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Abstract

In this paper, we propose a novel framework that provides a systematic strategy to regulate the rigid body attitude on SO(3)
within a generic constrained attitude zone. The proposed control scheme consists of three components: sampling, planning and
low-level control. Specifically, an overlapping cell-like sampling for the attitude configuration space SO(3) is built and further
reformulated to a graph model. Based on this abstraction, a complete graph search algorithm is utilized to generate a feasible
path in the graph model. Both sufficient and necessary conditions on finding a feasible path are presented. Furthermore, to
facilitate the control design, the point-to-point path is transformed into a smooth reference trajectory along the geodesics.
Finally, a saturated low-level control law is formulated to robustly track the desired trajectory. Simulations demonstrate the
effectiveness of the proposed control approach.
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1 Introduction

The attitude (orientation) control problem dates back to
the early space and aerial applications which are mainly
related to spacecraft and aircraft attitude regulation.
With the recent advances in applications of unmanned
aerial and underwater vehicles (e.g, UAVs, AUVs), the
effective attitude control of these vehicles becomes cru-
cial for their successful operation. Recent works in the
area of attitude control have focused on the use of Lie
group methods on the special orthogonal group SO(3)
(the attitude configuration space) to study this control
problem from a differential geometric perspective [1–4].
This is motivated by the fact that all existing parameter-
izations fail to represent the attitude of a rigid body both
globally and uniquely, which results in control schemes
that are either singular or exhibit some undesirable be-
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havior (e.g., unwinding phenomenon).

The study of the attitude control problem in the pres-
ence of constraints (i.e., unfeasible rotational regions)
has received less attention in the literature. This prob-
lem is a specific case of a state-constrained nonlinear
control problem and consists of designing a controller
to regulate the attitude of the rigid body to the desired
orientation, while actively avoiding certain orientation
configurations. The constrained attitude control prob-
lem is motivated, e.g., in aerospace applications where
a space telescope observes some celestial regions while
avoiding bright stars [5]. Another example of application
is encountered when an unmanned vehicle or robot ma-
nipulator is navigating in cluttered environments which
constrains both its attitude and position.

Different control schemes have been proposed in the
last decade for the constrained attitude maneuver prob-
lem. Generally speaking, they can be categorized into
two types: potential function based methods [6–8] and
path planning based methods [9,10]. The potential func-
tion based method defines a judiciously selected po-
tential function that associates a scalar with every at-
titude. When the attitude state approaches the con-
strained zone, the potential value gets larger; and when
approaching the desired attitude, the potential value de-

Preprint submitted to Automatica 6 October 2019



creases. The desired attitude is typically set to be the
global minimum. The attitude control law is then for-
mulated using the negative gradient of the potential
function. This method generally provides a robust feed-
back controller that is easy for implementation. How-
ever, some notable disadvantages of the potential-based
methods are 1) the attitude maneuvers may get trapped
into local minima instead of approaching the global min-
imum (i.e., the desired attitude) [11], and 2) they gener-
ally deal with a conic or convex shape of the constrained
zone [6].

The existing path planning based methods, on the
other hand, are somehow computationally expensive
for implementation. For example, the randomized plan-
ning algorithm [9] is time-consuming and not suitable
for on-board implementations. Recently, determinis-
tic planning schemes were proposed in [10], where the
rotational space was discretized using the quaternion
representation. The attitude space was sampled into
discretized points and then those points were connected
to form a semi-feasible path. However, it is not guar-
anteed that the path between two consecutive points
will comply with the attitude constraints, while the
nonlinear dynamics is also omitted. To the authors’
best knowledge, there is no existing work that considers
search-based planning in the rotation space SO(3). The
main difficulty is the intrinsic geometric properties of
SO(3), which forms a curved 3-dimensional manifold
embedded in R3×3. In fact, the definition of a uniform
distribution sampling over SO(3) varies in the litera-
ture [12–14]. In [15], the authors predefine an analytical
form of the attitude trajectory and use a trial-and-error
procedure to iteratively update the paremeters againt a
safety criterion, which is applicable only for small ob-
stacle regions. Moreover, in all aforementioned schemes,
feasibility guarantees are missing.

In this paper, we develop a framework for the con-
strained attitude maneuver problem on the rotation
space SO(3). The proposed framework consists of
three stages: configuration space sampling, trajectory
planning and low-level control; all are carried out di-
rectly on the Lie group SO(3) thus avoiding issues re-
lated to ambiguities and singularities of other attitude
parametrizations. This attitude maneuver is achieved
such that, during the maneuver, the attitude avoids
certain rotational areas (constrained zones) while the
control torques satisfy an a priori bound. Note that
in contrast to potential function-based methods, which
usually deal with particular types of constraints, here
we consider generic attitude constrained zones.

The contributions of this paper are described hereafter.
First, we construct overlapping sampling cells that cover
the whole manifold SO(3) with some benign properties
that are crucial for the construction of a valid graph
abstraction. Each constructed cell is centered around a
sampling point on SO(3) generated using the approach
of [12]. Another interesting feature of the proposed cell

partitioning is that, for any two neighbouring sampling
rotations, or any two rotations within the same cell,
the geodesic attitude maneuvering between them stays
within the given cell(s). This property allows to obtain a
continuous path over the configuration manifold SO(3)
from a given path over the abstracted graph. Then,
based on the proposed cell abstraction, we model the
unconstrained zone as an undirected graph and search
algorithms are used to generate a feasible path over the
graph. Next, we give necessary and sufficient conditions
for the existence of a feasible path in SO(3) that solves
the constrained attitude maneuver problem. Finally, a
smooth reference trajectory is constructed from the ob-
tained feasible path and a saturated low-level control
law is used to robustly track the reference trajectory.

2 Notations and Preliminaries

The sets of real, non-negative real and positive in-
teger numbers are denoted as R,R≥,N, respectively.
Rn denotes the n-dimensional Euclidean space. For
any vectors x, y ∈ Rn, their inner product is de-
fined as 〈x, y〉 := x>y. The 2-norm of a vector x is

‖x‖2 :=
√
x>x . The Frobenius norm of A is de-

fined as ‖A‖F :=
√

tr(A>A), where tr(·) denotes

the trace of a matrix. I is the 3-dimensional identity
matrix. Let Sn denote the n-dimensional unit sphere
Sn := {x ∈ Rn+1 | ‖x‖2 = 1}.
Any rotation matrix is an element of the Special Or-
thogonal group SO(3) := {R ∈ R3×3|R>R = RR> =
I, det (R) = 1} which, when associated with the matrix
multiplication operation, forms a Lie group. The associ-
ated Lie algebra, denoted as so(3), consists of the set of
all skew-symmetric 3 × 3 matrices, i.e., so(3) := {Ω ∈
R3×3 | Ω> = −Ω}. The map [(·)]× : R3 → so(3) and
its inverse map ∨ : so(3) → R3 are explicitly defined as

x =
[
x1
x2
x3

]
[(·)]×−−−⇀↽−−−
(·)∨

[x]× =
[ 0 −x3 x2
x3 0 −x1
−x2 x1 0

]
.

The Lie algebra so(3) allows to represent rotation ma-
trices on SO(3) via the matrix exponential exp(·).

For [x]× ∈ so(3), exp([x]×) = I +
sin(‖x‖2)

‖x‖2
[x]× +

1− cos(‖x‖2)

‖x‖22
[x]2× when x 6= 0, and exp([x]×) = I oth-

erwise [16]. For all rotation matricesR with tr(R) 6= −1,
the exponential map admits an inverse logarithmic map

given by log(R) =
θ(R)

2 sin(θ(R))
(R − R>) when R 6= I,

and log(R) = 0 otherwise, where θ(R) is the rotation an-
gle associated to R and θ(R) := arccos ((tr(R)− 1)/2)
[16]. Given two rotation matrices R1 and R2 with
tr(R1R

>
2 ) 6= −1, the geodesic interpolation between R1

and R2 is R(τ) := R1 exp(τ log(R>1 R2)), 0 ≤ τ ≤ 1,
which defines a path connecting R1 and R2. More gen-
erally, a path F (·) in A connecting R1 and R2, where A
is a subset of SO(3), is defined as a continuous function

2



F : [0, 1] → A with F (0) = R1 and F (1) = R2. If there
exists such a path F (·), we say (R1, R2) is connected. For
any R1, R2 ∈ SO(3) with tr(R1R

>
2 ) 6= −1, the angular

distance is given by d(R1, R2) := ‖log (R1R
>
2 )‖2.

3 Problem Formulation

3.1 Attitude Dynamics

The attitude dynamics of a rigid body are given by{
Ṙ = R[ω]×,

Jω̇ + [ω]×Jω = u,
(1)

where R ∈ SO(3) represents the attitude transforma-
tion from the body-fixed frame Ob to the inertia refer-
ence frame O, ω ∈ R3 is the corresponding angular ve-
locity expressed in the body-fixed frame Ob , J is the
constant and known inertia matrix and u ∈ R3 is the
input torque expressed in the body-fixed frame Ob. For
practical implementations, the control torque u should
satisfy the bound ‖u‖2 ≤ umax, where umax is an a priori
upper bound of the allowable control torque.

3.2 Constrained Attitude Control Problem

In many applications, attitude maneuvers of a rigid body
need to be performed within a certain region of SO(3).
One motivating example from [5] is shown in Fig.1. The
maneuver task is to point to stars, while the on-board
sensor should avoid direct exposure to bright objects
(the sun and the moon), and the spacecraft should main-
tain communication with the ground station.

Sun

Moon

Earth

Star1

Star2

Ground Station

Communication cone

Sensor

Ob

a1

Fig. 1. A spacecraft to be maneuvered such that the sensor
points from Star 1 to Star 2, while avoiding the sun and
the moon, and maintaining communication with the ground
station.

In this paper, we consider a generic keep-out region in
SO(3) denoted byO ⊂ SO(3). The corresponding active
region is the complement of the constrained region and
denoted by A = SO(3) \ O. Given the obstacle region

O, the initial and the target attitude R0 and Rf , the
goal is to find a continuous control law u satisfying the
allowable limit umax such that once the attitude starts
at R0, the attitude will evolve within A for all times
and rest on Rf at time 0 ≤ Tf < ∞, i.e., the attitude
trajectory should satisfy

R(0) = R0,

R(t) ∈ A for t ≥ 0,

R(t) = Rf for t ≥ Tf .

(2)

Moreover, in certain scenarios, the attitude task above
can be infeasible due to the obstacle regionO and in this
case, our goal is to detect these situations and return
infeasible.

To summarize, in this paper, we present a framework for
the constrained attitude maneuver problem in (2). The
control scheme consists of three components: 1) sam-
pling cell construction; 2) cell-to-cell planning; 3) low-
level control. In the following sections, we will give fur-
ther details on each of these three modules.

4 Sampling Cells in SO(3)

In this section, we provide the details on constructing the
sampling cells in SO(3) with certain favorable proper-
ties. Let the sampling set U := {R1, R2, . . . , Ri, . . . , Rn}
be a finite set with n elements in SO(3) and let N :=
{1, 2, . . . , n} ⊂ N be an index set. For each i ∈ N , define
the cell region Si as the open ball centered at Ri with a
radius θ ∈ (0, π/2), i.e., Si := {R ∈ SO(3) | d(R,Ri) <
θ},∀i ∈ N .The neighborhood setNi of a sampling point
Ri is defined as Ni := {R ∈ U | d(R,Ri) < 2θ,R 6=
Ri},∀i ∈ N , which contains all the sampling points
other than Ri that lie within angular distance 2θ of Ri.

4.1 Sampling Set in SO(3)

An approach on generating sampling points in SO(3)
has been proposed by Mitchell[12]. We recall in the fol-
lowing the main ingredients of the method. In accor-
dance with [12], we denote by S either the space S1,S2 or
SO(3). The metric dE(v, w) := ‖v−w‖2 for v, w ∈ S1 or
v, w ∈ S2. For any v, w ∈ SO(3), the Euclidean distance

dE(v, w) is defined as ‖v − w‖F /
√

2.

Definition 1 ({s, σ}-separated) A finite subset V of
S is called {s, σ}-separated if

max
w∈V

(
min

v∈V,v 6=w
dE(v, w)

)
≤ σs,

min
w∈V

(
min

v∈V,v 6=w
dE(v, w)

)
≥ s/σ,

(3)

where s is the sampling length step, and σ ≥ 1.

Definition 1 states the local distribution properties of the
sampling points. If σ ≈ 1, the distribution of sampling
points is considered as not too dense nor too coarse.
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Definition 2 ({s, ρ}-covered) A finite subset V of S
is called {s, ρ}-covered if

sup
w∈S

(
min
v∈V

dE(v, w)

)
≤ ρ
√

dimSs/2, (4)

where s is the sampling length step, ρ > 0, and dim(S) is
the dimension of S, where dimS1 = 1, dimS2 = 2 and
dimSO(3) = 3.

Definition 2 considers the covering property, since it de-
fines the maximum distance between an arbitrary ele-
ment in S and a sampled point in V. These two unifor-
mity measures can be easily extended to other spaces.
For example, for a regular lattice in R3, the correspond-
ing values are σ = 1, ρ = 1.
For any given sampling step s and a finite subset U ⊂
SO(3), a lower bound on σ can be calculated from (3) to
guarantee that the set U is {s, σ}-separated. The value

sup
w∈SO(3)

min
v∈U

dE(v, w) is obtained via numerical method

( by choosingw arbitrarily from SO(3) with a large num-
ber of trials), thus ρ can be calculated in view of (4).

Algorithm 1 Sampling set algorithm.

Input: sampling step s
Output: sampling set U

initialize:
1: U = { }

construct the sampling set in SO(3):
2: construct the sampling set V 1, V 2 on S1,S2
3: for v in V 2 do
4: r3 ← v
5: pick M ∈ SO(3) such that M(0, 0, 1)> = r3
6: for w = (w1, w2) in V 1 do
7: r2 ←M(w, 0)>, r1 ← r2 × r3
8: R = (r1, r2, r3), U ← U ∪ {R}
9: end for

10: end for
11: return U

In [12], the author provides a method to generate
the sampling set on SO(3) based on the finite dis-
crete sample sets V 1 ⊂ S1 and V 2 ⊂ S2, which
are generated by minimizing a repulsive potential

E =

k−1∑
i=1

k∑
j=i+1

d−1E (vi, vj) with vi, vj ∈ V 1 or vi, vj ∈ V 2,

where the cardinality k depends on the sampling step
s. The sampling algorithm is summarized in Algorithm
1. Software for implementing Algorithm 1 and generat-
ing the sampling points in SO(3) is accessible from the
website 1 . One sampling set example is given later.

4.2 Construction of the Sampling Cells

In this subsection, we use the sampling points on SO(3)
generated by Algorithm 1 to construct the intercon-

1 https://mitchell-lab.biochem.wisc.edu/SOI/index.php

nected sampling cells Si. These sampling cells cover the
whole space SO(3) with some other favorable properties
as expressed in Theorem 1.

Theorem 1 Suppose U ⊂ SO(3) to be a finite sampling
set, which is {s, σ}-separated and {s, ρ}-covered such that
s, σ, ρ satisfy the following inequalities:

{
arcsin (σs/2) < 2 arcsin (s/(2σ))

ρσ < 2/
√

3
(5)

Let θ be the radius of the open cells Si. Choose θ

such that max
(

arcsin(σs/2), 2 arcsin(
√

3ρs/4)
)
< θ <

2 arcsin(s/2σ). Then the sampling set U has the follow-
ing properties

i. For all i ∈ N , Ni 6= ∅;
ii. For all i, j ∈ N , i 6= j, we have Rj /∈ Si;

iii. For allRi ∈ U , and allRj ∈ Ni, θ < d(Ri, Rj) < 2θ
iv. ∪

i∈N
Si = SO(3).

Property (i) of Theorem 1 shows that every sampling cell
Si has some neighboring sampling cells, e.g. Sj . Prop-
erty (ii) further states that the center point Rj of Sj is
guaranteed to be outside of the cell Si for any neighbor-
ing cells Si and Sj . These two properties are concluded
in property (iii), stating that every pair of neighboring
sampling points Ri and Rj satisfies θ < d(Ri, Rj) < 2θ.
Finally, property (iv) shows that the union of all the ob-
tained sampling cells covers the whole space SO(3).

PROOF. Note that for any two elements v, w ∈ SO(3)
with tr(vw>) 6= −1, dE(v, w) = 2 sin(d(v, w)/2) holds
[12]. Thus dE(v, w) can be seen as a function with
respect to d(v, w), which, as d(v, w) ∈ [0, π), is a
monotonically increasing function. Since U is {s, σ}-

separated, by definition, max
w∈U

(
min

v∈U,v 6=w
dE(v, w)

)
≤ σs

and min
w∈U

(
min

v∈U,v 6=w
dE(v, w)

)
≥ s/σ.

Invoking the relation between the Euclidean distance
and the angular distance, we have

max
w∈U

(
min

v∈U,v 6=w
d(v, w)

)
≤ 2 arcsin (σs/2) , (6)

min
w∈U

(
min

v∈U,v 6=w
d(v, w)

)
≥ 2 arcsin (s/(2σ)) . (7)

As U is {s, ρ}-covered, invoking the relation between the
two distance metrics again, we have

sup
w∈SO(3)

(
min
v∈U

d(v, w)

)
≤ 2 arcsin

(√
3ρs/4

)
. (8)
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Choose θ such that max
(

arcsin(σs/2), 2 arcsin
(√

3ρs/4
))

<

θ < 2 arcsin (s/2σ), which is feasible due to (5) with
some straightforward calculation. Then the properties
in Theorem 1 can be shown by contradiction.

1) Suppose that there exists j ∈ N such that Nj = ∅.
This implies that for all i ∈ N , i 6= j, d(Ri, Rj) ≥
2θ > 2 arcsin (σs/2). However, since U is assumed
to be {s, σ}-separated, this contradicts with (6).
Thus no such j exists, which completes the proof of
property (i).

2) Suppose that there exist i, j ∈ N , i 6= j, and Rj ∈
Si, then d(Ri, Rj) < θ < 2 arcsin (s/(2σ)). How-
ever, since U is assumed to be {s, σ}-separated, this
contradicts with (7). Thus property (ii) is proven.

3) Property (iii) is a straightforward conclusion from
(i) and (ii).

4) Suppose that there exists an attitude R′ ∈
SO(3) such that R′ /∈ ∪

i∈N
Si. It implies that

d(Ri, R
′) ≥ θ for all i ∈ N , and then d(Ri, R

′) >

2 arcsin
(√

3ρs/4
)
,∀i ∈ N , which contradicts with

(8). Thus property (iv) holds. 2

Remark 1 Suppose, for some s, the distribution param-
eters σ and ρ of the sampling provided by Algorithm 1
cannot satisfy (5). Then s should be tuned. Although we
do not provide a theoretical guarantee that for all s, the
generated samplings will satisfy (5), a numerical result
for arbitrary s is shown in Fig. 2, where the shaded area
denotes the region of feasible (ρ, σ) pairs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
1

1.1

1.2

1.3

1.4

Fig. 2. Numerical result of feasible (ρ, σ) pairs.

Example 1 Choosing s = 0.2567 , the distribution pa-
rameters of the sampling set U are σ = 1.017, ρ = 0.95
with n = 4392. Thus, one possible θ is 13 degrees.

In the following, we assume that a sampling set satis-
fying (5) has been found and the properties (i)∼(iv) in
Theorem 1 will be used as a base stone.

4.3 Attitude Sub-Maneuvers Design

Before presenting the planning algorithm on the cell
level, we introduce two types of attitude maneuvers: 1)
the attitude traverses from one cell to a neighboring
cell and 2) the attitude maneuvers within one cell. We
next show in the following propositions that, for any two

neighbouring sampling rotations, or any two rotations
within the same cell, the geodesic path between them
stays within the given cell(s). This is an important prop-
erty for the validity of the graph abstraction that will be
discussed in the next section.

Proposition 1 The interpolation along geodesics on
SO(3) between two neighboring sampling rotations Ri
and Rj is within Si ∪ Sj.

PROOF. From Theorem 1, for any sampling point
Ri, and any sampling point Rj ∈ Ni, we have
θ < d(Ri, Rj) < 2θ, with θ < π/2. Let d(Ri, Rj) := θ1.
The geodesic path from Ri to Rj is Ri,j(τ) =

Ri exp(τ log(R>i Rj)) for 0 ≤ τ ≤ 1. Thus log(R>i Ri,j(τ)) =

τ log(R>i Rj). For 0 ≤ τ ≤ 1/2, d(Ri, Ri,j(τ)) =

‖log(R>i Ri,j(τ))‖2 = τ‖log(R>i Rj)‖2 = τθ1 ≤ θ1/2 <
θ. Thus Ri,j(τ) ∈ Si for τ ∈ [0, 1/2] by definition. Simi-
larly, it can be verified that for τ ∈ [1/2, 1],Ri,j(τ) ∈ Sj .
Thus up to τ = 1/2, the interpolation is in Si, and
enters and stays in Sj for τ ≥ 1/2. 2

Proposition 2 For any cell Si, i ∈ N and two arbitrary
points Ri1, Ri2 ∈ Si, the geodesic path between Ri1 and
Ri2 is within Si.

PROOF. In the proof we need to use unit quaternion
representation. A unit quaternion is defined by the vec-
tor Q := (η,q) ∈ S3 such that η ∈ R is the scalar
part and q ∈ R3 is its vector part. Let Q1 = (η1,q1)
and Q2 = (η2,q2) be two unit quaternions correspond-
ing to the rotation matrices R1 and R2, respectively.
The quaternion multiplication is defined by Q1 ·Q2 :=
(η1η2 − 〈q1,q2〉, η1q2 + η2q1 + q1 × q2). By letting
QI = (1, 0, 0, 0) to be the unit identity quaternion, the
inverse of a unit quaternion Q is defined as Q−1 =
(η,−q). With a slightly abuse of notation, we define
the angular distance between the two quaternions as
d(Q1,Q2) := 2 arccos(|η1η2 + 〈q1,q2〉|). It can be veri-
fied that d(Q1,Q2) = d(QI ,Q

−1
1 Q2) = d(R1, R2) [17].

For more about unit quaternion and the representation
conversion, readers may refer to [17] for details.

Ri1, Ri2 ∈ Si implies that d(Ri1, Ri) < θ and
d(Ri2, Ri) < θ. From the triangle inequality of the
angular distance, it holds that d(Ri1, Ri2) < 2θ < π.
Choose Qi,Qi1,Qi2 to be the corresponding quater-
nions of Ri, Ri1, Ri2, where 〈Qi,Qi1〉 ≥ 0, 〈Qi,Qi2〉 ≥
0, 〈Qi1,Qi2〉 ≥ 0 as vectors in R4. If Qi1 = Qi2, the
interpolation is trivial. Otherwise, the interpolation
from Q1 to Q2 along geodesics is given by [18] Q(τ) =
(sin((1− τ)γ)Qi1 + sin(τγ)Qi2) /sin(γ), 0 ≤ τ ≤ 1,
where γ = arccos〈Qi1,Qi2〉 ∈ (0, π/2). Thus, Q−1i ·
Q(τ) = Q−1i · (sin((1− τ)γ)Qi1 + sin(τγ)Qi2) /sin(γ).
Note that for any quaternions Q1,Q2,Q3, the prod-
uct distribution law holds, i.e., Q1 · (Q2 + Q3) =
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Q1 · Q2 + Q1 · Q3. Thus, Q−1i · Q(τ) =
(

sin((1 −
τ)γ)Q−1i ·Qi1 + sin(τγ)Q−1i ·Qi2

)
/sin(γ).

Without loss of generality, assume d(Ri1, Ri) ≤
d(Ri2, Ri) := α < θ. Considering only the scalar compo-
nents ητ,0, η1,0, η2,0 of Q−1i ·Q(τ),Q−1i ·Qi1,Q

−1
i ·Qi2,

we have η1,0 ≥ η2,0 = cos(α/2) and thus ητ,0 =
(

sin((1−
τ)γ)η1,0 + sin(τγ)η2,0

)
/sin(γ) ≥ cos(α/2)

(
sin((1 −

τ)γ)+sin(τγ)
)
/sin(γ), 0 ≤ τ ≤ 1. With some calcula-

tions, it can be shown that for 0 ≤ τ ≤ 1, 0 < γ < π/2,(
sin((1 − τ)γ) + sin(τγ)

)
/sin(γ) ≥ 1 holds. Thus

ητ,0 ≥ cos (α/2) for 0 ≤ τ ≤ 1. This leads to
d(Q(τ),Qi) ≤ max(d(Qi1,Qi),d(Qi2,Qi)) = α <
θ, 0 ≤ τ ≤ 1, i.e., the interpolation along geodesics
between Ri1 and Ri2 is within Si. 2

Propositions 1 and 2 indicate that once we have a path
over the cells, one feasible path in SO(3) is the concate-
nation of geodesic paths between two neighboring sam-
pling points or two points in one cell. Details on finding a
feasible path on the cell level is given in the next section.

5 Path Planning in SO(3)

In this section, with the cell abstraction of SO(3) and
the cell-to-cell attitude sub-maneuvers, we construct a
graph model to formulate the path planning problem.
This section is concluded with a theoretical feasibility
analysis. Recall that givenR0, Rf and the active zoneA,
the constrained attitude path planning is to find a path
F : [0, 1]→ SO(3) such that F (0) = R0, F (1) = Rf and
F (t) ∈ A for all t ∈ [0, 1] or return infeasible.

In order to facilitate the path planning on the cell level,
a graph that abstracts SO(3) needs to be built. We re-
fer to a finite vertex set V with its elements to be all the
sampling cells V := {S1, S2, . . . , Sn}, and the edge set
E to be E := {(Si, Sj) | i 6= j, Ri ∈ Nj}.
By definition, (Si, Sj) ∈ E implies (Sj , Si) ∈ E as well.
Thus, an undirected graph G = (V,E) is constructed as
a representation of the incidence relations between the
sampling cells. A path of length m in a graph is defined
as a sequence of vertices Si0 , Si1 , . . . , Sim such that for
k = 0, 1, . . . ,m − 1, the vertices pair (Sik , Sik+1

) ∈ E.
A single vertex is defined as a path with length 0. An
induced subgraph G′ = (V ′, E′) is defined as V ′ ⊆
V,E′ := {(Si, Sj) ∈ E | Si, Sj ∈ V ′}. For any R0

and Rf ∈ SO(3), we denote by V0 and Vf , respectively,
the set of sampling cells that contain R0 and Rf , i.e.,
V0 := {Si ∈ V | R0 ∈ Si}, Vf := {Si ∈ V | Rf ∈ Si}.
From property (iv) of Theorem 1, V0 6= ∅ and Vf 6= ∅.
Based on the graph abstraction of the rotation space
SO(3), we show that there is an existence equivalence
of a path in any induced subgraph G′ = (V ′, E′) and a
path in the union region of cells from V ′, expressed in
the following Proposition.

Proposition 3 Suppose graph G′ = (V ′, E′) is an in-
duced subgraph of G. A path F (·) exists in ∪iSi connect-

ing R0 and Rf for Si ∈ V ′, if and only if a path in G′
exists that connects V0 and Vf .

PROOF. Necessity proof Denote the index set N ′ of
V ′ to be N ′ := {i1, i2, . . . , im}. Assume there exists a
path F : [0, 1] → ∪

ik∈N ′
Sik connecting R0 and Rf . A

map M : [0, 1] → 2N
′

can be defined as M(x) := {ik ∈
N ′ | F (x) ∈ Sik} indicating the index of cells containing
F (x). By definition, F (·) is continuous. Since Sik is an
open set, ∀x0 ∈ (0, 1), suppose F (x0) ∈ Sik , and then
there exists ε > 0 such that F (x) ∈ Sik for x0− ε < x <
x0 + ε, i.e., ∀x ∈ (0, 1),∃ε > 0,M(x− ε)∩M(x+ ε) 6= ∅.
Now consider a continuous trajectory that transverses
from region Sij to region Sik , ij , ik ∈ N ′. During that
transverse, M(x) will contain {ij}, {ij , ik} and {ik} as x
increases. That implies the existence of a corresponding
path from Sij to Sik in G′.
Sufficiency proof Consider a path in G′ connecting V0
and Vf . One possible path can be constructed as the
concatenation of geodesic paths between two neighbor-
ing sampling points or between two points in one cell, as
shown in Fig. 3. From Propositions 1 and 2, the designed
path is guaranteed to be in ∪

ik∈N ′
Sik . 2

As a natural corollary, the graph G has the following
property. This corollary shows that based on the con-
structed graph abstraction G, we can go from any initial
attitude to any target attitude in the obstacle-free sce-
nario.

Corollary 1 Graph G is connected.

PROOF. For arbitrary two vertices Sl, Sk in G, choose
Rl, Rk, the center points of Sl, Sk, as the starting and
ending point, respectively. Thus, V0 = {Sl}, Vf = {Sk}.
Recall that for any Rl, Rk ∈ SO(3), Rl and Rk are con-
nected by their geodesics. From Proposition 3, it implies
that there exists a path between Sl and Sk in graph G.
Thus, graph G is connected. 2

When there exist some obstacle regions in SO(3), we
need to abstract the keep-out region O and the active
region A with sampling cells. Define the set of feasible
cells by

VF := {Si ∈ V | O ∩ Si = ∅}. (9)

Since A = SO(3) \ O, we deduce that for all Si ∈
VF , Si ⊂ A. Similarly, the set of over-approximate fea-
sible cells is defined by VF := {Si ∈ V | A ∩ Si 6=
∅}. The feasible region F and its over-approximation
F are defined as F := ∪

i
Si, where Si ∈ VF and F :=

∪
i
Si, where Si ∈ VF . Based on the definitions of F ,F ,

we can show that F is an under-approximate region of
A (F ⊆ A), while F is an over-approximate region of A
(A ⊆ F). In fact, for any R ∈ F , in view of (9), R /∈ O,
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and thus R ∈ A. Similarly, for any R ∈ A, as the union
of the sampling cells covers SO(3), R must also lie in
some cell Si ∈ VF , and thus R ∈ F .

Correspondingly, the induced subgraphs GF and GF , are
defined as GF := (VF , EF ), GF := (VF , EF ), where
EF = {(Si, Sj) ∈ E | Si, Sj ∈ VF}, EF = {(Si, Sj) ∈
E | Si, Sj ∈ VF}. The algorithm for the graph abstrac-
tion is summarized in Algorithm 2.

Algorithm 2 Graph abstraction for the active regionA.

Input: O,A, R0, Rf , sampling set U, θ
Output: GF and GF

initialization :
1: from R0, Rf , U, θ, construct G, V0, Vf
2: define VF = V, VF = { }

construct the subgraphs:
3: for each Ro in O do
4: for Ri in U do
5: if d(Ro, Ri) ≤ θ and Si ∈ VF then
6: VF ← VF with the node Si removed
7: end if
8: end for
9: end for

10: construct GF from VF and G
11: for each Ra in A do
12: for Ri in U do
13: if d(Ra, Ri) < θ and Si /∈ VF then
14: VF ← VF with the node Si added
15: end if
16: end for
17: end for
18: construct GF from VF and G

Remark 2 In Algorithm 2, the regions O and A usually
contain infinite elements. When implementing Algorithm
2, we first generate a large number of random rotations.
Those rotations that lie in O are then used to construct
GF in step 3; otherwise, they are used to construct GF in
step 11.

With a finite graph model abstracting the active regions
A, the process of finding a feasible path is tractable by
many classic complete graph search algorithms, such as
Dijkstra’s algorithm or A∗ algorithm [19]. These search
algorithms are guaranteed to find a path in a finite graph
if it exists or terminate otherwise.

Assume that a path Si0Si1 . . . Sim of length m in GF
is found that connects V0 and Vf . The feasible path in
GF is thus the concatenation of geodesic paths between
R0Ri0Ri1 . . . RimRf , where Rik is the sampling point
of cell Sik for k = 0, 1, · · · ,m. Propositions 1 and 2
guarantee that this path lies in F , and thus in A. An
illustration on how the attitude transfers from R0 to Rf
is shown in Fig. 3.

To establish how complete our algorithm is in terms of
finding a path in A, we provide a sufficient condition
and a necessary condition separately for arbitrary con-
strained zones.

Ri0 θ

Si0

Si2

Si1

Ri1

Ri2

Si3

Ri3

Rim

Sim

Rf

R0

Rotational spaceSO(3)

R0: initial attitude
: target attitudeRf

Ri0, Ri1, · · · , Rim: sampling points
: sampling cellsSi0, Si1, · · · , Sim

: radius of the cellsθ

Fig. 3. An illustration of cell-to-cell attitude maneuvering.

Corollary 2 (Sufficient condition) If there exists a
path in GF connecting V0 and Vf , then there exists a path
in A connecting R0 and Rf .

PROOF. Recall F ⊆ A. From Proposition 3, if there
exists a feasible solution in F , then there exists one path
in graph GF , and vice versa. Thus, a path in GF connect-
ing V0 and Vf indicates that a path exists in F connect-
ing R0 and Rf , which further implies that a path exists
in A connecting R0 and Rf . 2

Corollary 3 (Necessary condition) If there exists a
path in A connecting R0 and Rf , then there exists a path
in GF connecting V0 and Vf .

PROOF. Similarly, recall A ⊆ F . From Proposition 3,
if there exists a feasible solution in F , then there exists
one path in graph GF , and vice versa. A path in A con-

nectingR0 andRf indicates that a path in F connecting
R0 and Rf , and thus implies a path in GF connecting V0
and Vf . 2

Based on these two corollaries, we can reason about the
existence of a path in A based on the graph search re-
sults on GF and GF at a fixed sampling step s. The
search algorithm gives out three possible feasibility re-
sults, categorized as feasible problem (a path in GF is
found), infeasible problem (no path in GF is found),
or infeasible problem at the present s (no path in
GF is found but a path in GF is found). For the first case,
the search algorithm will generate a path in F , thus in
A. Moreover, when s→ 0, the feasible region F approx-
imates A in the sense of Haar Measure, i.e., the measure
of A−F approaches to 0 as s→ 0.

Remark 3 Note that since the graph is finite and con-
structed at a given sampling step (resolution level), the
completeness of the search algorithm can be seen as a res-
olution completeness. Therefore, it is guaranteed that we
will find a feasible path in finite time when one exists at
that resolution.
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6 Control Law Design

In this section, assume that we have obtained (as an out-
put of the planning module) a feasible path consisting
of the sequence R0Ri0Ri1 . . . RimRf where Ri1, . . . , Rim
arem intermediate sampling points corresponding to the
cells Si1, . . . , Sim that lie within the active space A, see
Figure 3. Our objective is to generate a reference atti-
tude trajectory Rr(t) that passes through these points
along geodesics and then develop a feedback control law
u to track the obtained reference attitude trajectory. For
convenience of notation, we re-denote the feasible path
as Rr0Rr1Rr2 . . . RrL, where L = m+ 2, and define the
index set Nr := {0, 1, 2, · · · , L}.

6.1 Reference Attitude Trajectory

In what follows, a smooth reference trajectory is de-
rived which satisfies the attitude reference dynamics and
passes though the designed feasible path. The reference
trajectory between any two points of the feasible path is
generated along the geodesic so that the obtained over-
all trajectory remains in the active region A as shown in
Propositions 1 and 2.

Recall that the total desired maneuvering time is Tf .
Now consider a rest-to-rest reference attitude maneuver
between Rri and Rri+1 for i ∈ Nr \ {L}. For simplicity,
we assume that the maneuvering times between any two
points Rri and Rri+1 are identical and defined by T =
Tf/L. Denote the intermediate maneuver time instants
as ti = iT, i ∈ Nr, such that our desired reference
trajectory satisfies Rr(ti) = Rri. The dynamics of the
reference attitude system are given by{

Ṙr = Rr[ωr]×,

Jω̇r + [ωr]×Jωr = ur,
(10)

where Rr ∈ SO(3) represents the reference attitude,
ωr ∈ R3 is the reference angular velocity, and ur ∈ R3

is the reference control input.

We consider the following formulation of the attitude
reference trajectory that maneuvers along the geodesic
between two waypoints of the path,

Rr(t) =

{
Rri exp(τ(t)Ai) for t ∈ [ti, ti+1), i ∈ Nr \ {L},
Rf for t ≥ Tf .

(11)
where Ai := log(R>riRri+1) and τ : R≥ → [0, 1] is a
scalar-valued function to be defined. In particular, we
consider a piecewise continuous function τ(·) (inspired
from [15]) as given below, for i ∈ Nr \ {L},

τ(t) =


t− ti
T
− 1

2π
sin

(
2π(t− ti)

T

)
, t ∈ [ti, ti+1),

1, t ≥ Tf .
(12)

One can show that τ(t) = 0 for t = ti, i ∈ Nr \ {L}
and τ̇(t) is not defined for t = ti, i ∈ Nr. Defining
τ̇(t) := 0 at those time instants, one can further show
that τ̇(t), τ̈(t) not only exist but also are continuous and
bounded. These properties are useful as we could ob-
tain: 1) a differentiable reference attitude in (11) that
satisfies the end-point requirement; 2) a continuous and
bounded control torque. Here we note that this function
is just one example and many other functions may be
found that satisfy similar properties.

Then, invoking the reference attitude dynamics in (10),
the reference angular velocity ωr(t) is obtained ωr(t) =
τ̇(t) exp(−τ(t)Ai)A

∨
i , which is a differentiable function

of t. Taking the derivative of ωr(t), we have ω̇r(t) =
τ̈(t) exp(−τ(t)Ai)A

∨
i − τ̇2(t)Ai exp(−τ(t)Ai)A

∨
i . Fi-

nally, the reference control law is derived from (10) as

ur = Jω̇r + [ωr]×Jωr (13)

with ωr(t), ω̇r(t) defined above.

Theorem 2 Consider the attitude dynamics in (1), the
obstacle region O, and the initial and the target atti-
tudes R0, Rf . Suppose that the planning module gener-
ates a feasible path asRr0Rr1Rr2 . . . RrL and the attitude
maneuver starts from R0, ω(0) = 0. With the control
u = ur in (13) applied, the attitude will follow exactly the
reference motion described in (11) and reach Rf at the
time instant Tf while avoiding the obstacle regionO, i.e.,
R(t) = Rr(t) ∈ SO(3) \ O for 0 ≤ t ≤ Tf , R(Tf ) = Rf .

PROOF. The attitude reference is constructed based
on the concatenation of geodesic paths between
Rr0Rr1Rr2 . . . RrL. Note Rr0 = R0, RrL = Rf , Rri ∈
VF for i = Nr \ {0, L}. Propositions 1 and 2 state that
the sub-maneuver between (Rri, Rri+1), i = Nr \ {L}
along the geodesic lies within the feasible region
F ⊂ SO(3) \ O. As the control signal is based on the
inverse of the differentiating process, which is omitted
here, the actual attitude will follow exactly the refer-
ence motion and thus reach Rf at the time instant Tf
while avoiding the obstacle region O. 2

6.2 Attitude Error Dynamics and Controller Design

In the presence of perturbations the feed-forward con-
troller alone is not sufficient to stabilize the attitude tra-
jectory around the reference trajectory. Hence we derive
an attitude feedback control law to track the reference
trajectory generated above. Let us define the attitude
error R̃(t) := R>r R, and the angular velocity error 2

ω̃(t) := ω − R̃>ωr where Rr and ωr are the reference

2 This angular velocity error has been widely used in the
field of attitude control and represents the error between the
body-frame angular velocity ω and the body-frame repre-
sentation, namely R̃ωr, of the reference angular velocity ωr

such that both quantities are compared in the same frame.
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attitude and angular velocity specified in the previous
subsection. In view of (1) and (10), we derive the atti-
tude error dynamics{ ˙̃R = R̃[ω̃]×,

J ˙̃ω = f(R̃, ω̃, ωr)ω̃ − JR̃>ω̇r − [R̃>ωr]×JR̃
>ωr + u,

(14)

where f(R̃, ω̃, ωr) = [Jω̃]× + [JR̃>ωr]× − [R̃>ωr]×J −
J [R̃>ωr]× is a skew-symmetric matrix. We then propose
the following attitude control law

u := JR̃>ω̇r + [R̃>ωr]×JR̃
>ωr

− k1(R̃− R̃>)∨ − k2 tanh(ω̃), (15)

where k1, k2 > 0 are tuning gains and tanh(·) is the
element-wise hyperbolic tangent function.

Proposition 4 Consider the attitude error dynamics in
(14) with the reference motion described in (11). Under

the feedback law (15), the equilibrium (R̃, ω̃) = (I, 0) is
asymptotically stable.

The control law consists of the feedforward term (first
two terms) that coincides with the reference control law

when there exists no attitude error (R̃ = I) and the
feedback term (the last two terms) that robustly tracks
the reference attitude. This controller shares a similar
structure with other recent attitude tracking works such
as [20] except that the we use here the saturation func-
tion tanh(·) to bound the control a priori. The proof for
Proposition 4 can be derived following similar steps as
in [20] and thus omitted here.

Furthermore, the control signal u in (15) is bounded by

‖u‖2 ≤ λmax(J)‖ω̇r‖2 + λmax(J)‖ωr‖22 + 2k1 +
√

3k2,

where we used ‖(R̃ − R̃>)∨‖2 = ‖R̃ − R̃>‖F /
√

2 ≤
2, ‖tanh(ω̃)‖2 ≤

√
3. From the reference trajectory

in (11) and τ(t) in (12), we further have ‖ωr‖2 ≤
4θ/T, ‖ω̇r‖2 ≤ (4πθ + 16θ2)/T 2, where θ is the ra-
dius of the sampling cells. Thus, it follows ‖u‖2 <

λmax(J)(4πθ + 32θ2)/T 2 + 2k1 +
√

3k2. Based on
this explicit bound, one can choose T, k1, k2 such

that T >
√
λmax(J)(4πθ + 32θ2)/umax, 0 < k1 ≤

(umax − ∆)/4, 0 < k2 ≤ (umax − ∆)/2
√

3, where
∆ := λmax(J)(4πθ + 32θ2)/T 2. Thus the control input
constraints are imposed.

7 Simulations

In this section, we will show a numerical simula-
tion of our proposed method for non-convex obsta-
cles. The inertia matrix of the rigid body is given

by J =
[

5.5 0.06 −0.03
0.06 5.5 0.01
−0.03 0.01 0.1

]
kg · m2. Setting the ini-

tial sampling step s = 2 sin(π/24), then the corre-
sponding cell sampling has 4392 sampling points with
a radius θ = 0.2269 rad (13◦). umax is set to be

2 N · m. The simulation result is conducted with a
perturbed attitude model under additive disturbance

d(t) = 0.25 ×
[

0.15 sin(0.5t)+0.05
0.15 cos(0.5t)−0.05

0.1 sin(0.5t)+0.01 cos(0.5t)

]
N · m on the

actuator.

Suppose the constrained zones O := OA \ M,
where OA := ∪

i
{R | 〈ai, Ra0〉 ≥ cosαi}, i =

1, 2, 3, 4, M := {R ∈ SO(3)|〈b, Ra0〉 ≥ cos γ},
a0 = (1, 0, 0)>, a1 = (0.174,−0.934,−0.034)>,a2 =
(0, 0.7071, 0.7071)>,a3 = (−0.853, 0.436,−0.286)>,a4 =
(−0.122,−0.140,−0.983)>,b = (0.5080,−0.8606,−0.0358)>,
α1 = α2 = α3 = 40◦, α4 = 20◦, γ = 25◦. The obstacle
zone is thus non-convex. The initial attitude is set as
R(0) = exp(135◦/180◦ × π[e3]×) with an initial angu-
lar velocity of ω(0) = 0 rad/s. The target attitude is

Rf =
[

0.3472 0 −0.9378
−0.9149 −0.2195 −0.3387
−0.2058 0.9756 −0.0762

]
.

With the initial sampling step s = 2 sin(π/24), the plan-
ning algorithm gives out infeasible at the present
resolution. Then we refine the sampling step to s =
2 sin(π/36) and θ = 0.1396 rad (8 degrees). At this res-
olution, the planning algorithm gives us a feasible path
with 16 steps. The planned trajectory and the actual
trajectory are depicted in Fig. 4. For a better illustra-
tion, Fig. 4(a) and Fig. 4(b) are obtained from two dif-
ferent viewpoints, where the initial attitude and the tar-
get attitude are denoted as the diamond and the cross,
respectively. More details on the attitude maneuver and
tracking errors are shown in Fig. 5. One can see that af-
ter Tf (80s), the tracking error is always less than 2◦.
Also, as shown in Fig. 5(b), the control input remains
bounded by umax for all times.

(a) (b)

Fig. 4. Attitude maneuvering trajectory (two viewpoints).

We also observe in simulation that given O, R0, Rf , a
finer sampling can yield a feasible path while a coarse
sampling may not. However, a smaller sampling step will
generate more transitions and lead to a growing compu-
tational time during planning and a larger control input
limit (assuming that Tf is fixed).

8 Conclusion

In this paper, we developed a new framework for the
constrained attitude maneuver problem. The framework
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Fig. 5. The attitude maneuvering error (a) and the control
signal u(t) (b) versus time.

consists of three main components: rotation space sam-
pling, planning and low-level control. For each compo-
nent, the corresponding theoretical guarantees are given.
First, the sampling cells are constructed as overlapping
cells in SO(3) with an identical radius around the sam-
pling points. The obtained sampling cells have the nice
properties that their union covers the whole rotation
space SO(3) and are distributed such that every sam-
pling point (center of the cell) is contained in one single
cell. Then, the proposed planning algorithm is resolu-
tion complete for a given sampling step and it termi-
nates when the original problem is infeasible. The sam-
pling and planning computations are all performed off-
line. Once a feasible path in the abstracted graph is ob-
tained, the smooth reference trajectory is generated by
following the geodesic on SO(3). Next, a feedback con-
trol law is designed to ensure that the true attitude tra-
jectory will follow the reference trajectory in presence of
perturbations. The proposed strategy can handle a gen-
eral class of constrained zones with a pre-defined control
input bound. Numerical simulation is performed in the
case of non-convex obstacle regions and validates the de-
sirable features of this constrained control approach on
SO(3).
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