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Abstract— We propose two novel dynamic event-triggered
control laws to solve the average consensus problem for first-
order continuous-time multi-agent systems over undirected
graphs. Compared with most existing triggering laws, the
proposed laws involve internal dynamic variables, which play
an essential role in guaranteeing that the triggering time se-
quence does not exhibit Zeno behavior. Moreover, some existing
triggering laws are special cases of ours. For the proposed self-
triggered algorithm, continuous agent listening is avoided as
each agent predicts its next triggering time and broadcasts it
to its neighbors at the current triggering time. Thus, each agent
only needs to sense and broadcast at its triggering times, and to
listen to and receive incoming information from its neighbors at
their triggering times. It is proved that the proposed triggering
laws make the state of each agent converge exponentially to the
average of the agents’ initial states if and only if the underlying
graph is connected. Numerical simulations are provided to
illustrate the effectiveness of the theoretical results.

Index Terms—Consensus, dynamic event-triggered control,
multi-agent systems, self-triggered control.

I. INTRODUCTION

The average consensus problem involves a group of agents
in a network who seeks the average of a set of network-
wide measurements or states. It has been widely investigated
because its many applications in sensor networks, mobile
robots, autonomous underwater vehicles, and unmanned air
vehicles, e.g., [1] and the references therein. In these papers,
agents have continuous-time dynamics and actuation. How-
ever, in practice, typically agents communicate with their
neighbors and take actions at discrete time points. There
are also many papers that study agents with discrete-time
dynamics or continuous-time dynamics but discontinuous
information transmission, e.g., [2], [3]. In these papers,
time-triggered sampling is used to determine when agents
should establish communication with its neighbors, and is
often implemented by periodic sampling. A nice feature of
such a model is that analysis and design becomes rather
straightforward and the vast literature on sample-data control
can be used [4]. Drawbacks are that agents need to take
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action in a synchronous manner, which is often hard to
implement when the number of agents is large, and it is
not energy-efficient to communicate when the state has not
changed much.

Event-triggered sampling has been proposed for single-
agent systems [5]–[7]. The concept was originally extended
to multi-agent systems in [8]. In event-triggered multi-agent
systems actuation updates and inter-agent communications
occur only when some specific events are triggered, for
instance, a measure of the state error exceeds a specified
threshold. The control is often constant between any two con-
secutive triggering times. Many researchers studied event-
triggered control for multi-agent systems recently [8]–[18].
A key challenge is how to design triggering laws to determine
the corresponding triggering times, while excluding Zeno
behavior, i.e., infinite number of triggers in a finite time
interval [19].

To overcome the drawback of continuous monitoring
of the triggering law, self-triggered control were proposed
for single-agent systems [20]–[22]. Many researchers have
investigated self-triggered control for multi-agent systems
[8], [14], [17]. For self-triggered single-agent systems, the
next triggering time is determined at the previous triggering
instance. However, the self-triggered approaches for multi-
agent systems mentioned above are not in accordance with
this. Although continuous sensing of each agent’s own and
neighbors’ states is avoided in these papers, continuous
listening is still needed since the triggering times are deter-
mined during runtime and not known in advance. To over-
come this drawback, some researchers introduced local clock
variables in the self-triggering policy [23], others combined
event-triggered control with periodic sampling [11], [13],
[24], and some proposed cloud-supported algorithms [25].
By introducing an internal dynamic variable, a new class
of event-triggering mechanisms was presented in [26] and
later extended to a discrete-time setting in [27]. The idea of
using internal dynamic variables in event- and self-triggered
control can also be found in [23], [24], [28], [29]. In this
paper, we make essential modifications to the dynamic event-
triggering mechanism for single-agent systems in [26] and
extend it to multi-agent systems.

The main contribution of this paper in the introduction and
convergence analysis of dynamic event- and self-triggered
control laws for multi-agent systems. The control laws are
truly distributed in the sense that they do not require any
a priori knowledge of global network parameters. We prove
that the proposed dynamic triggering laws yield consensus
exponentially fast, and we show that they are free from Zeno



behavior by verifying that the triggering time sequence of
each agent is divergent. We show also that the triggering
laws in [9], [10] are special cases of our event-triggered law.
The main disadvantage of the event-triggered law is that
continuous sensing and listening are needed. To overcome
this, we present a self-triggered control law. The main idea
to avoid continuous listening is that each agent predicts its
next triggering time and broadcasts it to its neighbors at the
current triggering time. As a result, each agent only needs to
sense and broadcast at its triggering times, and to listen to
and receive incoming information from its neighbors at their
triggering times. This is to say that, in terms of avoiding
continuous listening, our self-triggered algorithm improves
the ones in [8], [14], [17] and other papers using a similar
approach. Although continuous sensing, broadcasting, listen-
ing, and receiving are also avoided in [11], [13], [24] by
combining event-triggered control with periodic sampling,
the additional periodic sensing and listening are still needed.
Moreover, it is not clear how to show that the average inter-
event time is strictly larger than the required sampling period.
Our self-triggered control law is reminiscent of the event-
triggered cloud access in [25]. The main difference is that
we do not need the cloud to store data and we use different
analysis techniques.

The rest of this paper is organized as follows. Section II
introduces the necessary preliminaries. The main average
consensus convergence results on dynamic event- and self-
triggered control (Theorems 1 and 2) are stated in Sections
III and IV, respectively. Simulations are given in Section V.
Finally, the paper is concluded in Section VI.
Notations: R and Rn denote the set of real numbers and
n-dimensional column vectors. ‖ ·‖ represents the Euclidean
norm for vectors or the induced 2-norm for matrices. 1n
denotes the column vector with each component being 1
and dimension n. In is the n-dimensional identity matrix.
ρ2(·) indicates the minimum positive eigenvalue for matrices
having positive eigenvalues. Given two symmetric matrices
M,N , M ≥ N means M −N is positive semi-definite. |S|
is the cardinality of a set S.

II. PRELIMINARIES

In this section, we present some definitions from algebraic
graph theory [30] and the considered multi-agent system
model.

A. Algebraic Graph Theory

Let G = (V, E , A) denote a weighted undirected graph
with the set of agents (vertices or nodes) V = {v1, . . . , vn},
the set of links (edges) E ⊆ V × V , and the (weighted)
adjacency matrix A = A> = (aij) with nonnegative
elements aij . A link of G is denoted by (vi, vj) ∈ E and
exists if aij > 0, i.e., if agents vi and vj can communicate
with each other. It is assumed that aii = 0 for all i ∈ I,
where I = {1, . . . , n}. Let Ni = {j ∈ I | aij > 0} and

degi =
n∑
j=1

aij denote the neighbor index set and weighted

degree of agent vi, respectively. The degree matrix of G
is Deg = diag([deg1, . . . ,degn]). The Laplacian matrix

is L = (Lij) = Deg−A. A path of length k between
agent vi and agent vj is a subgraph with distinct agents
vi0 = vi, . . . , vik = vj ∈ V and edges (vil , vil+1

) ∈ E , l =
0, . . . , k−1. An undirected graph is connected if there exists
at least one path between any two agents.

For a connected graph we have the following results.
Lemma 1: ( [16], [30]) If a graph G is connected, then its

Laplacian matrix L is positive semi-definite, i.e., z>Lz ≥ 0
for any z ∈ Rn. Moreover, z>Lz = 0 if and only if z = a1n

for some a ∈ R. Finally, we have 0 ≤ ρ2(L)Kn ≤ L, where
Kn = In − 1

n1n1
>
n .

B. System Model

We consider a set of n agents modelled as single integra-
tors

ẋi(t) = ui(t), i ∈ I, t ≥ 0, (1)

where xi(t) ∈ R is the state and ui(t) ∈ R is the control
input.

The classical distributed consensus protocol is given by
ui(t) = −

∑n
j=1 Lijxj(t) [1]. To implement such a consen-

sus protocol, continuous-time state information from neigh-
bors is needed. However, it is often impractical to require
continuous communication in physical applications. In order
to avoid continuous communication in our setting, each
agent broadcasts its state information only at discrete time
instances {tik}∞k=1 and uses the following event-triggered
consensus protocol

ui(t) = −
n∑
j=1

Lij x̂j(t), (2)

where x̂j(t) ≡ xj(tjk), t ∈ [tjk, t
j
k+1). We call the increasing

time sequences {tik}∞k=1 and {tik+1 − tik}∞k=1 the triggering
times and the inter-event times of agent i, respectively. Note
that the control protocol (2) only updates at the triggering
times and is constant between any two consecutive triggering
times. To simplify notation, let x(t) = [x1(t), . . . , xn(t)]>,
x̂(t) = [x̂1(t), . . . , x̂n(t)]>, ei(t) = x̂i(t)−xi(t), and e(t) =
[e1(t), . . . , en(t)]> = x̂(t)− x(t).

Our goal in this paper is to propose methods to determine
the triggering times such that average consensus is reached,
while avoiding continuous exchange of information, contin-
uous update of actuators, and Zeno behavior.

III. DYNAMIC EVENT-TRIGGERED CONTROL
LAW

In this section, we propose a dynamic event-triggered
control law to achieve average consensus. We first give the
following well-known lemma, e.g., [8].

Lemma 2: Consider the multi-agent system (1)–(2). Sup-
pose that the underlying graph G is undirected. The average
of all agents’ states x̄(t) = 1

n

∑n
i=1 xi(t) is constant, i.e.,

x̄(t) ≡ x̄(0),∀t ≥ 0.
We next introduce a static event-triggered control law to

determine the triggering times and show that it achieves
average consensus.

Proposition 1: Consider the multi-agent system (1)–(2).
Suppose that the underlying graph G is undirected. Given the



first triggering time ti1 = 0, agent vi determines the triggering
time sequence {tik}∞k=2 by

ti1 =0, tik+1=max
r≥tik

{
r : e2i (t)≤

σi
2Lii

q̂i(t),∀t ∈ [tik, r]
}
, (3)

where σi ∈ (0, 1) is a design parameter that can be arbitrarily
chosen, and

q̂i(t) = −1

2

n∑
j=1

Lij(x̂j(t)− x̂i(t))2 ≥ 0. (4)

Then, average consensus is achieved exponentially if and
only if G is connected.

Proof: The necessity is straightforward so we only
prove sufficiency here. Consider the Lyapunov function
candidate

V (x(t)) =
1

2
x>(t)Knx(t) =

1

2

n∑
i=1

[xi(t)− x̄(0)]2, (5)

where Kn = In − 1
n1n1

>
n and the last equality holds from

Lemma 2. The derivative of V (x(t)) along the trajectories
of (1)–(2) satisfies

V̇ (x(t)) =

n∑
i=1

[xi(t)− x̄(0)]ẋi(t) =

n∑
i=1

xi(t)

n∑
j=1

−Lij x̂j(t)

=−
n∑
i=1

(x̂i(t)− ei(t))
n∑
j=1

Lij x̂j(t)

=−
n∑
i=1

q̂i(t)−
n∑
i=1

n∑
j=1

ei(t)Lij x̂j(t) (6)

=−
n∑
i=1

q̂i(t)−
n∑
i=1

n∑
j=1,j 6=i

ei(t)Lij(x̂j(t)− x̂i(t))

≤−
n∑
i=1

q̂i(t)−
n∑
i=1

n∑
j=1,j 6=i

Lije
2
i (t)

−
n∑
i=1

n∑
j=1,j 6=i

Lij
1

4
(x̂j(t)− x̂i(t))2

=−
n∑
i=1

1

2
q̂i(t) +

n∑
i=1

Liie
2
i (t), (7)

where the equalities (6) and (7) hold since
n∑
i=1

q̂i(t) = −
n∑
i=1

1

2

n∑
j=1

Lij(x̂j(t)− x̂i(t))2 = x̂>(t)Lx̂(t),

and the inequality holds since ab ≤ a2 + 1
4b

2, ∀a, b ∈ R.
Then, from (7) and (3), we have

V̇ (x(t)) ≤ −
n∑
i=1

1

2
q̂i(t) +

n∑
i=1

Liie
2
i (t)

≤ −1

2
(1− σmax)x̂>(t)Lx̂(t), (8)

where σmax = max{σ1, . . . , σn} < 1. Noting that
x>(t)Lx(t) = (x̂(t) + e(t))>L(x̂(t) + e(t))

≤ 2x̂>(t)Lx̂(t) + 2e>(t)Le(t)

≤ 2x̂>(t)Lx̂(t) +
‖L‖σmax

mini{Lii}

n∑
i=1

q̂i(t)

=
(

2 +
‖L‖σmax

mini{Lii}

)
x̂>(t)Lx̂(t), (9)

where the first inequality holds since L is positive semi-
definite and 2a>Lb ≤ a>La + b>Lb,∀a, b ∈ Rn, and the
second inequality holds since a>La ≤ ‖L‖‖a‖2,∀a ∈ Rn,
and (3). We then have

V̇ (x(t)) ≤ − (1− σmax) mini{Lii}
4 mini{Lii}+ 2‖L‖σmax

x>(t)Lx(t)

≤ − (1− σmax) mini{Lii}ρ2(L)

2 mini{Lii}+ ‖L‖σmax
V (x(t)),

where the last inequality holds due to Lemma 1. Hence,

V (x(t)) ≤V (x(0)) exp
(
− (1− σmax) mini{Lii}ρ2(L)t

2 mini{Lii}+ ‖L‖σmax

)
,

∀t ≥ 0. (10)

This implies that the multi-agent system (1)–(2) reaches con-
sensus exponentially, as the underlying graph G is connected.

Remark 1: We refer to (3) as a static triggering law
since it does not involve any extra dynamic variables more
than xi(t), x̂i(t) and x̂j(t), j ∈ Ni. The triggering law is
distributed since each agent’s control action only depends on
its own state information and its neighbors’ state information,
without any a prior knowledge of any global parameters, such
as the eigenvalues of the Laplacian matrix.

Remark 2: If we consider the same graph as in [8],
i.e., aij = 1 if (i, j) ∈ E , then Lii = |Ni|. S-
ince a(1 − a|Ni|) ≤ 1

4|Ni| , ∀a ∈ (0, 1
|Ni| ) and

(
∑n
j=1(x̂j(t)− x̂i(t)))2 ≤ 2|Ni|

∑n
j=1(x̂j(t)− x̂i(t))2, we

have σia(1−a|Ni|)
|Ni| (

∑n
j=1(x̂j(t) − x̂i(t)))

2 ≤ σi
2|Ni| q̂i(t). In

other words, the distributed triggering law (6) proposed in
[9] is a special case of the static triggering law (3).

Remark 3: The main purpose of using event-triggered
control is to reduce the overall need of actuation updates
and communication between agents, so it is essential to
exclude Zeno behavior. However, in [13] it is argued that
the distributed triggering law (6) in [9] “does not discard the
possibility of an infinite number of events happening in a
finite time period”. Zeno behavior may also not be excluded
under the static triggering law (3). In the following, in order
to explicitly exclude Zeno behavior, we replace the static
triggering law (3) by a dynamic one.

Inspired by [26], we propose the following internal dy-
namic variable χi to agent vi:
χ̇i(t) = −βiχi(t) + δi(

σi
2
q̂i(t)− Liie2i (t)), i ∈ I (11)

where χi(0) > 0, βi > 0, δi ∈ [0, 1], and σi ∈ [0, 1) are
design parameters that can be arbitrarily chosen. This dynam-
ics leads to the event-triggered control law and convergence
result stated in the following theorem.

Theorem 1: Consider the multi-agent system (1)–(2). Sup-
pose that the underlying graph G is undirected. Given θi >
1−δi
βi

and the first triggering time ti1 = 0, agent vi determines
the triggering time sequence {tik}∞k=2 by

tik+1=max
r≥tik

{
r : θi

(
Liie

2
i (t)−

σi
2
q̂i(t)

)
≤χi(t),∀t ∈ [tik, r]

}
(12)



with q̂i(t) and χi(t) defined in (4) and (11), respectively.
Then, (i) average consensus is achieved exponentially if and
only if G is connected; and (ii) there is no Zeno behavior.

Proof: (i) The necessity is straightforward so we only
prove sufficiency here. From (11) and (12), we have χ̇i(t) ≥
−βiχi(t)− δi

θi
χi(t), ∀t ≥ 0. Thus

χi(t) ≥ χi(0)e
−(βi+

δi
θi

)t
> 0, ∀t ≥ 0. (13)

Consider the Lyapunov function candidate

F (x(t), χ(t)) = V (x(t)) +

n∑
i=1

χi(t),

where V (x(t)) is defined in (5) and χ(t) =
[χ1(t), . . . , χn(t)]>. Then the derivative of F (x(t), χ(t))
along the trajectories of the multi-agent system (1)–(2) and
with (11) satisfies

Ḟ (x(t), χ(t)) = V̇ (x(t)) +

n∑
i=1

χ̇i(t)

≤−
n∑
i=1

1

2
q̂i(t) +

n∑
i=1

Liie
2
i (t)−

n∑
i=1

βiχi(t)

+

n∑
i=1

δi(
σi
2
q̂i(t)− Liie2i (t))

=−
n∑
i=1

1

2
(1− σi)q̂i(t)−

n∑
i=1

βiχi(t)

+

n∑
i=1

(δi − 1)(
σi
2
q̂i(t)− Liie2i (t))

≤−
n∑
i=1

1

2
(1− σi)q̂i(t)−

n∑
i=1

βiχi(t) +

n∑
i=1

1− δi
θi

χi(t)

=−
n∑
i=1

1

2
(1− σi)q̂i(t)−

n∑
i=1

(
βi −

1− δi
θi

)
χi(t)

≤− (1− σmax)

n∑
i=1

1

2
q̂i(t)− k1

n∑
i=1

χi(t)

=− 1

2
(1− σmax)x̂>(t)Lx̂(t)− k1

n∑
i=1

χi(t),

where k1 = mini∈I{βi − 1−ξi
θi
} > 0. Similar to the

derivation of (9), we have

x>(t)Lx(t) ≤ 2x̂>(t)Lx̂(t) + 2‖L‖‖e(t)‖2

≤2x̂>(t)Lx̂(t) +
‖L‖σmax

mini{Lii}

n∑
i=1

q̂i(t)

+
2‖L‖

mini{θiLii}

n∑
i=1

χi(t)

=
(

2 +
‖L‖σmax

mini{Lii}

)
x̂>(t)Lx̂(t) +

2‖L‖
mini{θiLii}

n∑
i=1

χi(t)

≤k2x̂>(t)Lx̂(t) +
2‖L‖

mini{θiLii}

n∑
i=1

χi(t),

where k2 = max

{
2 + ‖L‖σmax

mini Lii
, 2(1−σmax)‖L‖
kdmini{θiLii}

}
. Then,

− 1

2
(1− σmax)x̂>(t)Lx̂(t)

≤ − 1

2k2
(1− σmax)x>(t)Lx(t) +

k1
2

n∑
i=1

χi(t).

Thus,

Ḟ (x(t), χ(t))

≤− 1

2k2
(1− σmax)x>(t)Lx(t)− k1

2

n∑
i=1

χi(t)

≤− ρ2(L)

2k2
(1− σmax)x>(t)Knx(t)− k1

2

n∑
i=1

χi(t)

=− ρ2(L)

k2
(1− σmax)V (t)− k1

2

n∑
i=1

χi(t)

≤k3F (x(t), χ(t)),

where k3 = min
{
ρ2(L)
k2

(1− σmax), k1
2

}
. Hence,

V (x(t)) < F (x(t), χ(t)) ≤ F (x(0), χ(0))e−k3t, ∀t ≥ 0.
(14)

This implies that (1)–(2) reaches average consensus expo-
nentially.

(ii) Next, we prove that by contradiction there is no Zeno
behavior. Suppose there exists Zeno behavior. Then there
exists an agent vi, such that limk→+∞ tik = T0, where T0 is
a positive constant.

From (14), we know that there exists a positive constant
M0 > 0 such that |xi(t)| ≤ M0 for all t ≥ 0 and i =
1, . . . , n. Then, we have |ui(t)| ≤ 2M0Lii, ∀t ≥ 0. Let

ε0 =

√
χi(0)

4
√
θiL3

iiM0

e
− 1

2 (βi+
δi
θi

)T0 > 0. Then from the property

of limits, there exists a positive integer N(ε0) such that

tik ∈ [T0 − ε0, T0], ∀k ≥ N(ε0). (15)

Noting that q̂i(t) ≥ 0 and (13) holds, we can conclude that
one sufficient condition to guarantee that the inequality in
(12) holds is

|x̂i(t)− xi(t)| ≤

√
χi(0)

θiLii
e
− 1

2 (βi+
δi
θi

)t
. (16)

Again, noting that |ẋi(t)| = |ui(t)| ≤ 2M0Lii and |x̂i(tik)−
xi(t

i
k)| = 0 for any triggering time tik, we can conclude that

one sufficient condition to guarantee that the above inequality
holds is

(t− tik)2M0Lii ≤
√
χi(0)√
θiLii

e
− 1

2 (βi+
δi
θi

)t
. (17)

Now suppose that the N(ε0)-th triggering time of vi, tiN(ε0)
,

has been determined. Let tiN(ε0)+1 and t̃iN(ε0)+1 denote the
next triggering time determined by (12) and (17), respective-
ly. Then

tiN(ε0)+1 − t
i
N(ε0)

≥ t̃iN(ε0)+1 − t
i
N(ε0)



=

√
χi(0)

2
√
θiL3

iiM0

e
− 1

2 (βi+
δi
θi

)t̃iN(ε0)+1

≥
√
χi(0)

2
√
θiL3

iiM0

e
− 1

2 (βi+
δi
θi

)T0 = 2ε0, (18)

which contradicts (15). Therefore, Zeno behavior is exclud-
ed.

Remark 4: We refer to (12) as a dynamic triggering law
since it involves the extra dynamic variable χi(t). Similar
to the static triggering law (3), it is also truly distributed
in its implementation as no global network parameters are
needed. The static triggering law (3) can be seen as a limit
case of the dynamic triggering law (12) when θi grows large.
Thus, from the analysis in Remark 2, we can conclude that
the distributed triggering law (6) proposed in [9] is a special
case of the dynamic triggering law (12).

Remark 5: If we choose ξi = 0 in (11) and σi = 0 in
(12), then χi(t) = χi(0)e−βit and now the inequality in

(12) becomes |ei(t)| ≤
√
χi(0)√
θiLii

e−
βi
2 t. This is the triggering

function (7) proposed in [10] with c0 = 0, c1 =

√
ηi(0)√
θiLii

, α =
βi
2 . However, we do not need the constraint α < ρ2(L) to

hold, which necessary for the analysis in [10].
Remark 6: If we choose βi large enough, then k3 =

(1−σmax)mini{Lii}ρ2(L)
2mini{Lii}+‖L‖σmax

. Hence, in this case, from (10) and
(14), we know that the trajectories of the multi-agent system
(1)–(2) under static triggering law (3) and dynamic triggering
law (12) have the same guaranteed decay rate given by (10).

Remark 7: Intuitively, from (13), one can conclude that
the larger χi(0) the larger the inter-event time. This is also
consistent with the definition of ε0 in the proof. How do
those design parameters χi(0), βi, ξi, σi, θi affect the inter-
event times and decay rate in general is unclear. We leave
this as future study.

Remark 8: In addition to the event-triggered control laws
in [9], [10], with some modifications, the laws in [11]–[14],
[16], [17], can most likely also be extended to dynamic cases.
We leave this for future study.

IV. SELF-TRIGGERED CONTROL LAW
When applying the dynamic triggering law (12) in The-

orem 1, agent vi needs to continuously sense its own state
since it has to continuously check the triggering law (12)
and continuously listen to xj(t

j
k), k = 1, 2, . . . , j ∈ Ni,

since it does not know the triggering times of its neighbors,
tjk, k = 1, 2, . . . , j ∈ Ni, in advance. The way to avoid
continuous sensing is straightforward since the control input
of each agent is piecewise constant so the state of each
agent can be easily predicted as shown in (19) below. The
challenge is to avoid continuous listening. If every agent
vi ∈ V , at its current triggering time tik, can predict its next
triggering time tik+1 and broadcast it to its neighbors, then at
time tik agent vi knows agent vj’s, j ∈ Ni, latest triggering
time tj

kj(tik)
, which is before tik, and its next triggering time

tj
kj(tik)+1

which is after tik. In this case, agent vi only needs to

listen to and receive information at {tjk}∞k=1, j ∈ Ni, since it
knows these time instants in advance. Moreover, each agent

only needs to broadcast at its own triggering times, and to
listen to incoming information from its neighbors at their
triggering times. Inspired by the reasoning, in the following
we propose an algorithm such that at time tik each agent vi
could determine tik+1 in advance. The idea is illustrated as
follows.

Let tjkj(t) = max{tjk : tjk ≤ t}. From ẋi(t) = ui(t) =

−
∑n
j=1 Lijxj(t

j
kj(t)

) = −
∑n
j=1 Lijuij(t) with uij(t) =

xj(t
j
kj(t)

)− xi(tiki(t)), we have

xi(t) = xi(t
i
k)−

∫ t

tik

n∑
j=1

Lijuij(s)ds, t ∈ [tik, t
i
k+1). (19)

Thus for t ∈ [tik, t
i
k+1), we have

|ei(t)| = |xi(tik)− xi(t)| =
∣∣∣∣ n∑
j=1

∫ t

tik

Lijuij(s)ds

∣∣∣∣. (20)

Here we need to highlight that uij(t) may not be constant for
all t ∈ [tik, t

i
k+1) since xj(t

j
kj(t)

) may not be constant in the
same interval due to that agent vj may trigger at some time
instants in this interval. So at time tik, we do not know the
value of |ei(t)| for all t ∈ (tik, t

i
k+1) in advance. However, if

at time tik we could estimate the upper bound of uij(t), then
we could estimate the upper bound of |ei(t)|. Consequently,
we could estimate tik+1 at time tik.

In order to estimate the upper bound of uij(t), we first
need to simplify the dynamic triggering law (12) in Theo-
rem 1. Just as Remark 5 pointed out, if we choose ξi = 0
in (11) and σi = 0 in (12), then χi(t) = χi(0)e−βit,
so the inequality in (12) becomes |ei(t)| ≤ αie

− βi2 t with

αi =

√
χi(0)√
θiLii

> 0. Here αi can be chosen as any positive
real number, since χi(0) can be chosen as any positive real
number. Then from Theorem 1 and the reasoning above, we
derive the following corollary.

Corollary 1: Consider the multi-agent system (1)–(2).
Suppose that the underlying graph G is undirected and
connected. Given α > 0, β > 0 and the first triggering time
ti1 = 0, agent vi determines the triggering time sequence
{tik}∞k=2 by

tik+1 = max
r≥tik

{
r : |ei(t)| ≤

α√
Lii

e−
β
2 t, ∀t ∈ [tik, r]

}
. (21)

Then, (i) average consensus is achieved exponentially if and
only if G is connected; and (ii) there is no Zeno behavior.

Remark 9: The design parameters α and β can be dis-
tributively chosen for each agent in the above corollary, so α
and β in (21) could be replaced by αi and βi. Their effects on
inter-event times and decay rate are not clear. The reason that
we require every agent to choose the same design parameters
here is that it gives a simpler self-triggered control law in
the following.

Next, let us estimate |xi(t) − xj(t)| which will be used
later. Consider again V (x(t)) defined in (5) and similar to
the derivation process to get (7), we have

V̇ (x(t)) =

n∑
i=1

[xi(t)− x̄(0)]ẋi(t)



=−
n∑
i=1

xi(t)

n∑
j=1

Lij(xj(t) + ej(t))

≤−
n∑
i=1

1

2
qi(t) +

n∑
i=1

Liie
2
i (t), (22)

where qi(t) = − 1
2

∑n
j=1 Lij(xj(t)− xi(t))2 ≥ 0.From (22)

and (21), we have

V̇ (x(t)) ≤−
n∑
i=1

1

2
qi(t) +

n∑
i=1

Liie
2
i (t)

≤− ρ2(L)V (x(t)) + nα2e−βt.

Then dV (x(t))eρ2(L)t

dt ≤ nα2e(ρ2(L)−β)t. Hence, V (x(t)) ≤
V (x(0))e−ρ2(L)t + nα2

ρ2(L)−β (e−βt − e−ρ2(L)t) if ρ2(L) 6= β,
and V (x(t)) ≤ V (x(0))e−ρ2(L)t +nα2te−ρ2(L)t if ρ2(L) =
β. Hence, V (x(t)) ≤ k4e−ρ2(L)t+k5(t)e−βt, ∀t ≥ 0, where

k4 =

{
V (x(0))− nα2

ρ2(L)−β , if ρ2(L) 6= β,
V (x(0)), if ρ2(L) = β,

k5(t) =

{
nα2

ρ2(L)−β , if ρ2(L) 6= β, ∀t ≥ 0,

nα2t, if ρ2(L) = β, ∀t ≥ 0.

Then, from (5), we have
∑n
i=1 |xi(t)−x̄(0)|2 = 2V (x(t)) ≤

2(k4e
−ρ2(L)t + k5(t)e−βt), ∀t ≥ 0. Thus,

|xi(t)− xj(t)| ≤|xi(t)− x̄(0)|+ |xj(t)− x̄(0)|

≤
√

2(|xi(t)− x̄(0)|2 + |xj(t)− x̄(0)|2)

≤f(t), ∀t ≥ 0, (23)

where f(t) = 2
√
k4e−ρ2(L)t + k5(t)e−βt.

Let us now estimate the upper bound of uij(t) as follows

|uij(t)| = |xj(tjkj(t))− xi(t
i
ki(t)

)|

=|xj(tjkj(t))− xj(t) + xj(t)− xi(t) + xi(t)− xi(tiki(t))|

≤
( α√

Lii
+

α√
Ljj

)
e−

β
2 t + f(t), ∀t ≥ 0. (24)

Finally, let us estimate the upper bound of ei(t). At time
tik, agent vi already knows tj

kj(tik)
and xj(t

j
kj(tik)

), for j ∈ Ni.
If at time tik, agent vi also knows tj

kj(tik)+1
, then at time tik

it knows that uij(t) is constant for t ∈ [tik, t
j
kj(tik)+1

]. For
simplicity, we introduce the following notations. For t ∈
[tik, t

i
k+1), denote

t1ij(t) = min{t, tj
kj(tik)+1

}, t2ij(t) = max{t, tj
kj(tik)+1

}.

Fig. 1 illustrates the relation between tik, tik+1, t ∈ [tik, t
i
k+1),

tj
kj(tik)

, tj
kj(tik)+1

, t1ij(t), and t2ij(t). From the definition of
uij(t) and t1ij(t), we know that uij(t) is a constant for t ∈
[tik, t

1
ij(t)]. And for t > t1ij(t), uij(t) can be upper bounded

by (24). Thus, from (20), for t ∈ [tik, t
i
k+1) we have

|ei(t)|=
∣∣∣∣ n∑
j=1

Lij

{∫ t1ij

tik

uij(s)ds+

∫ t2ij

tj
kj(t

i
k
)+1

uij(s)ds

}∣∣∣∣≤gi(t),
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Fig. 1: Illustration of the relation between tik, tik+1, t ∈
[tik, t

i
k+1), tj

kj(tik)
, tj
kj(tik)+1

, t1ij(t), and t2ij(t).

where gi(t) =
∣∣∑n

j=1 Lij(t
1
ij − tik)uij(t

i
k)
∣∣ −∑n

j=1,j 6=i Lij
∫ t2ij
tj
kj(t

i
k
)+1

[(
α√
Lii

+ α√
Ljj

)
e−

β
2 s + f(s)

]
ds.

Hence, a sufficient condition to guarantee (21), i.e.,
|ei(t)| ≤ α√

Lii
e−

β
2 t, ∀t ∈ [tik, t

i
k+1), is gi(t) ≤

α√
Lii
e−

β
2 t, ∀t ∈ [tik, t

i
k+1). Since α√

Lii
e−

β
2 t decreases with

respect to t, gi(t) increases with respect to t during [tik, t
i
k+1)

and gi(t
i
k) = 0. Then given tik, agent vi can estimate tik+1

by solving

gi(t) =
α√
Lii

e−
β
2 t, t ≥ tik. (25)

In other words, if at time tik agent vi knows tj
kj(tik)

, tj
kj(tik)+1

,

xj(t
j
kj(tik)

), and Ljj for all j ∈ Ni, then it can estimate its
next triggering time tik+1 by (potentially numerically) solving
(25). In conclusion, we propose the following algorithm.
Self-triggered control law:

1: Choose α > 0 and β > 0;
2: Agent vi ∈ V sends Lii to its neighbors;
3: Initialize ti1 = 0 and k = 1;
4: At time s = tik, agent vi senses its own state xi(t

i
k),

and broadcasts {tik, xi(tik)} to its neighbors, and updates
its control input ui(tik) by (2), and determines tik+1 by
(25)1, and broadcasts it to its neighbors2;

5: At the triggering times of neighbors Ni between
[tik, t

i
k+1], agent vi receives triggering information from

its neighbors3 and updates its control input ui(·) by (2);
6: Agent vi resets k := k + 1, and goes back to Step 4.
Our main result for self-triggered control of multi-agent

systems follows from the derivation above and is given in
the following theorem.

Theorem 2: Consider the multi-agent system (1)–(2). Sup-
pose that the underlying graph G is undirected and connected.
If all agents follow the self-triggered control law, then, (i)

1Agent vi uses tj
kj(t

i
k
)

instead of tj
kj(t

i
k
)+1

to determine tik+1 from

(25) when tik = tj
kj(t

i
k
)
.

2We assume that all these actions are done instantaneously.
3In other words, agent vi only listens to coming information at its

neighbors’ triggering times. Thus continuous listening is avoided.



average consensus is achieved exponentially if and only if G
is connected; and (ii) there is no Zeno behavior.

Remark 10: Self-triggered control approaches are also
proposed in [8], [14], [17]. However, one potential drawback
of these papers and other papers using a similar approach is
that continuous listening is still needed. As verified above,
continuous sensing, broadcasting, listening, and receiving are
voided under the self-triggered algorithm proposed in this
paper. Although these are also avoided in [11], [13], [24] by
combining event-triggered control with periodic sampling,
periodic sensing and listening are still needed. It is not clear
in these cases if the average inter-event time in general is
strictly larger than the required sampling period.

Remark 11: It follows from the proof above that for the
self-triggered control law, the global parameters V (x(0)), n,
and ρ2(L) are needed, which is obviously a drawback.

V. SIMULATIONS

In this section, a numerical example is given to demon-
strate the presented results. Consider a connected network of
four agents with the Laplacian matrix

L =


3.4 −3.4 0 0
−3.4 9.8 −2.1 −4.3

0 −2.1 3.2 −1.1
0 −4.3 −1.1 5.4

 .
We choose an arbitrary initial state x(0) =
[6.2945, 8.1158,−7.4603, 8.2675]>. The average is
x̄(0) = 3.8044. Fig. 2 (a) shows the state evolutions
under the static triggering law (3) with σi = 0.5. Fig. 2 (c)
shows the corresponding triggering times for each agent.
Fig. 2 (b) shows the state evolution under the dynamic
triggering law (12) with σi = 0.5, χi(0) = 10, βi = 1,
δi = 1, and θi = 1. Fig. 2 (d) shows the corresponding
triggering times. Fig. 3 (a) shows the state evolution
(1)–(2) under the self-triggered control law with α = 10
and β = 1. Fig. 3 (c) shows the corresponding triggering
times. Finally, Fig. 3 (b) shows the state evolution (1)–
(2) under the triggering law (2) in [11] (which is a
representative algorithm that combines event-triggered
control with periodic sampling) with σi = 1

2λ2
n

= 0.0028

and h = 1
20λn

= 0.0037. Fig. 3 (d) shows the corresponding
triggering times for each agent.

It can be seen that consensus is achieved for all triggering
laws. Moreover, just as Theorems 1 and 2 predict, we note
that there is no Zeno behavior under the dynamic event-
triggered law (12) or under the self-triggered law. It can
also be seen that inter-triggering times under the dynamic
triggering law are in general larger than that determined by
the self-triggered law. Note that the event-triggered control
with periodic sampling in [11] requires more sampling in
this example. Although there is no Zeno behavior under the
static triggering law (3) in the simulations, it is still not clear
if this could be proved.

VI. CONCLUSION

In this paper, we presented dynamic event-triggered
and self-triggered control law for multi-agent systems. We

showed that, some existing triggering laws are special cases
of the proposed dynamic triggering laws and if the com-
munication graph is undirected and connected, consensus
is achieved exponentially. In addition, Zeno behavior was
excluded by proving that the triggering time sequence of
each agent is divergent. Moreover, each agent only needs to
broadcast at its own triggering times, and listen to incoming
information from its neighbors at their triggering times. Thus
continuous listening is avoided by the proposed triggering
laws. Future research directions include considering the
influence of parameters in the proposed dynamic triggering
laws.
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Fig. 2: The state evolutions ((a) and (b)) and triggering times ((c) and (d)) under event-triggering laws (3) and (12).
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