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Abstract

In this paper, we analyze the system behavior for general nonlinear control-affine systems when a control barrier function-
induced quadratic program-based controller is employed for feedback. In particular, we characterize the existence and locations
of possible equilibrium points of the closed-loop system and also provide analytical results on how design parameters affect
them. Based on this analysis, a simple modification on the existing quadratic program-based controller is provided, which,
without any assumptions other than those taken in the original program, inherits the safety set forward invariance property,
and further guarantees the complete elimination of undesired equilibrium points in the interior of the safety set as well as one
type of boundary equilibrium points, and local asymptotic stability of the origin. Numerical examples are given alongside the
theoretical discussions.
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1 Introduction

Dynamical system safety has increasingly gained attention
driven by practical needs from robotics, autonomous driving,
and other safe-critical applications. One formal definition re-
garding system safety relates to a set of states, referred to as
the safety set, that the system is supposed to evolve within. In
the control community, this constrained control problem has
been under discussion for a long time. Two popular methods
are barrier Lyapunov functions (Tee et al. 2009) and model
predictive control (Mayne et al. 2000) from which a safe and
stabilizing control law can be derived. In general, the former
method suffers from the delicate design process, the sensitiv-
ity to system noise, and the unconstrained inputs. The latter
method is usually computationally heavy, thus may not be
suitable for online implementation for embedded systems.

Alternatively, the study of control barrier functions
(CBFs)(Xu et al. 2015, Ames et al. 2016, 2019, Tan et al.
2022) enforces the safety set to be forward invariant and
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asymptotically stable by requiring a point-wise condition
on the control input. A similar point-wise condition was
earlier studied (Sontag 1989) under the concept of control
Lyapunov functions (CLFs), where system stability is con-
cerned. In Xu et al. (2015), a CLF-CBF based quadratic
program (CLF-CBF-QP) formulation is proposed with an
intention to provide a modular, safe, and stabilizing control
design. Thanks to the increasing computational capabilities
in modern control systems and its modularity design nature,
the CLF-CBF-QP formulation has been applied successfully
to a wide range applications, e.g., in adaptive cruise control
(Xu et al. 2015), bipedal robot walking (Hsu et al. 2015),
multi-robot coordination, verification and control (Glotfel-
ter et al. 2017, Wang et al. 2017, Lindemann & Dimarogonas
2018).

However, one major limitation with the CLF-CBF-QP for-
mulation is that, while the controller ensures system safety,
no formal guarantee has been achieved on the system trajec-
tories converging to the origin (the unique minimum of the
CLF). This is mainly due to the relaxation on the CLF con-
straint in the program for the sake of its feasibility. In fact,
Reis et al. (2020) shows that even for a single integrator dy-
namics with a circular obstacle, the program could induce
non-origin equilibrium points that are locally stable. This is
not desirable in a performance-critical task(Tan et al. 2022),
where precise stabilization is also essential for the task com-
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pletion. For example, in a spacecraft docking mission, while
inter-collision avoidance guarantees safety, the mission would
fail if the orientation is not regulated precisely.

There are several endeavours in the literature to achieve safe
and precise stabilization with control barrier functions. In-
tuitively speaking, this is challenging because of the modu-
lar design nature, i.e., the CBF (safety) and the CLF (sta-
bility) that are designed independently could be conflicting.
In Jankovic (2018), local asymptotic stability is proved by
a modified quadratic program assuming that the CBF con-
straint is inactive around the origin. Cortez & Dimarogonas
(2022) discusses the compatibility between the CLF and the
CBF, and a sufficient condition on the regions of attraction is
proposed. The condition is however conservative and check-
ing such conditions for general nonlinear systems remains
challenging. In our previous work (Tan et al. 2022), by mod-
ifying a CBF candidate, the nominal control law, which can
be derived from a CLF, can be implemented without any
modification in an a priori given region inside the safety set,
and thus local stability follows. Yet the possible existence of
undesired equilibria is not ruled out. Reis et al. (2020) in-
troduces an extra CBF constraint to the original QP which
aims to remove boundary equilibria in the original QP for-
mulation; however, the feasibility of the modified QP is only
assumed.

In this paper we start from characterizing the existence and
locations of all possible equilibrium points with a control
barrier function-induced quadratic program-based controller
in the closed-loop. While partial results have been reported
before, here only the existence of a CLF and a CBF is as-
sumed, removing other assumptions found in previous works.
Analytical results on how the design parameter affects the
equilibrium points are also discussed.We then present a mod-
ified control barrier function-induced quadratic program,
which simultaneously guarantees the forward invariance of
the safety set, the complete elimination of undesired equi-
librium points in the interior of the safety set, the complete
elimination of one type of boundary equilibrium points, and
the local asymptotic stability of the origin. The latter three
properties are new compared to the previous formulation in
Xu et al. (2015), Ames et al. (2016, 2019). We highlight that
these results are obtained without extra assumptions, and
the applicability is as least as good as the previous results.

2 Preliminaries

Notation: The operator ∇ : C1(Rn) → Rn is defined as the
gradient ∂

∂x
of a scalar-valued differentiable function with re-

spect to x. The Lie derivatives of a function h(x) for the sys-
tem ẋ = f(x) + g(x)u are denoted by Lfh = ∇h⊤f(x) ∈ R
and Lgh = ∇h⊤g(x) ∈ R1×m, respectively. The interior and
boundary of a set A are denoted Int(A ) and ∂A , respec-
tively. A continuous function α : [0, a) → [0,∞) for a ∈ R>0

is a class K function if it is strictly increasing and α(0) = 0
(Khalil 2002). α : [0,∞) → [0,∞) is called a class K∞ func-
tion if it is a class K function and α(∞) = ∞.

Consider the nonlinear control affine system

ẋ = f(x) + g(x)u, (1)

where the state x ∈ Rn, and the control input u ∈ Rm.
We will consider the case where f(x) and g(x) are locally
Lipschitz functions inx. Denote byx(t,x0) the solution of (1)
starting from x(t0) = x0. By standard ODE theory (Birkhoff
& Rota 1978), if u(x) is locally Lipschitz, then there exists
a maximal time interval of existence I(x0) and x(t,x0) is
the unique solution to the differential equation (1) for all
t ∈ I(x0),x0 ∈ Rn. A setA ⊂ Rn is called forward invariant,
if for any initial condition x0 ∈ A , x(t,x0) ∈ A for all
t ∈ I(x0).

Definition 1 (Extended classK function (Ames et al. 2016)).
A continuous function α : (−b, a) → (−∞,∞) for a, b ∈ R>0

is an extended class K function if it is strictly increasing and
α(0) = 0.

Note that the extended class K functions addressed in this
paper will be defined for a, b = ∞.

Definition 2 (CLF). A smooth positive definite function V :
Rn → R is a control Lyapunov function (CLF) for system (1)
if it satisfies:

inf
u∈Rm

[LfV (x) + LgV (x)u] ≤ −γ(V (x)), ∀x ∈ Rn, (2)

where γ : R≥0 → R≥0 is a class K function.

Consider the safety set C defined as a superlevel set of a
smooth function h : Rn → R:

C = {x ∈ Rn : h(x) ≥ 0}. (3)

Definition 3 (CBF). Let set C be defined by (3). h(x) is a
control barrier function (CBF) for system (1) if there exists
a locally Lipschitz extended class K function α such that:

sup
u∈Rm

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ Rn (4)

In Xu et al. (2015), the CBF h(x) is defined over an open
set D containing the safety set C . Here we instead require
the CBF condition to hold in Rn for notational simplicity.
All the results in this paper remain intact even when h(x) is
defined only over an open set D , except that a set intersection
operation with D is needed for all the sets of states in the
following derivations.

We assume the following Assumption holds throughout the
paper.

Assumption 1. The system (1) is assumed to admit a CLF
V (x) and a CBF h(x), and the origin is assumed to be in
Int(C ).
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Without loss of generality, we assume f(0) = 0 and refer to
the origin as the desired equilibrium point. Note that this
is not conservative under Assumption 1 as a positive defi-
nite CLF V (x) exists (so 0 can be a controlled equilibrium
point). All the other equilibrium points are referred to as the
undesired equilibrium points.

2.1 Quadratic Program Formulation

The minimum-norm controller proposed in Xu et al. (2015)
is given by the following quadratic program with a positive
scalar p:

min
(u,δ)∈Rm+1

1

2
∥u∥2+1

2
pδ2 (5)

s.t. LfV (x) + LgV (x)u+ γ(V (x)) ≤ δ, (CLF)

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0, (CBF)

which softens the stabilization objective via the slack variable
δ, and thus maintains the feasibility of the QP, i.e., if h(x) is a
CBF, then the quadratic program in (5) is always feasible. A
controller u(x) given by the quadratic program satisfies the
CBF constraint for all x ∈ Rn. If u(x) is locally Lipschitz,
then the safety setC is forward invariant using Brezis’ version
of Nagumo’s Theorem (see Tan et al. (2022) for details).
However, due to the relaxation in the CLF constraint, the
stabilization of the system (1) is generally not guaranteed.

3 Closed-loop system behavior

In this section, we investigate the point-wise solution to
the quadratic program in (5), the equilibrium points of the
closed-loop system, and the choice of the QP parameter
p in (5). Hereafter we denote the control input given as a
solution of (5) as u⋆(x) and the closed-loop vector field
fcl(x) := f(x) + g(x)u⋆(x). Note that here we merely as-
sume the existence of a CLF and a CBF, thus remove the
assumptions that g is full rank as in Reis et al. (2020) or
Lgh ̸= 0, ∀x ∈ Rn as in Xu et al. (2015), Ames et al. (2016).

3.1 Explicit solution to the quadratic program

Theorem 1. The solution to the quadratic program in (5) is
given by

u⋆(x) =



0, x ∈ Ωclf

cbf
∪ Ωclf

cbf,1,

− Fh

LghLgh⊤Lgh
⊤, x ∈ Ωclf

cbf,2,

− FV

(1/p+LgV LgV ⊤)
LgV

⊤, x ∈ Ωclf

cbf
∪ Ωclf

cbf,1,

−v1LgV
⊤ + v2Lgh

⊤, x ∈ Ωclf
cbf,2,

(6)
where FV (x) := LfV (x) + γ(V (x)), Fh(x) := Lfh(x) +

α(h(x)),
[
v1
v2

]
:=

[
1/p+LgV LgV ⊤ −LgV Lgh⊤

−LgV Lgh⊤ LghLgh⊤

]−1[
FV
−Fh

]
, and

the domain sets are given by

Ωclf

cbf
= {x ∈ Rn : FV < 0, Fh > 0}, (7)

Ωclf
cbf,1 = {x ∈ Rn : FV < 0, Fh = 0, Lgh = 0}, (8)

Ωclf
cbf,2 = {x ∈ Rn : Fh ≤ 0,

FV LghLgh
⊤ − FhLgV Lgh

⊤ < 0}, (9)

Ωclf

cbf
= {x ∈ Rn : FV ≥ 0,

FV LghLgV
⊤ − Fh(1/p+ LgV LgV

⊤) < 0}, (10)

Ωclf
cbf,1 = {x ∈ Rn : FV ≥ 0, Fh = 0, Lgh = 0}, (11)

Ωclf
cbf,2 = {x ∈ Rn : FV LghLgh

⊤ − FhLgV Lgh
⊤ ≥ 0,

FV LgV Lgh
⊤ − Fh(1/p+ LgV LgV

⊤) ≥ 0, Lgh ̸= 0}.
(12)

Before diving into the proof, we note that for the domain
sets in (6), a bar being in place refers to the inactivity of the
corresponding constraint. The subscript cbf , 1 refers to the
case when the CBF constraint is active and Lgh = 0, while
cbf , 2 refers to the case when the CBF constraint is active
and Lgh ̸= 0.

Proof. The Lagrangian associated to the QP (5) is L =
1
2
∥u∥2+ 1

2
pδ2 + λ1(FV + LgV u− δ)− λ2(Fh + Lghu). Here

λ1 ≥ 0 and λ2 ≥ 0 are the Lagrangian multipliers. The
Karush-Kuhn-Tucker (KKT) conditions are

∂L
∂u

= u+ λ1LgV
⊤ − λ2Lgh

⊤ = 0, (13)

∂L
∂δ

= pδ − λ1 = 0, (14)

λ1(FV + LgV u− δ) = 0, (15)

λ2(Fh + Lghu) = 0. (16)

Case 1 : Both the CLF and CBF constraints are inactive. In
this case, we have

FV + LgV (x)u < δ, (17)

Fh + Lgh(x)u > 0, (18)

λ1 = 0, λ2 = 0. (19)

From (14), δ = λ1/p = 0. From (13) and λ1 = λ2 = 0, u⋆ =
0. To find out the domain where this case holds, substituting
u⋆ = 0 into (17) and (18), and further noting that δ = 0, we

obtain Ωclf

cbf
in (7).

Case 2 : The CLF constraint is inactive and the CBF con-
straint is active. In this case, we have

FV + LgV (x)u < δ, (20)

Fh + Lgh(x)u = 0, (21)

λ1 = 0, λ2 ≥ 0. (22)
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From (14), δ = λ1/p = 0. We consider the following two sub-
cases.

1) Lgh = 0. Note that λ1 = 0, Lgh = 0, then from (13),
u⋆ = 0. λ2 could be any positive scalar. To obtain the
domain where this case holds, substituting u⋆ = 0 to

(20) and (21) and noting that δ = 0, we obtain Ωclf
cbf,1

in (8).
2) Lgh ̸= 0. From (13) and λ1 = 0, Lghu−λ2LghLgh

⊤ =
0. From (21), we further obtain λ2 = −Fh/LghLgh

⊤,
and, from (13), u⋆ = − Fh

LghLgh⊤Lgh
⊤. To find

out the domain where this case holds, substitut-
ing u⋆ into (20) and noting that δ = 0, we ob-
tain that the CLF constraint being inactive implies
FV − Fh

LghLgh⊤LgV Lgh
⊤ < 0 and the CBF constraint

being active λ2 ≥ 0 implies Fh ≤ 0. Thus, we obtain

Ωclf
cbf,2 in (9).

Case 3 : The CLF constraint is active and the CBF constraint
is inactive. In this case, we have

FV + LgV (x)u = δ, (23)

Fh + Lgh(x)u > 0, (24)

λ1 ≥ 0, λ2 = 0. (25)

From (13) and (25), we obtainu+λ1LgV
⊤ = 0, thusLgV u+

λ1LgV LgV
⊤ = 0. Substituting LgV u = −λ1LgV LgV

⊤ into

(23), we obtain FV − λ1LgV LgV
⊤ = δ

(14)
= λ1/p. Thus we

get

λ1 = (p−1 + LgV LgV
⊤)−1FV (26)

u⋆ = −λ1LgV
⊤ = − FV

p−1 + LgV LgV ⊤LgV
⊤ (27)

In the domain where this case holds, λ1 ≥ 0 and Fh +
Lghu

⋆ > 0. The former implies that FV ≥ 0 in view of (26);
the latter implies Fh − FV

p−1+LgV LgV ⊤LghLgV
⊤ > 0, i.e.,

Ωclf

cbf
in (10).

Case 4 : Both the CLF constraint and the CBF constraint are
active. In this case, we have

FV + LgV (x)u = δ, (28)

Fh + Lgh(x)u = 0, (29)

λ1 ≥ 0, λ2 ≥ 0. (30)

From (13), (14), we obtain u = −λ1LgV
⊤ + λ2Lgh

⊤ and
δ = λ1/p. Substituting u and δ into (28) , (29), we obtain1/p+ LgV LgV

⊤ −LgV Lgh
⊤

−LgV Lgh
⊤ LghLgh

⊤

λ1

λ2

 =

 FV

−Fh

 . (31)

Denote ∆ := det(
[

1/p+LgV LgV ⊤ −LgV Lgh⊤

−LgV Lgh⊤ LghLgh⊤

]
) for brevity.

Since ∆ = ∥Lgh∥2/p + ∥LgV ∥2∥Lgh∥2−(LgV Lgh
⊤)2, and

∥x∥2∥y∥2≥ (x⊤y)2, ∀x, y ∈ Rn, we know that ∆ = 0 if and
only if Lgh = 0 for any p > 0. We discuss the solution to
(31) in the following two sub-cases.

1) Lgh = 0. In this case, ∆ = 0. From (31), we know

λ1 = FV /(1/p+ LgV LgV
⊤), (32)

λ2 could be any positive scalar, and Fh = 0. Fur-
thermore, in view of (13), we obtain u⋆(x) =
− FV

(1/p+LgV LgV ⊤)
LgV

⊤, and, in view of (14), δ =
FV

(1+pLgV LgV ⊤)
.

In this subcase, we assumed that both the CLF and
the CBF constraints are active and Lgh = 0, which
implies λ1 ≥ 0, λ2 ≥ 0. Note that λ1 ≥ 0 is equivalent
to FV ≥ 0 in view of (32). In view of (31) and Lgh = 0,
we obtain Fh = 0. Thus the domain where this subcase
holds is Ωclf

cbf,1 in (11).

2) Lgh ̸= 0. In this case,
[

1/p+LgV LgV ⊤ −LgV Lgh⊤

−LgV Lgh⊤ LghLgh⊤

]
is positive definite (since 1/p + LgV LgV

⊤ > 0,∆ >

0). We calculate
[

1/p+LgV LgV ⊤ −LgV Lgh⊤

−LgV Lgh⊤ LghLgh⊤

]−1

=

∆−1
[

LghLgh⊤ LghLgV ⊤

LghLgV ⊤ 1/p+LgV LgV ⊤

]
. Thus, λ1 and λ2 are

given by

λ1 = ∆−1(FV LghLgh
⊤ − FhLgV Lgh

⊤), (33)

λ2 = ∆−1(FV LgV Lgh
⊤ − Fh(1/p+ LgV LgV

⊤)). (34)

From (13), we obtain u⋆ = −λ1LgV
⊤ + λ2Lgh

⊤, with λ1

and λ2 defined above. In the domain where this case holds,
λ1 ≥ 0, λ2 ≥ 0, andLgh ̸= 0, and it implies Ωclf

cbf,2 in (12).

Remark 1 (Lipschitz continuity of (6)). In above analysis,
since there may exist states where Lgh(x) = 0, the controller
u⋆(x) is not locally Lipschitz in general. One example is given
in Morris et al. (2015). Nevertheless, this does not hinder us
from analyzing u⋆ and the equilibrium points of the closed-
loop system, due to the fact that they are obtained point-
wise. More discussions on Lipschitz continuity are given in
Proposition 4 and Remark 2.

3.2 Existence and locations of equilibrium points

It is known that the quadratic program in (5) will induce
undesired equilibria for the closed-loop system (Reis et al.
2020). Here we revisit this problem without assuming g is
full rank as in Reis et al. (2020) nor Lgh ̸= 0, ∀x ∈ Rn as in
Xu et al. (2015).

Theorem 2. The set of equilibrium points of the system ẋ =
f(x) + g(x)u⋆(x) with the controller u⋆ resulting from (5) is
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given by E = E clf

cbf
∪ E clf

cbf,1 ∪ E clf
cbf,2, where

E clf

cbf
= {x ∈ Ωclf

cbf
∩ Int(C ) : f = pγ(V )gLgV

⊤}, (35)

E clf
cbf,1 = {x ∈ Ωclf

cbf,1 ∩ ∂C : f = pγ(V )gLgV
⊤}, (36)

E clf
cbf,2 = {x ∈ Ωclf

cbf,2 ∩ ∂C : f = λ1gLgV
⊤ − λ2gLgh

⊤},
(37)

with λ1 given in (33) and λ2 given in (34).

Proof. We first show the following facts.

Fact 1 : No equilibrium points exist when the CLF constraint
in (5) is inactive.

Consider the case when the CLF constraint is inactive, mean-
ing FV + LgV u− δ < 0 and λ1 = 0. The equilibrium condi-
tion fcl(x) = 0 implies that LfclV = 0, thus FV +LgV u−δ =
γ(V ) − δ < 0. From (14), δ = λ1/p = 0. Then V (x) < 0,
which is a contradiction since V (x) is positive definite. This is
an expected conclusion since no equilibrium points at which
V̇ (x) < 0 exist.

Fact 2 : No equilibrium point exists in Rn \ C .

At an equilibrium point xeq, the CBF constraint is simpli-
fied as α(h) ≥ 0, implying that the point does not lie outside
of the set C . This is also quite intuitive because the integral
curves starting from any states outside the set C will asymp-
totically approach the set C so no equilibrium points exist
there.

Fact 3 : Consider an equilibrium point xeq. Then xeq ∈ ∂C
if and only if the CBF constraint is active at that point.

Sufficiency: In view that the CBF constraint is active at xeq,
we have Lfh(xeq) + Lgh(xeq)u+ α(h(xeq)) = Lfclh(xeq) +
α(h(xeq)) = 0. Note that xeq is an equilibrium point, i.e,
fcl(xeq) = 0, thus α(h(xeq)) = 0, which implies xeq ∈
∂C . Necessity: Since xeq is an equilibrium point and xeq ∈
∂C , i.e., h(xeq) = 0, we obtain Lfh(xeq) + Lgh(xeq)u +
α(h(xeq)) = Lfclh(xeq) + α(h(xeq)) = 0, i.e., the CBF con-
straint is active.

From Fact 1, we know that the equilibrium points can only
exist when the CLF constraint is active, i.e., in the sets Ωclf

cbf
,

Ωclf
cbf,1 and Ωclf

cbf,2. Furthermore, the equilibrium points need
to satisfy

fcl = f+ gu⋆ = 0. (38)

In the following we will discuss these three cases.

Case 1: Equilibrium points in Ωclf

cbf
. Substituting u⋆(x) in (6)

withx ∈ Ωclf

cbf
into (38), we obtain f = FV

p−1+LgV LgV ⊤ gLgV
⊤.

In view of the facts that λ1 = FV

p−1+LgV LgV ⊤ in (26), λ1 = pδ

in (14) and δ = γ(V ) (as the CLF constraint is active and

fcl = 0), we can also characterize the equilibrium points to
be f = pγ(V )gLgV

⊤.

From Fact 2, we know that the equilibrium points can only
be on the boundary or in the interior of the set C . From
Fact 3, equilibrium points lying on ∂C implies that the CBF
constraint is active, thus the equilibrium points in this case
lie in the interior of the set C , as given in (35).

Case 2: Equilibrium points in Ωclf
cbf,1. Substituting u⋆(x)

in (6) into (38), we obtain f = FV

p−1+LgV LgV ⊤ gLgV
⊤. Not-

ing that λ1 = FV

p−1+LgV LgV ⊤ in (32), λ1 = pδ in (14) and

δ = γ(V ) (as the CLF constraint is active and fcl = 0),
we can also characterise the equilibrium points to be f =
pγ(V )gLgV

⊤. From Fact 3, we know that the equilibrium
points lie on ∂C , as given in (36).

Case 3: Equilibrium points in Ωclf
cbf,2. Substituting u⋆(x) in

(6) into (38), we obtain f = λ1gLgV
⊤ − λ2gLgh

⊤, where λ1

is in (33) and λ2 in (34). From Fact 3 and the CBF constraint
being active, we know that the equilibrium points lie on ∂C ,
as given in (37).

From Theorem 2, we know that an equilibrium point either
lies in Int(C ) or ∂C . We refer to these two types of equilib-
rium points as interior equilibria and boundary equilibria,
respectively.

The following corollary is given in Reis et al. (2020). Here we
provide the proof for the sake of readability.

Corollary 1. The origin is an equilibrium point of the closed-
loop system if and only if f(0) = 0.

Proof. Sufficiency : Since f(0) = 0, V (0) = 0, h(0) > 0, then
FV = 0, Fh = α(h(0)) > 0, thus 0 ∈ Ωclf

cbf
from (10). More-

over, f = pγ(V )gLgV
⊤ = 0, from Theorem 2, we conclude

that 0 is an equilibrium point of the closed-loop system. Ne-
cessity : Since 0 is an equilibrium point and 0 ∈ Int(C ), from
Theorem 2, f(0) = pγ(V (0))gLgV

⊤ = 0.

3.3 Choice of QP parameter

In this subsection, we discuss the choice of different p’s in (5)
and its impact on the closed-loop equilibrium points, with an
intention to remove or confine undesired equilibrium points.

1) Interior equilibrium points:

We will start our discussion for equilibrium points in Int(C ).
From Theorem 2, all the equilibrium points in Int(C ) are in
E clf

cbf
, where the following holds

f = pγ(V )gLgV
⊤. (39)
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Note that for a given system in (1), a given CLF V (x) and
a given class K function γ(·), f,g, γ(V ) and LgV are func-
tions of the state x. We propose the following propositions
on choosing p.

Proposition 1. If there exists a positive constant p such that
no point in the set Ωclf

cbf
∩ Int(C ) except the origin satisfies

(39), then, with such a p in (5) applied, no equilibrium points
except the origin exist in Int(C ).

The proof is evident in view of Theorem 2 and Corollary 1
and thus omitted here. Two numerical examples are given
below.

Example 1. Consider the system ẋ = −x + u, with the

system state x = (x1, x2), a given CLF V (x) = x⊤x
2

and

γ(x) = x,∀x ∈ R≥0. To show that V (x) = x⊤x
2

is in-
deed a CLF, we choose u(x) = 0. The time derivative of
V (x) V̇ = −x2

1 − x2
2 ≤ −γ(V (x)) satisfies the CLF condi-

tion in Definition 2. From (39), by left multiplying ∇V ⊤ on
both sides, one obtains LfV = pγ(V )LgV LgV

⊤. Substitut-
ing LfV = −x2

1 − x2
2, LgV = (x1, x2), γ(V ) = (x2

1 + x2
2)/2,

we obtain −2(x2
1 + x2

2) = p(x2
1 + x2

2)
2. Let p be any positive

scalar. Then this equality does not hold for any x ∈ R2 ex-
cept the origin. Thus, no equilibrium points except the ori-
gin exist in the interior of the set C , no matter what CBF
h(x) is chosen. In Fig. 1, the obstacle region (in dark green)
is {x ∈ R2 : ∥x − (0, 4)∥≤ 2} and the CBF is given by
h(x) = ∥x − (0, 4)∥2−4 and α(x) = x, ∀x ∈ R. We observe
that all the simulated trajectories converge to the origin, ex-
cept one that converges to an equilibrium point on the bound-
ary of the safety set.

Example 2. Consider the following system

ẋ = −
(

0 1
1 0

)
x+

(
0
1

)
u, (40)

with the system state x = (x1, x2), a given CLF V (x) =
1
2
x2
1 + 1

2
(x2 + 1

2
x1)

2, γ(x) = 3
7
x,∀x ∈ R≥0, a given CBF

h(x) = −0.1x2
1−0.15x1x2−0.1x2

2+4.9 and α(x) = x,∀x ∈ R.
To show that V (x) is indeed a CLF, let u(x) = −2x1 − x2.
Noticing that ±2x1x2 ≤ x2

1 + x2
2, one verifies that V (x) =

5
8
x2
1 +

1
2
x1x2 +

1
2
x2
2 ≤ 7

8
x2
1 +

7
8
x2
2 and V̇ = − 1

2
x2
1 − 1

4
x1x2 −

1
2
x2
2 ≤ − 3

8
x2
1 − 3

8
x2
2 ≤ −γ(V (x)) satisfies the CLF condi-

tion in Definition 2. To show h(x) is a CBF, we only need
to examine whether or not Lfh(x) + α(h(x)) ≥ 0 when
Lgh(x) = −0.15x1 − 0.2x2 = 0 (otherwise, with a non-zero
coefficient, we can always find a u that satisfies the CBF con-
dition in Definition 3). Substituting x1 = (−2/1.5)x2 into
Lfh(x) +α(h(x)) = −0.25x2

1 − 0.55x1x2 − 0.25x2
2 +4.9, one

verifies that, for x with Lgh(x) = 0, Lfh(x) + α(h(x)) =
0.0389x2

2 + 4.9 ≥ 0.

Suppose that there exists an equilibrium pointx = (x1, x2) ∈
Int(C ). From (39),

(
x2
x1

)
= p 3

7
V (x)( 1

2
x1+x2)

(
0
1

)
. From the

first row, we obtain x2 = 0. Substituting x2 = 0 into the sec-
ond row, we have x1 = 15p

112
x3
1. Thus, x1 = 0,±

√
112/15p, p >

0. Proposition 1 dictates x = (x1, x2) ∈ Int(C ), and recall

that C is the superlevel set of the CBF h(x). Thus, we con-
clude that for 0 < p < 16/105 ≈ 0.152, there exists only one
equilibrium point (the origin) in Int(C ), and for p > 16/105,
there exist three equilibrium points in Int(C ). This conclu-
sion is verified by the simulation results in Fig. 2.

Example 2 is of interest because: 1) here neither g is full rank
nor Lgh ̸= 0, ∀x ∈ Rn, which is required in previous works;
2) it demonstrates that, under the QP formulation in (5), the
existence of undesired equilibria in the interior of the safety
set depends on the value of p.

Determining a p that satisfies the assumptions in Proposi-
tion 1 could be difficult for general nonlinear systems. One
systematic way to comply with these assumptions is given
in Section 4 with a new quadratic program formulation. Al-
ternatively, we could tune p to adjust the positions of equi-
librium points in the interior of the set C as given in the
following proposition.

Proposition 2. Assume that there exists a class K∞
function γ1 such that γ1(∥x∥) ≤ γ(V (x)). Let v̄ :=

supx∈Rn\{0}
LfV

LgV LgV ⊤ ∈ [−∞,∞]. If v̄ is finite, then all the

possible equilibrium points xeq in the interior of the set C
are bounded by ∥xeq∥≤ γ−1

1 (p−1v̄).

Proof. We first show by contradiction that at any non-origin
interior equilibrium point xeq, LgV (xeq) ̸= 0. Suppose oth-
erwise, then from (39), we have LfV (xeq) = 0. This how-
ever leads to a contradiction considering that V (x) is a con-
trol Lyapunov function (in (2), the left-hand side is 0 irre-
spective of u while the right-hand side is negative). Thus,
we know that for all non-origin interior equilibrium points,

LgV (xeq) ̸= 0, and from (39), γ(V (xeq)) = p−1 LfV

LgV LgV ⊤ .

Note that v̄ = supx∈Rn\{0}
LfV

LgV LgV ⊤ is finite by assump-

tion. Thus, all the possible equilibrium points in the interior
of the set C are bounded by ∥xeq∥≤ γ−1

1 (p−1v̄).

Proposition 2 implies that we can confine the equilibrium
points in the interior of the setC arbitrarily close to the origin
by choosing a greater p. A numerical example is given below.

Example 3. Consider the system ẋ = x + u with the sys-

tem state x = (x1, x2), a given CLF V (x) = x⊤x
2

and

γ(x) = x,∀x ∈ R≥0. Choosing u(x) = (−2x1,−2x2)
⊤, we

obtain the time derivative V̇ = −x2
1 − x2

2 ≤ −γ(V (x)) satis-
fies the CLF condition in Definition 2. One could verify that

supx∈R2\{0}
LfV

LgV LgV ⊤ = supx∈R2\{0} 1 = 1. Thus, all pos-

sible equilibrium points xeq in the interior of the set C are

bounded by ∥xeq∥≤
√

2/p. In Fig. 3, the obstacle region (in
dark green) is {x ∈ R2 : ∥x − (0, 4)∥≤ 2}, and the CBF is
given by h(x) = ∥x − (0, 4)∥2−4 and α(x) = x,∀x ∈ R. We
observe that all of the simulated trajectories except one con-
verge to the neighborhood region of the origin, the size of
which depends on the parameter p.
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Fig. 1. Comparison of the system trajectories in Example 1 with varying p values. The obstacle region is in dark green. All the
simulated system trajectories converge to the origin, except one which converges to an equilibrium point on the boundary of
the safety set.
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Fig. 2. Comparison of the system trajectories in Example 2 with varying p values. The obstacle region is in dark green. When
p = 0.1, the system trajectories converge to two undesired equilibrium points on the boundary of the safety set. When p = 1
or 10, the system trajectories instead converge to equilibrium points in the interior of the safety set.

Similar analysis can be done for Example 2, Fig. 2 (b) and
(c). We omit the details for the sake of space.

2) Boundary equilibrium points:

Now consider the possible equilibrium points on ∂C . For the
equilibrium points in E clf

cbf,1, similar results as in Proposition
1 and 2 can be obtained as the control input shares the same
form as in E clf

cbf
. For the equilibrium points in E clf

cbf,2, we show

that for a particular scenario, different choices of p do not
affect the existence of the equilibrium points.

Proposition 3. Assume the following three conditions hold:
i) xeq ∈ E clf

cbf,2 for some p > 0; ii) ∇V (xeq) = k∇h(xeq) for

some k > 0; iii) Lfh(xeq) ≤ 0. Then xeq ∈ E clf
cbf,2 for any

p > 0.

Proof. From condition (i), let p♢ be the value such that xeq ∈
E clf
cbf,2 when p = p♢, p′ an arbitrary positive value, and λ′

1, λ
′
2

the associated multipliers when p = p′. To prove xeq ∈ E clf
cbf,2

for any p > 0, by definition, we need to show that, for p = p′,

xeq ∈ Ωclf
cbf,2 ∩ ∂C , (41)

f(xeq) = λ′
1gLgV

⊤(xeq)− λ′
2gLgh

⊤(xeq). (42)

This implies xeq ∈ E clf
cbf,2 for any p > 0, as required. It is

evident that FV (xeq), Fh(xeq), LgV (xeq), Lgh(xeq) remain
constant no matter how p varies.

Proof to (41): From condition (i), we know FV LghLgh
⊤ −

FhLgV Lgh
⊤ ≥ 0, Lgh ̸= 0,xeq ∈ ∂C . In view of definitions

of FV , Fh and condition (ii), we calculate

FV LgV Lgh
⊤ − Fh(1/p

′ + LgV LgV
⊤)

= (LfV + γ(V ))LgV Lgh
⊤ − Lfh(1/p

′ + LgV LgV
⊤)

= γ(V )LgV Lgh
⊤ − 1/p′Lfh (43)

Since γ(V ) ≥ 0, LgV Lgh
⊤ ≥ 0 (condition (ii)), 1/p′ ≥

0, Lfh ≤ 0 (condition (iii)), we get (43)≥ 0. Thus, xeq ∈
Ωclf

cbf,2 ∩ ∂C .

Proof to (42): The left-hand side (LHS) of (42) is a con-
stant, yet the right-hand side (RHS) might vary as p′

varies. We re-write the RHS as the following function

s(r) = [ v1 v2 ]
[
r+a b
b c

]−1[ d
e

]
. where r = 1/p′ ∈ (0,∞); v1 :=

gLgV
⊤ ∈ Rn, v2 := −gLgh

⊤ ∈ Rn, a = LgV LgV
⊤, b =

−LgV Lgh
⊤, c = LghLgh

⊤, d = FV , e = −Fh are constants.
Taking the derivative, and noting that

[
r+a b
b c

]
is always

invertible (from the proof to Theorem 1, in the Ωclf
cbf,2 case),

we have

ds(r)

dr
=

1

∆2

[
v1 v2

] c −b

−b r + a

1 0

0 0

 c −b

−b r + a

d
e


=

1

∆2
(cd− be)(cv1 − bv2)
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Fig. 3. Comparison of the system trajectories in Example 3 with varying p values. The obstacle region is in dark green. All of
the simulated trajectories except one converge to a neighborhood region of the origin, which shrinks as p becomes larger.
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Fig. 4. Comparison of the system trajectories for the transformed system in Example 6 with varying p values. All the simulated
system trajectories converge to the origin under the proposed quadratic program.

Here ∆ = det(
[
r+a b
b c

]
). One verifies that cv1 − bv2 =

LghLgh
⊤gLgV

⊤ − LgV Lgh
⊤gLgh

⊤ = 0 in view of condi-
tion (ii). Thus, ds(r)

dr
= 0 and we obtain that the RHS of (42)

remains constant as p′ varies. Note that s(1/p♢) = f(xeq),
thus (42) holds.

Example 4. Proposition 3 dictates that the boundary equi-
librium (0, 6) in Example 1 will exist for any p > 0. This
conclusion matches what we observe in Fig. 1.

4 A modified QP-based control formulation

In this section, we propose a modified CLF-CBF based con-
trol formulation. Consider the nonlinear control affine sys-
tem in (1) with a control Lyapunov function(CLF) V and a
control barrier function(CBF) h. The proposed control for-
mulation is given as follows. Let a nominal controller unom :
Rn → Rm be locally Lipschitz continuous. Rewrite (1) as

ẋ = f′(x) + g(x)u′(x), (44)

where f′(x) := f(x) + g(x)unom(x),u′(x) := u(x) −
unom(x). In the following we will solve a new quadratic
program to derive the virtual control input u′(x) and the
actual control input is then obtained by

u(x) = unom(x) + u′(x). (45)

The virtual control input u′ is calculated by the following
quadratic program with a positive scalar p:

min
(u′,δ)∈Rm+1

1

2
∥u′∥2+1

2
pδ2 (46)

s.t. Lf′V (x) + LgV (x)u′ + γ(V (x)) ≤ δ, (CLF)

Lf′h(x) + Lgh(x)u
′ + α(h(x)) ≥ 0. (CBF)

Before presenting our main result, we examine the continu-
ity property of the resulting controller in (45). We denote
F ′
h(x) := Lf′h(x) + α(h(x)), F ′

V (x) := Lf′V (x) + γ(V (x))
in the following analysis.

Proposition 4. The control input u : Rn → Rm in (45) is
locally Lipschitz continuous if one of the following conditions
hold: i) Lgh(x) ̸= 0 for all x; or ii) M := {x ∈ Rn : F ′

h(x) =
0, Lgh(x) = 0} is empty.

Proof. Since u(x) = unom(x)+u′(x) and unom(x) is locally
Lipschitz continuous, what we need to show is that u′(x) is
also locally Lipschitz continuous. Since V (x) and h(x) are
smooth, the vector fields f(x) and g(x) are locally Lipschitz,
thus Lf′V (x), LgV (x), γ(V (x)), Lf′h(x), Lgh(x), α(h(x))
are locally Lipschitz.

If condition (i) holds, then the coefficientmatrix
[

LgV (x) 1

−Lgh(x) 0

]
∈

R2×(m+1) of the decision variable (u′, δ) is of full row rank.
Following (Hager 1979, Thoerem 3.1), the locally Lipschitz
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continuity of u′(x) is obtained. If condition (i) does not hold,
then for x that Lgh(x) ̸= 0, there exists a neighborhood
O(x) in which Lgh(y) ̸= 0, ∀y ∈ O(x), and the locally Lips-
chitz continuity holds following the same reasoning. In what
follows we will examine the Lipschitz continuity property at
which Lgh(x) = 0.

Considering the solution to the quadratic program in (46),
from Theorem 1, there are four potential regions when

Lgh(x) could vanish: Ωclf

cbf
,Ωclf

cbf,1,Ω
clf

cbf
,Ωclf

cbf,1. If condi-

tion (ii) holds, we know Ωclf
cbf,1 = Ωclf

cbf,1 = ∅. Note that

u′(x) = 0 for all x ∈ Ωclf

cbf
, and Ωclf

cbf
is an open set, then

the local Lipschitz continuity holds within Ωclf

cbf
. Now we

check the set Ωclf

cbf
. From the explicit form given in (6),

u′(x) is locally Lipschitz in Int(Ωclf

cbf
). What remains to

check is the state x ∈ ∂Ωclf

cbf
∩ Ωclf

cbf
and Lgh(x) = 0, i.e.,

F ′
V = 0, F ′

V LghLgV
⊤ − F ′

h(1/p+ LgV LgV
⊤) = −F ′

h(1/p+
LgV LgV

⊤) < 0. From (6), at those points, u′(x) = 0.
Take a small neighborhood O(x), then, for all y ∈ O(x),
F ′
h(y) > 0 (from continuity), F ′

V (y) ≤ 0 (from unom be-
ing stabilizing), F ′

V LghLgV
⊤ − F ′

h(1/p + LgV LgV
⊤) < 0

(from continuity). This implies for any y ∈ O(x), either
one of the following cases holds: a.) F ′

V (y) < 0, F ′
h(y) > 0;

b.) F ′
V (y) = 0, F ′

V LghLgV
⊤ − F ′

h(1/p + LgV LgV
⊤) =

−F ′
h(1/p + LgV LgV

⊤) < 0. In both cases, from Theorem
1, u′(y) = 0. Thus, u′(x) is locally Lipschitz continuous
in this case as well. To sum up, we have shown the control
input u(x) is locally Lipschitz continuous.

Remark 2. We note that the set M is independent of the
choice of unom since F ′

h(x) = Lf′h(x)+α(h(x)) = Lfh(x)+
α(h(x)) = Fh(x) when Lgh(x) = 0. The applicability of this
proposition will be demonstrated in the numerical examples
in the following.

Theorem 3. Consider the nonlinear control affine system
in (1) with a control Lyapunov function(CLF) V and a con-
trol barrier function(CBF) h with its associated safety set C .
Assume one of the two conditions in Proposition 4 holds. Let
the nominal control unom satisfy the CLF condition (2), and
the control input in (45) is applied to (1), then

(1) the set C is forward invariant;
(2) no interior equilibrium points exist except the origin;
(3) no boundary equilibrium points exist with Lgh = 0;
(4) the origin is locally asymptotically stable.

Proof. From Proposition 4, the controller is locally Lipschitz
continuous and thus the system admits a unique solution.
Consider the transformed system ẋ = f′(x) + g(x)u′(x).
Since h is a CBF for the original system in (1), i.e.,
∀x ∈ Rn, ∃u ∈ Rm such that Lfh(x) + Lgh(x)u +
α(h(x)) ≥ 0, we obtain that ∀x ∈ Rn,unom ∈ Rm, ∃u′ ∈
Rm such that Lfh(x)+Lgh(x)unom+Lgh(x)u

′+α(h(x)) ≥
0 by choosing u′ = u − unom. Thus h is also a CBF for

the transformed system in (44). It further indicates that the
quadratic program in (46) is feasible for all x ∈ Rn. V is
also a valid CLF for the transformed system since the CLF
condition in (2) is fulfilled with u′ = 0. Using Brezis’ version
of Nagumo’s Theorem, we further obtain that the resulting
u′ will render the safety set forward invariant.

Assume that there exists an equilibrium point xeq,xeq ̸= 0
that lies either in Int(C ) or in ∂C with Lgh(xeq) = 0.
From Theorem 2, we know that f′(xeq) = pγ(V (xeq))
g(xeq)LgV

⊤(xeq). By left multiplying ∇V ⊤ on both sides,
we further obtain that

Lf′V (xeq) = pγ(V (xeq))LgV (xeq)LgV
⊤(xeq).

For any positive number p and anyxeq ̸= 0, on the right-hand
side, we know γ(V (xeq)) > 0, LgV (xeq)LgV

⊤(xeq) ≥ 0.
Since unom(x) satisfies the CLF condition, we obtain
Lf′V (xeq) = LfV + LgV unom ≤ −γ(V (xeq)) < 0 on the
left-hand side. Thus it yields a contradiction, implying
Properties 2) and 3).

Since unom(x) satisfies the CLF condition, we have f′(0) =
0, F ′

V := Lf′V + γ(V ) ≤ 0 for all x ∈ Rn. Note that F ′
h(0) =

Lf′h(0) + α(h(0)) = α(h(0)) > 0. By continuity, we know
that there exists an ϵ > 0 such that for all x ∈ Bϵ := {x ∈
Rn : ∥x∥≤ ϵ}, F ′

h(x) > 0. Applying Theorem 1 with respect
to the quadratic program in (46), we next show that for all
x ∈ Bϵ, the optimal solution is δ⋆(x) = 0. This fact is ob-
tained by examining δ(x) in every domain and keeping in

mind that 1) if F ′
V (x) < 0, then x ∈ Ωclf

cbf
and δ(x) = 0;

2) if F ′
V (x) = 0, then x lies in Ωclf

cbf ∪ Ωclf

cbf
∪ Ωclf

cbf,1, and

δ(x) = λ1(x)/p = 0 by examining their respective λ1(x)s.
We further obtain that Lf′V (x) + LgV (x)u′ + γ(V (x)) ≤
δ(x) = 0 for all x ∈ Bϵ, i.e., V̇ (x) = Lf′V (x)+LgV (x)u′ ≤
−γ(V (x)) for x ∈ Bϵ. With a standard Lyapunov argu-
ment (Khalil 2002), we then deduce that the origin is locally
asymptotically stable.

Remark 3. In fact, any locally Lipschitz unom : Rn → Rm

that renders LfV + LgunomV negative definite and satisfies
f(0)+gunom(0) = 0 is a valid nominal controller in the new
QP formulation in (46). The proof can be carried out in a
similar manner.

Remark 4. The proposed formulation is favorable in many
regards. Assumption-wise, what it requires (Assumption 1)
is the same as that of the original quadratic program (5).
Computation-wise, this new formulation does not add extra
computations since the CLF-compatible unom can be ob-
tained in an analytical form (Sontag 1989). Finally, the pro-
posed formulation provides stronger theoretical guarantees
(Properties 2)-4)) on system stability while maintaining the
same guarantee on system safety.

Remark 5. Two CBF-based control formulations have been
proposed in Xu et al. (2015), Ames et al. (2016, 2019): one
uses a nominal controller incorporating a CBF constraint
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(Ames et al. 2019, Equation (CBF-QP)), the other utilizes a
CLF and a CBF ((Ames et al. 2019, Equation (CLF-CBF-
QP)), also in (5)). In our proposed formulation, both a CLF
V (x) and a CLF-compatible unom are needed. One could
view our modification as a combination of the two formula-
tions in Ames et al. (2019). The rationale behind this mod-
ification is that, given a CLF V (x), calculating unom is
straightforward from (Sontag 1989), and adding this extra
information will guide the selection of a stabilizing control in-
put from all the feasible inputs. Based on this interpretation,
the resulting controller being similar to unom is an intended
result. In Theorem 3, we prove that this modification helps
removing the undesired equilibria and aligning the resulting
controller to a stabilizing controller.

Remark 6. It is tempting to claim from Theorem 3 that
the resulting controller guarantees that all integral curves
converge to origin. Yet in general this is not true because 1)
the integral curves may converge to the equilibrium points on
∂C ; 2) limit cycles, or other types of attractors may exist in
the closed-loop system.We note that the possibility of system
trajectory converging to the boundary equilibirum point is
not a result of our modification, but an inherent property of
the CLF-CBF-QP formulation as discussed in Proposition
3. Actually, for the scenario in Fig. 1, global convergence
with a smooth vector field is impossible due to topological
obstruction (Koditschek & Rimon 1990).

Remark 7 (Region of attraction). One can establish a con-
servative estimate of the region of attraction (ROA) for the
modified CLF-CBF-QP controller. This ROA is given by a
sub-level set of the control Lyapunov function, within which
the CLF condition holds. Consider the QP in (46). From
Theorem 1 and the fact that F ′

V (x) ≤ 0 for all x ∈ Rn, we

know that for all x ∈ Ωclf

cbf
∪ Ωclf

cbf,1 ∪ Ωclf
cbf,2 ∪ Ωclf

cbf
∪ Ωclf

cbf,1,

LfV (x) + LgV (x)u = Lf′V (x) + LgV (x)u′ ≤ −γ(V (x)).
Define Aa := {x : V (x) ≤ a} for some a > 0, and η :=
arg supa a such that Aa ∩Ωclf

cbf,2 = ∅. The estimated ROA is
then given by Aη.

Example 5. Consider a mobile robot with dynamics ẋ =
x+u, and its position (x1, x2) in R2. This robot is tasked to
navigate to the origin while avoiding a circular region. If the
original QP in (5) is applied, as shown in Fig. 3, the mobile
robot can at best reach a neighborhood region of the origin,
the size of which is determined by p. If the new control for-
mulation in (45) is applied, and we choose unom = −2x, then
the transformed system dynamics is by ẋ = −x + u′. One
verifies that the second condition in Proposition 4 holds and
thus u is locally Lipschitz. From Fig. 1, we observe that the
robot can reach the origin, and not merely a neighborhood
of it, no matter what value of p is chosen. We also observed
that in all cases, the robot may get stuck at (0, 6), thus global
stabilization does not hold in this case. In Mestres & Cortés
(2022), a numerical comparison was carried out between our
method and the approach therein for this scenario, which re-
sults in similar closed-loop system behavior. We note that
our estimated ROA {x : x2

1 + x2
2 ≤ 3.32} is larger than the

counterpart {x : x2
1 + x2

2 ≤ 22} in Mestres & Cortés (2022).

Example 6. Now we consider a second-order mobile robot
whose dynamics is given in (40) with the position state x1

and velocity state x2. This robot is tasked to navigate to 0
while its state needs to avoid the region in dark green in Fig.
2. If the original QP in (5) is applied, then the robot will
stop at certain undesired points instead of the 0 position.
If the new control formulation in (45) is applied, and we
choose unom = −2x1 − x2, then the transformed system
dynamics is

(
ẋ1
ẋ2

)
=

(
x2

−x1−x2

)
+
(

0
1

)
u′. Again, one verifies

that the second condition in Proposition 4 holds and thus u is
locally Lipschitz. With the same CLF and CBF functions as
in Example 2, the robot reaches exactly 0 position, notmerely
a neighborhood of it or a position on the safety boundary,
no matter what value of p is chosen as shown in Fig. 4. By
resorting to sum-of-square techniques, we can verify that in
this case our estimate ROA isR2, i.e., safe global stabilization
is achieved.

While the results reported here focus primarily on safe sta-
bilization, they can be applied to a larger domain of applica-
tions, for example, to generate collision-free motions without
explicit simulations in robotics. There remain several open
problems that are worthy of investigation. These include 1)
control design using hybrid control or time-varying CBF to
achieve safety and (almost) global convergence; 2) analyzing
closed-loop system behavior with input bounds and multi-
ple compatible CBFs (Tan & Dimarogonas 2022). All these
problems, however, are out of the scope of this work and re-
quire future endeavors.

5 Conclusion

In this paper, we have characterized, for general control-affine
systems with a CLF-CBF based quadratic program in the
loop, the existence and locations of all possible closed-loop
equilibrium points. We further provide analytical results on
how the parameter in the program should be chosen to re-
move the undesired equilibrium points or to confine them in
a small neighborhood of the origin. Our main result, a modi-
fied quadratic program formulation, is then presented. With
the mere assumptions on the existence of a CLF and a CBF,
the proposed formulation guarantees simultaneously the for-
ward invariance of the safety set, the complete elimination
of undesired equilibrium points in the interior of it, the elim-
ination of undesired boundary equilibria with Lgh = 0, and
the local asymptotic stability of the origin.
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