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Abstract— In this paper, we show that under mild control-
lability assumptions a time-invariant Control Barrier Function
(CBF) can be constructed based on predictions with a finite
horizon. As a starting point, we require only a known subset
of a control-invariant set where the latter set does not need
to be explicitly known. We show that, based on ideas similar
to the Hamilton-Jacobi reachability analysis, the knowledge
on the subset of a control-invariant set allows us to obtain
a time-invariant CBF for the time-invariant dynamics under
consideration. We also provide a thorough analysis of the
properties of the constructed CBF, we characterize the impact
of the prediction horizon, and comment on the practical imple-
mentation. In the end, we relate our construction approach to
Model Predictive Control (MPC). With a relevant application
example, we demonstrate how our method is applied.

I. INTRODUCTION

Control Barrier Functions (CBF) have been introduced
in [1] as a control theoretic concept to render sets invariant
under given dynamics. Having their origin in the optimiza-
tion literature as barrier functions [2], [3], CBFs became
a successfully and widely applied approach to ensure con-
straint satisfaction; for a survey see [4]. Multiple approaches
to ensure constraint satisfaction via set-invariance have been
considered in the literature [5]. However with the concept
of CBFs, Control Lyapunov Functions (CLF) [6], [7] found
their control theoretic analogue for set-invariance. Both CBFs
and CLFs are generally difficult to find. However, once they
are found, a feedback control law is rather easily constructed.

The general task for finding a suitable CBF is as follows:
Consider a dynamical system

9x “ fpx, uq (1)

that is subject to the state constraint

x P H :“ tx | hpxq ě 0u (2)

where x P Rn, u P U Ď Rm, and h : Rn Ñ R is a Lipschitz
continuous function. Then a Lipschitz continuous function
b : Rn Ñ R shall be determined such that C :“ tx | bpxq ě

0u Ď H is a control-invariant subset of H. We call such a
function b a CBF.

The task of finding a CBF is straightforward if f is locally
controllable on the boundary of H and sufficiently large in-
puts u are admitted. In this case, h already constitutes a CBF.
However, as soon as only weaker controllability properties
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hold or U does not allow for sufficiently large control inputs,
a more sophisticated CBF construction is required.

To this end, several approaches have been proposed. In
[8]–[10], a sum-of-squares approach is taken that determines
a CBF over a basis of polynomial functions by solving
an optimization problem. Such approaches are limited to
polynomial dynamics and due to the complexity of the
optimization problem, it is not guaranteed that a CBF is
found even if it exists.

As CBF-based feedback control laws are gradient-based
[1], [4], they lead to a reactive behavior depending on the
gradient of a CBF at a particular point. However, it would
be advantageous if the controller already reacts before it
reaches the boundary of the set C that shall be rendered
invariant. In this way, peaks in the control signal could be
avoided. Therefore, several works consider a combination
of CBFs and predictive control schemes [11], [12]. These
approaches can alleviate the problem of overly high control
inputs due to their predictive nature, yet, they all assume
that CBFs are readily provided. In [13], a known control-
invariant set is extended by using finite horizon predictions
without constructing a CBF. The first approaches to construct
CBFs using a predictive strategy were proposed in [14],
[15]. Here, the system dynamics controlled by a nominal
feedback controller are simulated over an infinite horizon.
Based on a sensitivity analysis by varying a nominal control
law, [16] proposes a predictive CBF that only requires a finite
time-horizon in order to ensure set-invariance. However, the
time-horizon is not further specified. A different approach is
taken in [17]: there a combination between Hamilton-Jacobi
reachability analysis and CBFs can be found which does not
rely on a nominal control law. Despite the time-invariance
of the state constraints under consideration, it leads to a
time-dependent barrier function. This time-dependency only
vanishes when the prediction horizon tends to infinity.

In this paper, we show that under mild controllability
assumptions a time-invariant CBF can be derived using a
finite prediction horizon. In particular, we start from a subset
of an unknown control-invariant set, and then apply finite
horizon predictions to compute a CBF. Moreover, we provide
a thorough analysis of the constructed CBF, and we relate
the proposed CBF-based control strategy to MPC.

The sequel is structured as follows. In Sec. II, preliminar-
ies are reviewed. In Sec. III, we derive a CBF based on pre-
dictions with finite horizon and its properties are analyzed.
In Sec. IV, we relate the prediction-based CBF construction
to MPC. In Sec. V, we present some simulations, and a
conclusion is drawn in Sec. VI.



Notation: A continuous, strictly increasing function α :
Rě0 Ñ Rě0 with αp0q “ 0 is called a class K function. A
trajectory x : R Ñ X is denoted with boldface, and X rt1,t2s

denotes the set of all such trajectories defined on rt1, t2s.
The complement of a set A Ď Rn is denoted by Ac, the
Euclidean norm by || ¨ ||. The right-sided time-derivative is
defined as d

dt` bpxptqq :“ limεÑ0`
bpxpt`εqq´bpxptqq

ε . We say
that a property holds almost everywhere (a.e.) if it holds
everywhere except on a set of measure zero.

II. PRELIMINARIES

Throughout the paper, we consider system dynamics (1)
where f is locally Lipschitz-continuous in both of its ar-
guments to ensure the uniqueness of its solutions; forward
completeness is assumed. By φpt;x0,uq, we denote the
solution to (1) with initial state xp0q “ x0, and input
trajectory u : Rě0 Ñ U ; the first argument t denotes the
time at which φ is evaluated. In the sequel, we review the
most important concepts for developing our main results.

A. Control Barrier Functions

Let b : H Ñ R and define C as its zero-superlevel set
C :“ tx | bpxq ě 0u. We call b a differentiable CBF to (1)
if b is differentiable and there exists a class K function α
such that for all x P C it holds supuPU

␣

Bb
Bx pxq fpx, uq

(

ě

´αpbpxqq. However, confining ourselves to differentiable
CBFs is limiting. Hence, we relax the differentiability of
b and only require from now on that b is continuous and
piecewise differentiable. In this case, the derivative d

dtbpxq

cannot be expressed as d
dtbpxq “ Bb

Bx pxq fpx, uq anymore
because the gradient Bb

Bx pxq may not exist for x P H.
Therefore, we replace the derivative d

dtbpxq by the right-sided
derivative d

dt` bpxq. By following [18, p. 155], we can rewrite
the derivative d

dt` bpxq as

d

dt`
bpxptqq “

d

dσ`
bpxptq ` σfpxptq, uptqqq

ˇ

ˇ

ˇ

ˇ

σ“0

(3)

and state it in terms of dynamics f . We can now define a
broader class of CBFs as follows.

Definition 1 (Generalized CBF). A locally Lipschitz con-
tinuous function b : H Ñ R is a generalized CBF to (1) if
there exists a class K function α such that for all x P C

sup
uPU

"

d

dσ`
bpx` σfpx, uqq

ˇ

ˇ

ˇ

ˇ

σ“0

*

ě ´αpbpxqq. (4)

We call C control-invariant for system (1) if there exist u P

U r0,8q such that φpt;x0,uq P C for all t ě 0. Analogously
to the differentiable case, the generalized definition of CBFs
also implies the control invariance of set C.

Theorem 1. If b be is a generalized CBF to (1), then C is
control-invariant.

Proof. As b is a generalized CBF, there exist u P U due
to (4) such that

d

dt`
bpxptqq “

d

dσ`
bpx` σfpx, uqq

ˇ

ˇ

ˇ

ˇ

σ“0

ě ´αpbpxqq. (5)

hpxq ą 0

hpxq “ δ F

hpxq ă 0
V

H

Fig. 1: Illustration of Ass. 1.

It follows directly from the Comparison Lemma [19,
Lem. 3.4] that bpxptqq ě 0 for all t ě 0 if bpxp0qq ě 0
and control-invariance is established.

Remark 1. Note that differentiable CBFs are a subclass of
generalized CBFs in the sense of Def. 1. When we refer to
a CBF from now on, we refer to a generalized CBF.

Finally, we say that a point x0 P Rn is feasible if x0 P H,
and that it is viable if there exist u P U r0,8q, such that
φpt;x0,uq P H for all t P r0,8q.

B. Controllability

A state x1 is time T -reachable from x0 for system (1)
if there exists a bounded measurable input trajectory u P

U r0,T s, such that φpT ;x0,uq “ x1. The set of all such
points is defined as RT px0q :“ tx1 | Du P U r0,T s :
φpT ;x0,uq “ x1u. We call (1) controllable on M Ď Rn

[20] if
Ť

tPr0,8q Rtpx0q “ Rn, @x0 P M.

III. CBF CONSTRUCTION

In order to determine if a point x0 is viable under
dynamics (1), the trajectory φpt;x0,uq needs to be generally
determined over an infinitely long time horizon, i.e., for all
t ě 0. By taking the system’s controllability properties into
account, less conservative statements can be made.

A. Problem Setting

At first, we note that if a state is sufficiently far away
from the boundary of H, we can expect it to be viable for
many practically relevant systems. Therefore, it is reasonable
to assume the existence of a control-invariant super-level set
of h denoted by V as formalized in the following assumption.

Assumption 1. There exists a control-invariant subset V Ă

H where H :“ tx | hpxq ě 0u such that hpxq ě δ for
all x P V and some δ ą 0. While V is not required to be
explicitly known, we assume that a subset F Ď V is known.

Ass. 1 is illustrated in Fig. 1. Note that we do not require
set F to be control-invariant. In many applications, a subset
F Ď V can be more easily derived than a control-invariant
set V . Sometimes an intuitive understanding of the system
dynamics can be even taken as a starting point for the
derivation of F . We illustrate this in the following example.

Example 1. Consider the kinematic model of a vehicle
modeled as a bicycle [21] (see Fig. 2a) given as 9x “

v cospψ ` βpζqq, 9y “ v sinpψ ` βpζqq, 9ψ “
v cospβpζqq tanpζq

L
where βpζq “ arctanp 1

2 tanpζqq. States x, y denote the posi-
tion of the center of mass C, and ψ the vehicle’s orientation;
inputs are velocity v and steering angle ζ. The stack vector
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Fig. 2: Bicycle model: (a) Kinematic model; (b) construction
of a set with its viable points via turning radius r.

of the system’s states is denoted by x “ rx, y, ψsT . Let the
vehicle be subject to input constraints 0 ă vmin ď v ď vmax
and |ζ| ď ζmax. From the dynamics, we directly obtain the
minimal turning radius r “ L

cospβpζmaxqq tanpζmaxq
. Moreover,

let the vehicle move in a plane with a circular obstacle that
has radius R ą 0 and is centered at c P R2. Correspondingly,
we define hpxq “ ||rx, ysT ´ c|| ´R.

Through geometric considerations as depicted in Fig. 2b,
the set F “ tx |hpxq ě δ ` 2ru is determined as a subset
of the control-invariant set V . Here we exploit the fact that
a bicycle can always return to its initial state by moving on
a circle with radius r and we conclude that hpxq ě δ for
all x P V . Thereby, the knowledge on the system’s periodic
solutions gives rise to our construction of F . While it is
sufficient to take the vehicle’s position into account for the
construction of F , the construction of V requires to consider
orientation ψ as well. Its determination would be thereby
more difficult. We highlight that V , however, does not need
to be determined and its existence is sufficient.

Remark 2. Set F can be also chosen as an equilibrium
point or as some periodic solution of the system. However,
choosing a large F reduces the computational effort for
determining a CBF, which is discussed later.

Based on set F as defined in Ass. 1, a CBF to system (1)
shall be constructed using predictions with a finite time
horizon.

B. Time Horizon

Next, we specify the minimal time τpx0q for each x0 P

HzF that system (1) requires to reach some state x1 P F .
More precisely, we define τpx0q for each x0 P HzF as

τpx0q :“ min
τě0

τ (6a)

s.t. 9xptq “ fpxptq,uptqq (a.e.), (6b)
xp0q “ x0, uptq P U , xpτq P F . (6c)

Note that here trajectory x does not need to stay in H
for all times. We are interested in τpx0q for the following
reasons: A trajectory that ends in x1 P F can be feasibly
continued for all times since F is a subset of the control-
invariant set V Ă H. Thereby if hpφpt;x0,uqq ě 0 for all
t P r0, τpx0qs, we can conclude that x0 is viable.

In order to ensure that (6) is well-posed, that is for each
x0 P HzF there exists a τpx0q that solves (6), the following
assumption is introduced.

Assumption 2. Let either of the following statements hold:
A2.1 Dynamics (1) are controllable on F c where F c denotes

the complement of F ; or
A2.2 For all x0 P HzF , there exist t ě 0 such that Rtpx0qX

F ‰ H.

Proposition 2. Let Ass. 2 hold. Then there exists for all
x0 P HzF a time τpx0q P Rą0 that minimizes (6).

Proof. Starting with Ass. 2, it follows from the definition
of controllability or time T -reachability (see Sec. II-B) that
there exists a trajectory φp¨;x0,uq which satisfies con-
straints (6b)-(6c) for some finite τ . As τ is lower-bounded by
zero, it follows that there exists a τpx0q that minimizes (6)
for each x0 P HzF .

Remark 3. Note that (A2.1) is stronger than (A2.2) and im-
plies the latter. (A2.1) can be verified using well-established
criteria as the full-rank criterion for linear systems, or the
Lie-rank condition for nonlinear systems [20], [22]. (A2.2) is
verifiable by the construction of the reachable set. Also
note that Ass. 2 does not necessitate local controllability or
even full actuation which would be strong assumptions and
trivially imply the control-invariance of H.

For the sake of simplicity, we define τ :“ supxPHzF τpxq

and use it in the sequel instead of function τpxq. An upper
bound to τ can often be also analytically found.

Example 2. Let us revisit Example 1. As it is well known, a
bicycle can reach any point in a plane by moving on circular
trajectories of radius r (by setting ζ “ ˘ζmax) and straight
lines (ζ “ 0). By moving with a constant velocity of at least
vmin, any position px, yq P R2 can be reached in finite time.
Thus (A2.2) is satisfied. Next, we construct an upper-bound τ̄
for time-horizon τ in the case of the circular obstacle from
Example 1. At first, we observe that the vehicle can reach
F by moving on a straight line. Then the distance covered
until F is reached is at most 2pR ` r ` δq for any starting
point x0 P HzF . Alternatively, the vehicle can also move
first on a semi-circle and continue thereafter on a straight
line until F is reached. Then, the distance is upper bounded
by πr ` δ ` 2r. Altogether, we obtain an upper-bound for
the time-horizon as τ̄ :“ min

!

2pR`r`δq

vmax
; p2`πqr`δ

vmax

)

.

C. Construction of a CBF

We construct a CBF based on a finite prediction horizon T .
Therefore, we choose some T ě τ , where τ is defined as in
Sec. III-B, and define a function HT : H Ñ R as

HT px0q :“ max
up¨q

min
tPr0,T s

hpxptqq (7a)

s.t. 9xpsq “ fpxpsq,upsqq pa.e.q, (7b)
xp0q “ x0, (7c)
upsq P U , @s P r0, T s (7d)
xpϑq P F , for some ϑ P r0, T s. (7e)

We denote the input trajectory u and the times t and ϑ
that solve optimization problem (7) by u˚, t˚ and ϑ˚,
respectively. The computation of HT is illustrated in Fig 3:
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Fig. 3: Illustration of max-min-problem (7): A state trajectory
(black) over a time horizon T and gray contour lines denoting
the values of h. A control-invariant set V and its known
subset F are indicated.

The gray contour lines indicate the values of h which
increase in the direction of the arrow. A state trajectory
xp¨q “ φp¨;x0,uq (black) starts in x0, evolves according
to some input trajectory u over a time-horizon T , and
satisfies (7e) at time ϑ P r0, T s. The minimization yields
time t˚ where the trajectory xp¨q takes the smallest value
on h. The maximization chooses the input trajectory u˚

such that this “smallest value” is as large as possible.
Intuitively, HT thereby provides a measure to assess how
close the system state gets to the boundary of the set of
allowed states H. Optimization problems similar to (7) are
known from Hamilton-Jacobi reachability analysis, however,
without constraint (7e), see e.g. [17] and references therein.
Thereby, our approach avoids the time-dependency of reach-
ability value functions HT by adding constraint (7e).

Next, we define the zero-superlevel set of HT as ST :“
tx | HT pxq ě 0u and show that HT indeed is a CBF.

Theorem 3. Let Ass. 1-2 hold, let h be Lipschitz-continuous,
and let T ě τ . Moreover, let f be bounded on V in the
sense that for all x P V there exists a u P U such that
||fpx, uq|| ď M for some constant M ą 0. Then HT in (7)
is well-defined. If HT is additionally Lipschitz-continuous,
then HT constitutes a CBF to (1).

Proof. Consider a state x0 P H. As Ass. 1 and 2 hold, it
follows from Prop. 2 that there exists a finite τ as defined in
Sec. III-B. This implies that for any T ě τ there also exists
an input trajectory u˚ P U r0,T s and times t˚ and ϑ˚ that
solve (7). Thereby, HT is well-defined. The state trajectory
induced by u˚ is denoted by φp¨;x0,u

˚q : r0, T s Ñ

Rn and the corresponding value of HT is HT px0q “

hpφpt˚;x0,u
˚qq. In order to show that HT is a CBF, we

need to show that there exists a class K function α such
that supuPU

␣

d
dt`HT px0q

(

ě ´αpHT px0qq for all x0 with
HT px0q ě 0. We do this in two steps.

Step 1: We consider x0 with HT px0q ď δ. At first, we
extend the input trajectory u˚ by an input trajectory ue P

U rT,8q that renders set V invariant. In particular, we define
the extended input trajectory u˚

e as

u˚
e ptq :“

#

u˚ptq if t P r0, ϑ˚s

ueptq if t ą ϑ˚
(8)

where ue P U pϑ˚,8q such that φpt;x0,u
˚
e q P V for all

t ą ϑ˚. Such an input trajectory u˚
e exists as V is control-

invariant. Moreover, we observe that
HT px0q “ hpφpt˚;x0,u

˚qq ď δ
Ass. 1

ď hpφpt;x0,u
˚
e qq @t P rϑ˚,8q,

(9)

and hence

HT px0q “ hpφpt˚;x0,u
˚qq “ min

tPr0,T s
hpφpt;x0,u

˚qq

(9)
“ min

tPr0,T 1q
hpφpt;x0,u

˚
e qq (10)

for any T 1 ě T . From this, it follows that

HT px0q “ min
tPr0,T q

hpφpt;x0,u
˚
e qq

(10)
“ min

tPr0,T`t1q
hpφpt;x0,u

˚
e qq

ď min
tPrt1,T`t1q

hpφpt;x0,u
˚
e qq

ď HT pφpt1;x0,u
˚qq @t1 P r0, T s (11)

where the latter inequality holds due to the suboptimality
of u˚

e . Thus, by again using the suboptimality of u˚ in the
first inequality, we obtain

sup
uPU

"

d

dt`
HT px0q

*

“ sup
uPU

"

d

dt`
HT pφp0;x0, uqq

*

ě
d

dt`
HT pφp0;x0,u

˚qq

“ lim
tÑ0`

HT pφpt;x0,u
˚qq ´HT pφp0;x0,u

˚qq

t

“ lim
tÑ0`

HT pφpt;x0,u
˚qq ´HT px0q

t

(11)
ě 0. (12)

Hence, there exists a class K function α such that
supuPU

␣

d
dt`HT px0q

(

ě ´αpHT px0qq for all x0 with 0 ď

HT px0q ď δ. Intuitively, (12) implies that in the neighbor-
hood of any point x0 with HT px0q ď δ there exists a state
trajectory, namely φp¨;x0,u

˚q, along which the value of HT

is monotonously increasing.
Step 2: Next we consider x0 with HT px0q ą δ, which

implies x0 P V . Thus, ||fpx, uq|| ă M for all x in some
ϵ-neighborhood of x0 and some u P U . Then, as xptq “

x0 `
şt

0
fpxpsq, upsqqds, it follows for a sufficiently small t1

||x0 ´ xpt1q|| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t1

0

fpxpsq, upsqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż t1

0

||fpxpsq, upsqq||ds ď

ż t1

0

Mds “ M t1.

(13)

Let u1 P U r0,t1s be some input trajectory. Since HT is
assumed to be Lipschitz-continuous – let L be its Lipschitz
constant –, we can lower-bound HT pφpt1;x0,u

1qq as

HT pφpt1;x0,u
1qq ě HT px0q´L ||x0´φpt1;x0,u

1q||

(13)
ě HT px0q ´ LM t1.

(14)

Now we can derive analogously to (12) that

sup
uPU

"

d

dt`
HT px0q

*

ě
d

dt`
HT pφp0;x0,u

1qq

“ lim
tÑ0`

HT pφpt;x0,u
1qq ´HT px0q

t
(14)
ě ´LM ě ´αpHT px0qq (15)



for all x0 with HT px0qąδ where α is some class K function.
Altogether, we have shown that supuPU

␣

d
dt`HT pxptqq

(

ě

´αpHT pxqq for all x0 with HT px0q ě 0. Together with the
assumption on the local Lipschitz continuity of HT , the proof
is completed.

Remark 4. After the computation of HT , its Lipschitz-
continuity can be easily checked numerically. The bound-
edness of f naturally arises when considering compact sets.

The CBF HT gives also rise to further CBFs.

Corollary 4. Let the same premises hold as in Thm. 3. Then
Hδ1

T pxq :“ HT pxq ´ δ1 is a CBF for any δ1 P r0, δq.

Proof. This follows directly from the proof of Thm. 3 as (12)
and (15) stay unchanged.

Next we show that the CBF HT renders a subset of H,
namely ST , control-invariant.

Proposition 5. ST is control-invariant for any T ě τ and
ST Ď H.

Proof. Since HT is a CBF according to Thm. 3, control-
invariance of ST follows directly from Thm. 1. Furthermore,

HT px0q
(7a)
“ max

up¨q
min

tPr0,T s
hpφpt;x0,uqq

ď max
up¨q

hpφp0;x0,uqq “ hpx0q.
(16)

If HT px0q ě 0, then hpx0q ě 0 and ST Ď H follows. .

Generally by increasing T , ST can be enlarged. This is
formally stated as follows.

Proposition 6. Let the same premises hold as in Thm. 3.
Then ST1 Ď ST2 for T1 ď T2. If additionally HT1pxq ă δ,
then HT1

pxq ď HT2
pxq.

Proof. Consider any x0 P ST1 and a trajectory φpt;x0,u
˚
T1

q

starting in x0 which is defined for t P r0, T1s and where u˚
T1

,
t˚T1

and ϑ˚
T1

denote the input trajectory and the times
that solve (7) for time horizon T1. Furthermore, we de-
fine an extended input trajectory analogously to (8) as

u˚
T1,e

:“

"

u˚
T1

ptq if tPr0,ϑ˚
T1

s

ueptq if tąϑ˚
T1

where ueptq P U pϑ˚
T1

,8q such

that φpt;x0,u
˚
T1,e

q P V for all t ą ϑ˚
T1

. Based on this, it
follows with HT1

px0q ă δ that

HT1
px0q “ min

tPr0,T1s
hpφpt;x0,u

˚
T1

qq
(10)
“ min

tPr0,T2s
hpφpt;x0,u

˚
T1,eqq

ď min
tPr0,T2s

hpφpt;x0,u
˚
T2

qq “ HT2px0q (17)

where the last inequality follows from the suboptimality
of u˚

T1,e
, and where u˚

T2
denotes the input trajectory that

solves (7) for time horizon T2. For x0 with HT1
px0q ě δ,

we have that

HT2px0q“ min
tPr0,T2s

hpφpt;x0,u
˚
T2

qqě min
tPr0,T2s

hpφpt;x0,u
˚
T1,eqq

“ min

"

HT1px0q, min
tPrT1,T2s

hpφpt;x0,u
˚
T1,eqq

*

ě δ

hpxq ą 0

hpxq “ δ
9xpos ∇hpxq

Fhpxq ă 0 H
Fig. 4: Construction of a control-invariant set F .

where the last inequality holds since φpt;x0,u
˚
T1,e

q P V
for all t P rT1, T2s and hpxq ě δ for all x P V . Thus,
pHT1pxq ě 0q ñ pHT2pxq ě 0q which implies ST1 Ď ST2

for T1 ď T2. The second part of the proposition has been
shown in (17).

D. Construction of a CBF using a Terminal Constraint

By employing stronger assumptions on F , the optimiza-
tion problem (7) can be reformulated with a terminal con-
straint.

Assumption 3. F is control-invariant under dynamics (1).

Now, we can reformulate (7) with a terminal constraint
based on set F as

HT px0q :“ max
up¨q

min
tPr0,T s

hpxptqq (18a)

s.t. (7b)-(7d) hold, (18b)
xpT q P F . (18c)

Compared to (7), constraint (18c) is the only difference. Note
that Ass. 3 implies Ass. 2 which leads us to the following
result based on Thm. 3.

Corollary 7. Let Ass. 1 and 3 hold, let h be Lipschitz-
continuous, and let T ě τ . Moreover, let f be bounded on
V in the sense that for all x P V there exists a u P U such that
||fpx, uq|| ď M for some constant M ą 0. Then HT in (18)
is well-defined. If HT is additionally Lipschitz-continuous,
then HT constitutes a CBF to (1).

Example 3. We reconsider Example 1 and construct a set F
that satisfies Ass. 3. Let us denote the vehicle’s position
as xpos “ rx, ysT . Then, a control-invariant set is given by
F “ tx |hpxq ě δ, ∇hpxq 9xpos ě 0u, see Fig. 4. The scalar
product ∇hpxq 9xpos is indicated by the red arrow. Intuitively,
set F contains those states where the vehicle is moving
into its interior. Clearly, the here constructed F is smaller
compared to that in Example 1. Similarly to Example 2, an
upper bound of τ is obtained as τ̄ “ min

!

2pR`δq

vmax
; πr`δ

vmax

)

.

E. Practical Computation of a CBF

A CBF HT can be computed by sampling the state space
and evaluating either of the optimization problems (7) or (18)
in each sampled state. For implementation, we rewrite the
optimization as a min-max problem and use a p-norm to
approximate the inner maximization problem. In this way, a
stacked optimization is avoided.

Based on the computed CBF, a gradient can be numerically
determined which we denote by ∇xHT . Using interpolation,
HT pxq and ∇xHT pxq can be approximated for any state x.
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Fig. 5: Scenario with one circular obstacle.

Then, a safety filter for some given nominal control input
unom is

u “ argmin
uPU

pu´ unomqT pu´ unomq (19a)

s.t. ∇xHT pxq fpx, uq ě ´αpHT pxqq (19b)

The control input u is applied to the system and ensures
that the system state does not leave H. We note that (19)
becomes a quadratic program if system (1) is input affine.

The curse of dimensionality is here alleviated by the fact
that the CBF only needs to be computed in some neighbor-
hood of the boundary of H. In particular, if αpHT pxqq is
chosen sufficiently large for HT pxq ě δ, the optimization
problem (19) is minimized by unom. In this way, it is
sufficient to compute the CBF HT pxq only for those sampled
states x P HzF where HT pxq ă δ. Based on the systems
local controllability properties, the region where HT pxq ă δ
can be determined as demonstrated in the example below.

Example 4. Let us revisit Example 1 and compute a CBF for
the circular obstacle and the vehicle with bicycle dynamics.
Therefore, let R “ 5, L “ 1, vmin “ 1, vmax “ 5, ζmax “ 1

9π,
c “ r0, 0sT . Then, we obtain the minimal turning radius as
r “ 2.79. For computing the CBF, we use (18) with set F as
constructed in Example 3, and by choosing δ “ r we obtain
τ̄ “ 4. By reconsidering Fig. 2b, we derive that HT pxq ě δ
if hpxq ě 2r ` δ “ 3r. Thus, we only need to compute
HT pxq for all x P H with hpxq ă 3r. The result for T “ 6
is depicted in Fig. 5a. As it can be seen, the computed CBF
is Lipschitz-continuous. We use CasADi [23] to implement
the optimization problem (18).

In the light of this discussion, we briefly relate (18) to MPC.

IV. RELATION OF THE PREDICTION-BASED CBF
CONSTRUCTION AND MPC

In the previous section, we constructed a CBF on the
grounds of a finite prediction horizon T . Therefore, it seems
natural to relate the CBF construction approach to a MPC
formulation for ensuring set-invariance. To this end, consider
the following MPC-problem at some time tk

max
up¨;tkq

min
tPr0,T s

hpxpt; tkqq (20a)

s.t. 9xps; tkq “ fpxps; tkq,upsqq pa.e.q, (20b)
xp0; tkq “ xptkq, (20c)
ups; tkq P U , @s P r0, T s (20d)
xpϑ; tkq P F , for some ϑ P r0, T s. (20e)

where xp¨; tkq, up¨; tkq denote the state and input trajectories
predicted at time tk, T is some time horizon satisfying T ě

τ , and xptkq is the state of system (1) at time tk.
The input trajectory u˚p¨; tkq that minimizes (20) is ap-

plied to system (1) on a time-interval of length ∆t ď T , i.e.,
uptq “ u˚pt; tkq for all t P r0,∆tq. At the next time-step
tk`1 :“ tk ` ∆t, (20) is recomputed with the new system
state xptk`1q. If the system state is initialized as xp0q P ST ,
then we can show that xptq P ST for all t ě 0.

Theorem 8. Let the same premises hold as in Thm. 3, and
let ST “ tx | HT pxq ě 0u where HT is as defined in (7). If
xp0q P ST , then an initially feasible solution to (20) exists
and (20) is recursively feasible for tk ě 0. Moreover, xptq P

ST for all t ě 0 .

Proof. The proof can be found in [24].

Remark 5. The MPC formulation (20) is in so far limiting
as the input maximizing (20a) is directly applied on a time
interval r0,∆ts. In contrast, (19) allows for any input that
satisfies its CBF-based gradient constraint (19b). On the
other hand, an MPC-formulation avoids the computation of
a CBF. For answering the question if a CBF or an MPC
approach is more suitable to ensure set-invariance, both the
dimensionality of the system under consideration and the
online control frequency are decisive. For lower dimesional
systems whose control inputs shall be computed at a high
frequency, a CBF-based approach is a good choice. In other
cases, also an MPC approach can be considered.
Remark 6. As before, if Ass. 3 holds, then constraint (20e)
can be replaced by the terminal constraint xpT ; tkq P F .

Flexibility can be added to the MPC-formulation by allow-
ing for more general cost functions. Then, we can compute
a control input that renders ST invariant as

min
up¨;tkq

F pxp¨; tkq,up¨; tkqq (21a)

s.t. (20b)-(20d) hold, (21b)
hpxps; tkqq ě 0, @s P r0, T s (21c)
xpT ; tkq P F , (21d)

where up¨; tkq : r0, T s Ñ Rm is optimized over the time
horizon T ; F is some cost function. In comparison to (20),
we added the state constraint (21c) as the invariance of ST

is not anymore necessarily implied by the cost function.

Theorem 9. Let the same premises hold as in Cor. 7, and
let ST “ tx | HT pxq ě 0u where HT is as defined in (18).
If xp0q P ST , then an initially feasible solution to (21) exists
and (21) is recursively feasible for tk ě 0. Moreover, xptq P

ST for all t ě 0.

Proof. The proof can be found in [24].

In contrast to (20), we require a terminal constraint
in (21) in order to construct candidate trajectories that satisfy
state constraint (21c) and to establish recursive feasibility.
Thereby, the additional flexibility in (21) comes at the cost
of the explicit knowledge on a control-invariant set.
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Remark 7. The latter MPC formulation (21) includes the
predictive safety filter as proposed in [25] as a special
case. The idea of using predictions to extend a known
control-invariant set has also been explored in [12], [13].
Although the knowledge on a control-invariant set also leads
to simplifications in our case, it is not a requirement for our
main results stated in Thm. 3 and 8.

V. SIMULATION

We consider again the vehicle with bicycle dynamics from
Example 1. Now, the vehicle uses a line following controller
(nominal controller unom) to follow a straight line. The safety
filter (19), which is based on the CBF as computed in
Example 4, ensures that the vehicle avoids a circular obstacle.
The simulation results are depicted in Fig. 5b. The vehicle
moves as closely as possible along the red line towards
the right and avoids the circular obstacle. Its orientation is
denoted by the triangles. The interior of the green circle
marks those states for which the CBF has been computed.
Similar results are obtained for a scenario with three circular
obstacles, see Fig. 6-7. However, if the computed CBF HT

is replaced by h, the optimization problem (19) may become
infeasible and collision avoidance is not guaranteed anymore.
The resulting trajectory is marked in Fig. 7 in light gray.

VI. CONCLUSION

Based on mild controllability assumptions and a known
subset of a possibly unknown control-invariant set, we
showed how CBFs can be constructed by using predictions
with a finite horizon. In doing so, we connected the construc-
tion of CBFs with the controllability properties of the system
under consideration. With a relevant example, we outlined
how the made assumptions can be satisfied. In the end, we
related the prediction-based computation of CBFs to MPC.
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