of the system (4) satisfy
all the sufficient conditions (C1)-(C3), thus we have a well-
posed space-time discretization S̄− δt. Recall now Assump-
tion 2. It remains to establish the compliance of the cell
decomposition S = {S`}`∈I, which is given in the statement
of Problem 1, with the cell decomposition S̄ = {S̄l}l∈Ī,
which is the outcome of the abstraction. By the term of
compliance, we mean that:

S̄l ∩S` ∈ S ∪{∅}, for each S̄l ∈ S̄, S` ∈ S and l ∈ Ī, ` ∈ I.
(23)

In order to address this problem, we define:

Ŝ = {Ŝl̂}l̂∈Î = {S̄l ∩ S` : l ∈ Ī, ` ∈ I}\{∅} (24)

which forms a cell decomposition which is compliant with
the cell decomposition S from Problem 1 and serves as the
abstraction solution of this problem. This can be deducted
as follows: By taking all the combinations of intersections
S̄l ∩ S`,∀ l ∈ Ī,∀ ` ∈ I and enumerating them by indexes
of the set Î, the cells {Ŝl̂}l̂∈Î are constructed for which the
following holds: ∀ ` ∈ I,∃ l ∈ Ī such that Ŝl̂ = S̄l ∩ S` = ∅
and int(Ŝˆ̀) ∩ int(Ŝˆ̀′) 6= ∅ for all ˆ̀′ ∈ Î\{ˆ̀}. After all
the intersections we have ∪l∈ÎŜl̂ = X . The diameter of
the cell decomposition Ŝ = {Ŝl̂}l̂∈Î is defined as d̂max =

sup{‖x− y‖ : x, y ∈ Ŝl̂, l̂ ∈ Î} ≤ dmax. Hence, according to
the discussion above, we have a well-posed abstraction. See
Example 5 for an illustration of these deviations.

For the solution to Problem 1, the WTS which corresponds
to the cell configuration Ŝ, the diameter d̂max and the time
step δt will be exploited. Thus, the WTS of each agent is
defined as follows:

Definition 8. The motion of each agent i ∈ I in the
workspace is modeled by a WTS Ti = (Si, S

init
i , Acti,−→i,

di, APi, L̂i) where

• Si = Î, the set of states of each agent is the set of
indices of the cell decomposition.

• Sinit
0 ⊆ Si, is a set of initial states.

• Acti = ÎNi+1, the set of actions representing where
agent i and its neighbors are located.

• For a pair (li, li, l
′
i) we have that (li, li, l

′
i) ∈−→i iff

li
li−→i l

′
i is well-posed for each li, l

′
i ∈ Si and li =

(li, lj1 , . . . , ljNi) ∈ Acti.
• di :−→i→ T, is a map that assigns a positive weight

(duration) to each transition. The duration of each
transition is exactly equal to δt > 0.

• AP i = Σi, is the set of atomic propositions which are
inherent properties of the workspace.

• L̂i : Si → 2APi , is the labeling function that maps the
every state s ∈ Si into the services that can be provided
in this state.

The aforementioned Definition is crucial since from the
dynamical system (4) we created through the abstraction
procedure individual WTSs of each agent i ∈ I which
capture the motion of each agent and let us work completely
in discrete level in order to design the controllers that satisfy
the Problem 1.

Every WTS Ti, i ∈ I generates timed
runs and timed words of the form rti =
(ri(0), τi(0))(ri(1), τi(1))(ri(2), τi(2)) . . . , wti =
(Li(ri(0)), τi(0))(Li(ri(1)), τi(1))(Li(ri(2)), τi(2)) . . .
respectively, over the set 2APi according to Def. 5 with
τi(j) = j · δt,∀ j ≥ 0. It is necessary now to provide the
relation between the time words that are generated by the
WTSs Ti, i ∈ I with the time service words produced by
the trajectories xi(t), i ∈ I, t ≥ 0.

Remark 6. By construction, each time word produced by the
WTS Ti is a service time word associated with the trajectory
xi(t) of the system (4). Hence, if we find a timed word of
Ti satisfying a formula ϕi given in MITL, we also found for

each agent i a desired timed word of the original system,
and hence trajectories xi(t) that are solution to the Problem
(1). (i.e., the produced timed words of Ti are compliant with
the service time words of the trajectories xi(t).)

Example 5. Assume that S = {S`}`∈{1,...,6} as given in
Example 1 depicted in Fig. 5 by red rectangles, is the cell de-
composition of Problem 1. Let also S̄ = {S̄l}l∈Ī={1,...,6} de-
picted in Fig. 7 with light blue cells, be a cell decomposition
which serves as potential solution of this Problem satisfying
all the abstraction properties that have been mentioned in this
Section. It can be observed that the two cell decompositions
are not compliant according to (23). However, by using (24),
a new cell decomposition Ŝ = {Ŝl̂}l̂∈Î={1,...,15} (depicted
in Fig. 7), that is compliant S, can be obtained and forms
the final cell decomposition solution. Let also dmax, d̂max be
the diameters of the cell decompositions S, Ŝ respectively.
It holds that d̂max ≤ dmax which is in accordance with the
Remark 5.

S1
S2 S3

S4S5S6

S̄3

S̄4

S̄2

S̄5S̄5

S̄1
dmax

Fig. 6: An example with a given cell decomposition
S = {Sl}l∈{1,...,6} and a non-compliant solution S̄ =
{S̄l}l∈Ī={1,...,6}.

Ŝ1
Ŝ2 Ŝ3 Ŝ4 Ŝ5

Ŝ6Ŝ7Ŝ8Ŝ9Ŝ10

Ŝ11 Ŝ12 Ŝ13 Ŝ14 Ŝ15

d̂max

Fig. 7: The resulting compliant cell decomposition Ŝ =
{Ŝl̂}l̂∈Î={1,...,15} of Example 5.

C. Runs Consistency

Due to the fact that the dynamics of the system have
couplings between the agents, it is necessary to define timed
runs that can be performed from each individual agent. Even
though we have the individual WTS of each agent, the runs
that the later generates may not be performed by an agent
due to the constrained motion that is imposed by the coupling
terms. Hence, we need to provide a tool that synchronizes the

agents at each time step δt and is able to determine which of
the generated runs of the individual WTS can be performed
by the agent (i.e., they are consistent runs). In order to
address the aforementioned issue, we provide a centralized
product WTS which captures the behavior of the coupled
multi-agent system as a team, and the generated product run
(see Def. 10) can later be projected onto consistent individual
runs. The following two definitions deal with the product
WTS and consistent runs respectively.

Definition 9. The product WTS Tp = (Sp, S
init
p ,−→p) is

defined as follows:
• Sp = ÎN .
• (s1, . . . , sN) ∈ Sinit if si ∈ Sinit

i for all i ∈ I.
• (l, l′) ∈−→p iff l′i ∈ Posti(li, pri(l)),∀ i ∈ I,∀ l =

(l1, . . . , lN), l′ = (l′1, . . . , l
′
N).

• dp :−→p→ T : As in the individual WTS’s case, the
transition weight is dp(·) = δt.

The action labels, the atomic propositions and the labeling
function in Tp are insignificant. Hence, without loss of
generality, there were omitted from the tuple.

Definition 10. Given the timed run

rtp = ((r1
p(0), . . . , rNp (0)), τp(0))((r1

p(1), . . . , rNp (1)), τp(1)) . . .

of the WTS Tp, the induced set of projected runs

{rti = (rip(0), τp(0))(rip(1), τp(1)) . . . : i ∈ I}

of the WTSs T1, . . . , TN , respectively will be called consis-
tent runs. Since the duration of each agent’s transition is δt
it holds that τp(j) = j · δt, j ≥ 0.

Therefore, through the product WTS Tp, we can always
generate individual consistent runs for each agent. It remains
to provide a systematic approach of how to determine
consistent runs r̃1, . . . , r̃N which are associated with the
corresponding service time words w̃t1, . . . , w̃

t
N (note that with

tilde we denote the outcome of our solution approach) and,
according to the Lemma 6, their corresponding compliant
trajectories x1(t), . . . , xN (t) will satisfy the corresponding
MITL formulas ϕ1, . . . , ϕN . and they are the solution to
Problem 1.

Example 6. An example that explains the notation that
has been introduced until now is the following: Consider
an agent (Fig. 8) moving in the workspace with N (i) =
{1, 2}, S = {S`}`∈I={1,...,6} is the given cell decompo-
sition from Problem 1, S̄ = {S̄l}l∈I={1,...,28} is the cell
decomposition that is the outcome of the abstraction and
atomic propositions {p1, . . . , p6} = {orange, green, blue
yellow, red, grey}. The red arrows represent both the tran-
sitions of the agent i and its neighbors. The dashed lines
indicate the edges in the network graph. For the atomic
propositions we have that Li(14) = {p1}, Li(17) =
{p5}, Li(10) = {p2}, Li(20) = {p4}, Lj1(28) = {p6} =
Lj1(27), Lj1(24) = {p5}, Lj1(22) = {p4}, Lj2(2) =
{p1}, Lj2(12) = {p2} = Lj2(5), Lj2(9) = {p3}. Note
also the diameter of the cells d̂max = dmax. For the cell

configurations we have:

Init :

li = (14, 28, 2)

lj1 = (28, 14)

lj2 = (2, 14)

Step1 :

li = (17, 27, 13)

lj1 = (27, 17)

lj2 = (13, 17)

Step2 :

li = (10, 24, 5)

lj1 = (24, 10)

lj2 = (5, 10)

Step3 :

li = (20, 22, 9)

lj1 = (22, 20)

lj2 = (9, 20)

which are actions to the corresponding transitions. The
consistent timed runs are given as

rti = (ri(0) = 14, τi(0) = 0)(ri(1) = 17, τi(1) = δt)

(ri(2) = 10, τi(2) = 2δt)(ri(3) = 20, τi(3) = 3δt)

rtj1 = (rj1(0) = 28, τj1(0) = 0)(rj1(1) = 27, τj1(1) = δt)

(rj1(2) = 24, τj1(2) = 2δt)(rj1(3) = 22, τj1(3) = 3δt)

rtj2 = (rj2(0) = 2, τj2(0) = 0)(rj2(1) = 13, τj2(1) = δt)

(rj2(2) = 5, τj2(2) = 2δt)(rj2(3) = 9, τj2(3) = 3δt).

It can be observed that rti |= (ϕi = ♦[0,6]{yellow}) if 3δt ∈
[0, 6], rtj1 |= (ϕj1 = ♦[3,10]{red}) if 2δt ∈ [3, 10] and rtj2 |=
(ϕj2 = ♦[3,9]{blue}) if 3δt ∈ [3, 9]. For δt = 1, all the
agents satisfy their goals.

i

j2

j1

dmax

22

8

15

1

S5 S4

S3S2S1

S6

δt

δt

δt

Fig. 8: Timed runs of the agents i, j1, j2

Remark 7. We chose to utilize decentralized abstractions, to
generate the individual WTSs I, i ∈ I for each agent and to
compute the synchronized-centralized product WTS Tp for
the following reasons:

1) The state space of the centralized system to be ab-
stracted is XN ⊆ RNn, which is i) harder to visualize
and handle ii) not naturally related to the individual
specifications. Thus, it is more natural to define the
specifications through the individual transition system
of each agent corresponding to a discretization of
X and then form the product to obtain the possible
consistent satisfying plans.

2) Additionally, many centralized abstraction frameworks
are based on approximations of the system’s reachable
set from a given cell over the transition time interval.

These require in the general nonlinear case global
dynamics properties and may avoid taking into account
the finer dynamics properties of the individual entities,
which can lead to more conservative estimates for large
scale systems.

D. Controller Synthesis

The proposed controller synthesis procedure is described
with the following steps:

1) N TBAs Ai, i ∈ I that accept all the timed runs satis-
fying the corresponding specification formulas ϕi, i ∈
I are constructed.

2) A Büchi WTS T̃i = Ti ⊗ Ai (see Def. 11 below)
for every i ∈ I is constructed. The accepting runs
of T̃i are the individual runs of the Ti that satisfy the
corresponding MITL formula ϕi, i ∈ I.

3) We pick a set of accepting runs {r̃t1, . . . , r̃tN} from
Step 2. We check if they are consistent according to
Def. 10. If this is true then we proceed with Step
5. If this is not true then we repeat Step 3 with a
different set of accepting runs. At worst case, the
number of repetitions that should be performed is
finite; if a consistent set of accepting runs is not
found, we proceed with the less efficient centralized,
yet complete, procedure in Step 4.

4) We create the product T̃p = Tp ⊗Ap where Ap is the
TBA that accepts all the words that satisfy the formula
ϕ = ϕ1∧ . . .∧ϕN . An accepting run r̃p of the product
is projected into the accepting runs {r̃1, . . . , r̃N}. If
there is no accepting run found in Tp ⊗ Ap, then
Problem 1 has no solution.

5) The abstraction procedure allows to find an explicit
feedback law for each transition in Ti. Therefore, an
accepting run r̃ti in Ti that takes the form of a sequence
of transitions is realized in the system in (4) via the
corresponding sequence of feedback laws.

In order to construct the Buchi WTSs T̃p and T̃i, i ∈ I that
were presented in Steps 2 and 4, we consider the following
definition:

Definition 11. Given a WTS Ti = (Si, S
init
i , Acti,−→i

, di, APi, L̂i), and a TBA Ai = (Qi, Q
init
i , Ci,

Invi, Ei, Fi, APi,Li) with |Ci| clocks and let Cmax
i be the

largest constant appearing in Ai. Then, we define their Büchi
WTS T̃i = Ti⊗Ai = (S̃i, S̃

init
i , Ãcti, i, d̃i, F̃i, APi, L̃i) as

follows:
• S̃i ⊆ {(si, qi) ∈ Si ×Qi : L̂i(si) = Li(qi)} × T|Ci|∞ .
• S̃init

i = Sinit
i ×Qinit

i × {0} × . . .× {0}︸ ︷︷ ︸
|Ci| products

.

• Ãcti = Acti.
• (q̃, Ii, q̃

′) ∈ i iff
◦ q̃ = (s, q, ν1, . . . , ν|Ci|) ∈ S̃i,
q̃′ = (s′, q′, ν′1, . . . , ν

′
|Ci|) ∈ S̃i,

◦ Ii ∈ Acti,
◦ (s, Ii, s

′) ∈−→i, and
◦ there exists γ,R, such that (q, γ,R, q′) ∈ Ei,
ν1, . . . , ν|Ci| |= γ, ν′1, . . . , ν

′
|Ci| |= Invi(q

′), and

for all i ∈ {1, . . . , |Ci|}

ν′i =

0, if ci ∈ R
νi + di(s, s

′), if ci 6∈ R and
νi + di(s, s

′) ≤ Cmax
i

∞, otherwise.

Then, d̃i(q̃, q̃′) = di(s, s
′).

• F̃i = {(si, qi, ν1, . . . , ν|Ci|) ∈ Qi : qi ∈ Fi}.
• L̃i(si, qi, ν1, . . . , ν|Ci|) = L̂i(si).

The Buchi WTS T̃p is constructed in a similar way. Each
Büchi WTS T̃i, i ∈ I is in fact a WTS with a Büchi
acceptance condition F̃i. A timed run of T̃i can be written
as r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . . using the terminology
of Def. 5. It is accepting if qi(i) ∈ F̃i for infinitely many
i ≥ 0. An accepting timed run of T̃i projects onto a timed
run of Ti that satisfies the local specification formula ϕi by
construction. Formally, the following lemma, whose proof
follows directly from the construction and and the principles
of automata-based LTL model checking (see, e.g., [45]),
holds:

Lemma 2. Consider an accepting timed run r̃ti =
(qk(0), τi(0))(qi(1), τi(1)) . . . of the Büchi WTS T̃k defined
above, where qi(k) = (ri(k), si(k), νi,1, . . . , νi,Mi) denotes
a state of T̃i, for all k ≥ 1. The timed run r̃ti projects
onto the timed run rti = (ri(0), τi(0))(ri(1), τi(1)) . . .
of the WTS Ti that produces the timed word w(rti) =
(Li(ri(0)), τi(0))(Li(ri(1)), τi(1)) . . . accepted by the TBA
Ai via its run ρi = si(0)si(1) Vice versa, if there
exists a timed run rtk = (rk(0), τk(0))(rk(1), τk(1)) . . .
of the WTS Tk that produces a timed word w(rtk) =
(Lk(rk(0)), τi(0))(Li(ri(1)), τi(1)) . . . accepted by the TBA
Ai via its run ρi = si(0)si(1) . . . then there exist the
accepting timed run r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . . of
T̃i, where qi(i) denotes (ri(k), si(k), νi,1(i), . . . , νi,Mi(k))

in T̃i.

Proposition 1. By following the procedure described in Sec.
IV-D a sequence of controllers v1, . . . , vN can be designed
(if there is a solution according to Steps 1-5) that guarantees
the satisfaction of the formulas ϕ1, . . . , ϕN of the agents
1, . . . , N respectively, governed by dynamics as in (4).

E. Complexity

Our proposed framework can handle all the expressivity of
the MITL formulas according to the semantics of Definition
6. Denote by |ϕ| the length of an MITL formula ϕ. A
TBA Ai, i ∈ I can be constructed in space and time
2O(|ϕi)|, i ∈ I. So by denoting with ϕmax = max{|ϕi}, i ∈ I
the MITL formula with the longest length we have that
the complexity of Step 1 is 2O(|ϕmax)|. The model checking
of Step 2 costs O(|Ti| · 2|ϕi|), i ∈ I where |Ti| is the
length of the WTS Ti i.e., the number of its states. Thus,
O(|Ti| · 2|ϕi|) = O(|Si| · 2|ϕi|) = O(|̂I| · 2|ϕi|). The worst
case of Step 2 costs O(|Tmax| · 2|ϕmax|) where |Tmax| is the
number of the states of the WTS which corresponds to the
longest formula ϕmax. Due to the fact that all the WTSs in

Step 2 have the same number of states, it holds that the worst
case complexity of Step 2 costs O(|̂I| · 2|ϕmax|). By denoting
with Riter the finite number of repetitions of Step 3, we have
the best case complexity as O(Riter·|̂I|·2|ϕmax|), since the Step
3 is more efficient than Step 4. The worst case complexity of
our proposed framework is when Step 4 is followed, which
is O(|̂I|N · 2|ϕmax|) where |̂I| is the number of cells of the
cell decomposition Ŝ.

x axis
-10 -5 0 5 10

y
a
x
is

-10

-8

-6

-4

-2

0

2

4

6

8

10

Agent 1

Agent 2

Agent 3

Set X

Goal Ag.1

Goal Ag.2

Goal Ag.3

Fig. 9: Space discretization, goal regions and reachable sets
for each agent in a time horizon of 11δt steps

V. SIMULATION RESULTS

For a simulation example, a system of three agents with
xi ∈ R2, i ∈ I = {1, 2, 3}, E = {{1, 2}, {2, 3}},N (1) =
{2} = N (3),N (2) = {1, 3} is considered. Their dynamics
are given as ẋ1 = x2 − x1 + v1, ẋ2 = x1 + x3 − 2x2 + v2

and ẋ3 = x2 − x3 + v3. The simulation parameters are set
to R̄ = 10,M = 20, vmax = 10, L1 =

√
2, L2 = 2, δt = 0.2.

The time step δt is chosen during the abstraction process
according to the formulas (21), (22) and it is not chosen
with reference to satisfaction of the MITL formulas. The
workspace [−10, 10] × [−10, 10] ⊆ R2 is partitioned into
cells and the initial agents’ positions are set to (−6, 0), (0, 6)
and (6, 0) respectively. The specification formulas are set
to ϕ1 = ♦[0.5,1.7]{green}, ϕ2 = ♦[1.0,1.4]{orange}, ϕ3 =
♦[0.7,1.8]{black} respectively and their corresponding TBAs
are given in Fig. 3. The abstraction presented in this pa-
per, the reachable cells of each agent as well as the goal
regions are depicted in Fig. 9. It can be observed that not
all the individual runs satisfy the desired specification. By
applying the five-step controller synthesis procedure that was
presented in Sec. IV, the individual run of each agent satisfy
the formulas ϕ1, ϕ2 and ϕ3 in 6δt, 6δt and 5δt respectively.
The simulation is performed in a horizon of 11δt steps (as
the steps that explained in the Example 6). The product WTS

has 45 × 104 states. The simulations were carried out in
MATLAB Environment on a desktop with 8 cores, 3.60GHz
CPU and 16GB of RAM.

VI. CONCLUSIONS AND FUTURE WORK

A systematic method of both abstraction and controller
synthesis of dynamically coupled multi-agent path-planning
has been proposed, in which timed constraints of fulfilling
a high-level specification are imposed to the system. The
solution involves initially a boundedness analysis and sec-
ondly the abstraction of each agent’s motion into WTSs and
automata construction. The simulation example demonstrates
our solution approach. Future work includes further compu-
tational improvement of the abstraction method and more
complicated high-level tasks being imposed to the agents in
order to exploit the expressiveness of MITL formulas.

REFERENCES

[1] W. Ren and R. Beard, “Consensus Seeking in Multi-Agent Systems
Under Dynamically Changing Interaction Topologies,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[2] R. Olfati-Saber and R. Murray, “Consensus Problems in Networks of
Agents with Switching Topology and Time-Delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[3] A. Jadbabaie, J. Lin, and S. Morse, “Coordination of Groups of
Mobile Autonomous Agents Using Nearest Neighbor Rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] G. Shi and K. Johansson, “Robust Consensus for Continuous-Time
Multi-Agent Dynamics,” SIAM Journal on Control and Optimization,
vol. 51, no. 5, pp. 3673–3691, 2013.

[5] H. Tanner, A. Jadbabaie, and G. Pappas, “Flocking in Fixed and
Switching Networks,” IEEE Transactions on Automatic Control,
vol. 52, no. 5, pp. 863–868, 2007.

[6] M. Egerstedt and X. Hu, “Formation Constrained Multi-Agent Con-
trol,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6,
pp. 947–951, 2001.

[7] M. Zavlanos and G. Pappas, “Distributed Connectivity Control of
Mobile Networks,” IEEE Transactions on Robotics, vol. 24, no. 6,
pp. 1416–1428, 2008.

[8] S. Loizou and K. Kyriakopoulos, “Automatic Synthesis of Multi-Agent
Motion Tasks Based on LTL Specifications,” 43rd IEEE Conference
on Decision and Control (CDC 2004), vol. 1, pp. 153–158, 2004.

[9] M. Guo and D. Dimarogonas, “Multi-Agent Plan Reconfiguration Un-
der Local LTL Specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[10] S. Karaman and E. Frazzoli, “Linear Temporal Logic Vehicle Routing
with Applications to Multi-UAV Mission Planning,” International
Journal of Robust and Nonlinear Control, vol. 21, no. 12, pp. 1372–
1395, 2011.

[11] Y. Chen, Ding, X. Chu, A. Stefanescu, and C. Belta, “Formal Approach
to the Deployment of Distributed Robotic Teams,” IEEE Transactions
on Robotics, vol. 28, no. 1, pp. 158–171, 2012.

[12] M. Kloetzer, X. C. Ding, and C. Belta, “Multi-Robot Deployment
from LTL Specifications with Reduced Communication,” 50th IEEE
Conference on Decision and Control (CDC 2011), pp. 4867–4872,
2011.

[13] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-Logic-
Based Reactive Mission and Motion Planning,” IEEE Transactions
on Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[14] A. Ulusoy, S. Smith, X. Ding, C. Belta, and D. Rus, “Optimality
and Robustness in Multi-Robot Path Planning with Temporal Logic
Constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[15] M. Quottrup, T. Bak, and R. Zamanabadi, “Multi-Robot Planning:
A Timed Automata Approach,” IEEE International Conference on
Robotics and Automation (ICRA 2004), vol. 5, pp. 4417–4422, 2004.

[16] A. Ulusoy, S. Smith, X. Ding, C. Belta, and D. Rus, “Optimal Multi
- Robot Path Planning with Temporal Logic Constraints,” IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2011), pp. 3087–3092, 2011.

[17] J. Liu and P. Prabhakar, “Switching Control of Dynamical Systems
from Metric Temporal Logic Specifications,” IEEE International Con-
ference on Robotics and Automation (ICRA 2014), pp. 5333–5338,
2014.

[18] V. Raman, A. Donzé, D. Sadigh, R. Murray, and S. Seshia, “Reactive
Synthesis from Signal Temporal Logic Specifications,” 18th Inter-
national Conference on Hybrid Systems: Computation and Control
(HSCC 2015), pp. 239–248, 2015.

[19] Y. Zhou, D. Maity, and J. S. Baras, “Timed Automata Approach for
Motion Planning Using Metric Interval Temporal Logic,” European
Control Conference (ECC 2016), 2016.

[20] J. Fu and U. Topcu, “Computational Methods for Stochastic Control
with Metric Interval Temporal Logic Specifications,” 54th IEEE Con-
ference on Decision and Control (CDC 2015), pp. 7440–7447, 2015.

[21] B. Hoxha and G. Fainekos, “Planning in Dynamic Environments
Through Temporal Logic Monitoring,” 2016.

[22] S. Karaman and E. Frazzoli, “Vehicle Routing Problem with Metric
Temporal Logic Specifications,” 47th IEEE Conference on Decision
and Control (CDC 2008), pp. 3953–3958, 2008.

[23] A. Nikou, J. Tumova, and D. Dimarogonas, “Cooperative Task Plan-
ning of Multi-Agent Systems Under Timed Temporal Specifications,”
American Control Conference (ACC 2016), pp. 13–19, 2016.

[24] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete
Abstractions of Hybrid Systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, 2000.

[25] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic Models
for Nonlinear Control Systems without Stability Assumptions,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, 2012.

[26] E. A. Gol and C. Belta, “Time-Constrained Temporal Logic Control
of Multi-Affine Systems,” Nonlinear Analysis: Hybrid Systems, 2013.

[27] J. Liu and N. Ozay, “Finite Abstractions With Robustness Margins
for Temporal Logic-Based Control Synthesis,” Nonlinear Analysis:
Hybrid Systems, vol. 22, pp. 1–15, 2016.

[28] M. Zamani, M. Mazo, and A. Abate, “Finite Abstractions of Net-
worked Control Systems,” 53rd IEEE Conference on Decision and
Control (CDC 2014), pp. 95–100, 2014.

[29] M. Rungger and M. Zamani, “Compositional Construction of Approxi-
mate Abstractions,” 18th International Conference on Hybrid Systems:
Computation and Control (HSCC 2015), pp. 68–77, 2015.

[30] E. Dallal and P. Tabuada, “On Compositional Symbolic Controller
Synthesis Inspired by Small-Gain Theorems,” 54th IEEE Conference
on Decision and Control (CDC), pp. 6133–6138, 2015.

[31] G. Pola, P. Pepe, and M. D. D. Benedetto, “Symbolic Models for
Networks of Control Systems,” IEEE Transactions on Automatic
Control, 2016.

[32] D. Boskos and D. Dimarogonas, “Decentralized Abstractions For
Multi-Agent Systems Under Coupled Constraints,” 54th IEEE Con-
ference on Decision and Control (CDC 2015), pp. 282–287, 2015.

[33] M. Mesbahi and M. Egerstedt, “Graph Theoretic Methods in Multia-
gent Networks,” 2010.

[34] R. Alur and D. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[35] D. D. Souza and P. Prabhakar, “On the Expressiveness of MTL in
the Pointwise and Continuous Semantics,” International Journal on
Software Tools for Technology Transfer, vol. 9, no. 1, pp. 1–4, 2007.

[36] J. Ouaknine and J. Worrell, “On the Decidability of Metric Temporal
Logic,” 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’05), pp. 188–197, 2005.

[37] R. Alur, T. Feder, and T. A. Henzinger, “The Benefits of Relaxing
Punctuality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–
146, 1996.

[38] M. Reynolds, “Metric Temporal Logics and Deterministic Timed
Automata,” 2010.

[39] P. Bouyer, “From Qualitative to Quantitative Analysis of Timed
Systems,” Mémoire dhabilitation, Université Paris, vol. 7, pp. 135–
175, 2009.

[40] S. Tripakis, “Checking Timed Buchi Automata Emptiness on Simu-
lation Graphs,” ACM Transactions on Computational Logic (TOCL),
vol. 10, no. 3, 2009.

[41] O. Maler, D. Nickovic, and A. Pnueli, “From MITL to Timed Au-
tomata,” International Conference on Formal Modeling and Analysis
of Timed Systems, pp. 274–289, 2006.

[42] D. Ničković and N. Piterman, “From MTL to Deterministic Timed
Automata,” Formal Modeling and Analysis of Timed Systems, 2010.

[43] D. Boskos and D. Dimarogonas, “Robust Connectivity Analysis for
Multi-Agent Systems,” 54th IEEE Conference on Decision and Con-
trol (CDC 2015), pp. 6767–6772, 2015.

[44] M. M. Fiedler, “Algebraic Connectivity of Graphs,” Czechoslovak
Mathematical Journal, vol. 23, no. 2, pp. 298–305, 1973.

[45] C. Baier, J. Katoen, and K. G. Larsen, Principles of Model Checking.
MIT Press, 2008.

