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Abstract. This paper considers the problem of safe motion planning
for high-dimensional holonomic robots with 2nd-order uncertain dynam-
ics. We integrate sampling-based motion planning techniques with tra-
ditional adaptive feedback control and address difficulties encountered
in planning for such systems. More specifically, we develop a feedback
control scheme that tracks a given reference trajectory within certain
bounds, while simultaneously compensating for potential uncertainty in
the dynamical parameters of the robot (masses, moments of inertia) and
external disturbances. Employing this result, we are able to cast the
problem of kinodynamic motion planning to a geometric one, which can
be usually solved more efficiently since it does not take into account
the robot dynamics (a.k.a. differential constraints). Intuitively, we use
a geometric planner to obtain a high-level safe path for the robot, and
a low-level adaptive feedback control algorithm to execute it while tak-
ing into account the robot dynamics. Experimental results validate the
proposed approach.
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1 Introduction

Robot motion planning is one of the fundamental problems in the field of robotics,
with numerous applications such as exploration of unknown environments, au-
tonomous driving, robotic manipulation, and autonomous warehouses [1,2]. The
topic has been concerning researchers for several decades; early works propose
efficient discrete as well as feedback-based algorithms to solve the problem in
low-dimensional spaces (e.g., [3,4]).

The problem becomes significantly more complex as the dimension of the
configuration space increases. Randomized planning has been introduced to over-
come the respective scalability issues; [5,6,7] introduce the notions of probabilis-
tic roadmaps (PRM) and random trees (RRT, EST), respectively, which con-
stitute efficient and probabilistically complete solutions to multiple- and single-
query, respectively, high-dimensional motion planning problems. The intuition
behind these algorithms is the addition of random sampled states of the free
space to a discrete graph/tree, promoting the search of the unexplored free space.
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Furthermore, although the initial works derive geometric solutions in the
configuration space, trees have been extended to kinodynamic planning, where
the robot dynamics (a.k.a. differential constraints) ẋ = f(x, t, u) are taken into
account [6,8,9,10]. In these algorithms, the robot dynamics are simulated forward
in time, possibly by randomly sampling inputs, in order to find a feasible path.
Except for the randomized inputs, the incremental step as well as the duration
of this forward simulation are often also chosen randomly. In high dimensional
spaces, this randomness might require excessive tuning of the aforementioned
parameters in order to find a solution in a reasonable amount of time. Along the
lines of PRM, [11] and [12] introduce the notion of LQR-trees, which constitute
trees of trajectories that probabilistically cover the state space. In that way,
every controllable initial condition belongs to the region of attraction (funnel) of
a trajectory and is thus driven to the goal via local linearization of the dynamics
and optimal feedback control. Dynamics linearization and reachability sets were
also recently used to develop an optimal kinodynamic algorithm, namely R3T
[13].

A potential drawback of the aforementioned algorithms on kinodynamic mo-
tion planning is their strong dependence on the robot dynamics, which in general
might be uncertain/unknown. Therefore, the robot model used in standard for-
ward simulation-based kinodynamic algorithms might deviate from the actual
dynamics, outputting hence paths that might be colliding with obstacles or dif-
ficult to be realized by the actual robotic system. Similar to the LQR-trees, [14]
proposes an algorithm that builds trees of funnels based on the (known) bounds
of model disturbances, restricted however to polynomial robot dynamics. Plan-
ning under uncertainty has been also considered in a stochastic framework and
via belief trees [15,16,17,18]. These approaches, however, usually deal with lin-
earized dynamics, and/or propagate the uncertainties on the planning horizon,
constraining excessively the free space.

In this paper, we propose a two-layer framework that integrates “intelligent”
feedback control protocols with geometric motion planning for high-dimensional
Lagrangian holonomic systems (e.g., robotic manipulators). Firstly, motivated by
the difficulty of measuring accurately the robotic system’s dynamical parameters
(like masses, and moments of inertia) as well as potential external disturbances,
we design a feedback control scheme that does not use any information on these
parameters/disturbances (i.e., these are unknown to the controller). The control
scheme is a variation of standard adaptive control design, and aims at achieving
tracking of a given trajectory for the robot, which is assumed to obey 2nd-order
dynamics. The tracking of the trajectory is achieved within certain bounds that
stem from the aforementioned uncertainties/disturbances. These bounds create
an implicit funnel around the trajectory, which can be further shrunk by appro-
priate tuning of the control parameters, the latter being a standard procedure
in adaptive control design. This funnel is then incorporated in a RRT-like algo-
rithm, which outputs a path connecting an initial configuration to the goal. The
construction of the RRT and the employed control protocol guarantee that the
robot will follow the derived path without colliding with the workspace obstacles.
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In that way, by using appropriate feedback control, the proposed methodology
“relieves” the sampling-based motion planner of the robot dynamics and their
uncertainties, hence the problem of constructing a path becomes purely geomet-
rical. The motion planner relies only on the performance of the control layer,
encoded in the aforementioned bounds. Similar ideas were pursued in [19] and
[20]; [19], however, just provides a general idea of interfacing the planning and
control layers, without elaborating on a particular systematic control technique,
while [20] considers mainly predictive controllers for linear systems, without
avoiding the forward simulation of the available system model. The proposed
framework in this work exhibits the following important characteristics: 1) The
robot dynamics are not forward simulated and hence they are decoupled from
the motion planner. Consequently, even though a 2nd-order system is consid-
ered, the motion planner is purely geometrical and depends on the geometry
of the configuration space as well as the bounds of the robot uncertainties. 2)
We do not resort to linearization of the dynamics and computation of basins
of attraction around the output trajectories, since the designed feedback control
protocol applies directly to the nonlinear model. Finally, the proposed algorithm
is expected, in practice, to exhibit lower complexity than standard kinodynamic
planning algorithms, since it is purely geometrical and does not simulate any dif-
ferential equations. The proposed methodology is validated using a UR5 robotic
manipulator in V-REP environment ([21]).

2 Problem Formulation

Consider a robotic system with state (q, q̇) ∈ T×Rn ⊂ R2n, n ∈ N, representing
its positions and velocities. Usual robotic structures (e.g., robotic manipulators)
might consist of translational and rotational joints, which we define here as
qtr ∈ Rntr and qr ∈ [0, 2π)nr , respectively, with ntr + nr = n, and hence T :=
Wtr× [0, 2π)nr , where Wtr is a closed subset of Rntr . Without loss of generality,
we assume that q = [q>tr, q

>
r ]>. We consider that the equations of motion of the

robot obey the standard 2nd-order Lagrangian dynamics

B(q)q̈ + C(q, q̇)q̇ + g(q) + d(t) = u, (1)

where B : T→ Rn×n is the positive definite inertia matrix, C : T× R6 → Rn×n
is the Coriolis term, g : T → Rn is the gravity vector, and d : R≥0 → Rn is a
term modeling external disturbances and possibly model structural uncertainties
and friction terms; d(t) is assumed to be continuous and uniformly bounded by
a known bound d̄ as ‖d(t)‖ ≤ d̄, ∀t ≥ 0 (which is a common assumption in such
systems, see, e.g. [22]). Finally, u ∈ Rn is the vector of torques representing the
control input. An important property of the terms of (1), which will be used
later, is the following ([23]):

Property 1. The term Ḃ(q)−2C(q, q̇) is skew-symmetric, i.e., y>(Ḃ(q)−2C(q, q̇))y
= 0, ∀y ∈ Rn.
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Note that the dynamical terms B(q), C(q, q̇), g(q) of (1) depend on the
dynamical parameters of the robot, i.e., its mass and moment of inertia. These
parameters are assumed to be unknown to the user/designer, and hence they
cannot be used in the planning and control modules. The same applies to the
function d(t). Nevertheless, as will be shown later, having satisfying estimates
for these terms renders the planning module for the robot less conservative in
terms of collision checking.

We consider that the robot operates in a workspace W ⊂ R3 filled with
obstacles occupying a closed set O ⊂ R3. We denote the set of points that
consist the volume of the robot at configuration q as A(q) ⊂ R3. The collision-
free space is defined as the open set Afree := {q ∈ T : A(q) ∩ O = ∅}. Our goal
is to achieve safe navigation of the robot to a predefined goal region Qg ⊂ Afree

from an initial configuration q(0) ∈ Afree via a path qp : [0, σ]→ Afree satisfying
qp(0) = q(0) and qp(σ) ∈ Qg, for some positive σ.

The problem we consider is the following:

Problem 1. Given q(0)) ∈ Afree and Qg ⊂ Afree, respectively, design a control
trajectory u : [0, tf ]→ Rn, for some finite tf > 0, such that the solution q∗(t) of
(1) satisfies q∗(t) ∈ Afree, ∀t ∈ [0, tf ], and q∗(tf ) ∈ Qg.

The feasibility of Problem 1 is established in the following assumption.

Assumption 1 There exists a (at least twice differentiable) path qp : [0, σ] →
Afree such that qp(0) = q(0) and qp(σ) ∈ Qg.

3 Main Results

We present here the proposed solution for Problem 1. Our methodology follows
a two-layer approach, consisting of a robust trajectory-tracking control design
and a higher-level sampling-based motion planner. Firstly, we use an adaptive
control protocol that compensates for the uncertain dynamical parameters of the
robot and forces the system to evolve in a funnel around a desired trajectory,
whose size depends on the initial estimates of the dynamical parameters and the
bound of the external disturbances. Secondly, we develop a geometric sampling-
based motion planner that uses this funnel to find a collision free trajectory from
the initial to the goal configuration. Intuitively, the robust control design helps
the motion planner procedure, which does not have to take into account the
complete dynamics (1). Section 3.1 presents the control design and 3.2 provides
the motion planner.

3.1 Control Design

Control of uncertain dynamical systems, i.e., systems whose dynamical equations
contain terms that are not known to the designer, has gained a large amount of
attention during the last decades and numerous results have been developed for
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a large variety of models. In the special case where these terms are constant, the
control design is tackled by using adaptive feedback control ([24,25]).

Motivated by real life scenarios, this work considers parametric uncertainty
of the robotic system dynamics, i.e., we consider that the masses and moments
of inertia of the robotic system are unknown to the user/designer and hence
cannot be used in the feedback control design. Let θ ∈ Rl, l ∈ N, be a vector of
terms involving these unknown dynamical parameters, which appear in the terms
B,C, g of (1). Conveniently, the dynamics (1) can be linearly parameterized with
respect to θ. More specifically, the terms that form the left-hand side of (1) can
be written as [23, Ch. 7]

B(a)d+ C(a, b)c+ g(a) = Y (a, b, c, d)θ, (2)

∀a ∈ T, b, c, d ∈ R3n, where Y (·) is a matrix independent of θ and hence available
for the control design. Let qd := [q>d,tr, q

>
d,r]
> : [0, tf ] → T be a reference trajec-

tory, with qd,tr ∈ Rntr and qd,r ∈ [0, 2π)nr being its translational and rotational
parts, respectively. Such a trajectory will be the output of the sampling-based
motion planning algorithm that will be developed in the next section. We wish
to design the control input u of (1) such that q(t) converges close to qd(t), de-
spite the uncertainty in θ. Adaptive control is a widely known procedure when it
comes to robotic manipulators with uncertainties (e.g., [26,23,22]). In this work
we show how such a design can be used in the motion planning of a robotic system
with dynamical uncertainties by developing a suitable variant of the standard
adaptive control scheme.

We start by defining the appropriate error metric between q = [q>tr, q
>
r ]>

and qd = [q>d,tr, q
>
d,r]
>, which represents their distance. Regarding the trans-

lational part, we define the standard Euclidean error etr := qtr − qd,tr. For
the rotation part, however, the the same error er := qr − qd,r does not rep-
resent the minimum distance metric, since qr evolves on the nr-dimensional
sphere, and its use might cause conservative or infeasible results in the planning
layer. Hence, unlike standard adaptive control scheme for robotic manipulators,
which drive the Euclidean difference er(t) to zero (e.g., [22,26]), we use the
chordal metric dC(x, y) := 1 − cos(x, y) ∈ [0, 2], ∀x, y ∈ [0, 2π), or d̄C(x, y) :=∑
j∈{1,...,`} dC(xj , yj) for vectors x = [x1, . . . , x`], y = [y1, . . . , y`] ∈ [0, 2π)`. Nev-

ertheless, note that rotational joints subject to upper and/or lower mechanical
limits evolve in R rather than the unit circle and should hence be included in
qtr instead of qr.

We are now ready to define a suitable distance metric for T as follows: for
x := [x>tr, x

>
r ]>, y := [y>tr, y

>
r ]> ∈ T we define dT as dT(x, y) := ‖xtr − ytr‖2 +

d̄C(xr, yr). Note, however, that the chordal metric induces a limitation with
respect to tracking on the unit sphere. Consider dC(qrj , qd,rj ) = 1 − cos(erj ),
where we further define erj := qrj−qd,rj as the jth element of er, j ∈ {1, . . . , nr}.
Differentiation yields ḋC(qrj , qd,rj ) = sin(erj )ėrj , ∀j ∈ {1, . . . , nr}, which is zero
when erj = 0 or erj = π. The second case is an undesired equilibrium, which
implies that the point erj = 0 cannot be stabilized from all initial conditions
using a continuous controller. This is an inherent property of dynamics on the
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unit sphere due to topological obstructions ([27]). In the following, we devise a
control scheme that, except for driving q(t) to qd(t), guarantees that erj (t) 6= π,
∀t ∈ (0, tf ], provided that erj (0) 6= 0, ∀j ∈ {1, . . . , nr}. To do that, we define
the mapping

H(x, y) :=

[
tan

(
x1 − y1

2

)
, . . . , tan

(
xnr − ynr

2

)]>
∈ Rnr (3)

for vectors x = [x1, . . . , xnr ]
>, y = [y1, . . . , ynr ]

> ∈ [0, 2π)nr , as well as the
signal ηr := H(qr, qd,r). Note that ηr is not defined when erj = π for some
j ∈ {1, . . . , nr}, which we exploit in the control design. Next, we define first the
reference signals for q̇tr, q̇r as α := [α>tr, α

>
r ]>, with

αtr := −Ktretr + q̇d,tr, αr := [αrj ] :=
[
q̇d,rj − krj cos

(erj
2

)
sin
(erj

2

)]
, (4)

where Ktr ∈ Rntr×ntr is a symmetric positive definite gain matrix, krj > 0 are
positive gain constants, ∀j ∈ {1, . . . , nr}, and [·] here denotes the stacked vector
operator. Such velocities would achieve asymptotic stability for the system in
hand and hence we define the velocity error signal ev = q̇ − α, which we also
wish to drive to zero. Moreover, since the parameter vector θ cannot be used
in the control design, we define the respective estimate θ̂ ∈ Rl, as well as the
error eθ := θ̂ − θ ∈ Rl. The term θ̂ is time-varying and evolves according to
the “adaptation” law, which will be designed along with the feedback control
u. Note also that, although we use the term “estimate”, the evolution of θ̂ is
independent of any actual estimations of θ. To design the control scheme and
guarantee that erj (t) 6= π, we define the positive definite Lyapunov function

V (x, t) := 1
2‖etr‖

2 + 1
2‖ηr‖

2 + 1
2kv

e>v B(q)ev + 1
2e
>
θ Γ
−1eθ,

where x := [e>tr, η
>
r , e

>
v , eθ]

>, kv is a positive constant, and Γ ∈ R`×` is a positive
definite constant matrix, both to be used in the control design. We assume that
erj (0) 6= π and hence V (x(0), 0) is bounded. Differentiation of V , use of Property
1 and the dynamics’ linear parameterization (2) and substitution of (4) as well
as q̇ = α+ ev yields

V̇ = −etrKtretr − η>r Krηr + 1
kv
e>v (u+ ex − Yαθ − d(t)) + e>θ Γ

−1 ˙̂
θ,

where Kr := diag{kr1 , . . . , krnr }, ex :=

[
e>tr,

tan(
er1
2 )

cos(
er1
2 )

2 , . . . ,
tan

( ernr
2

)
cos

( ernr
2

)2

]>
, and

Yα := Y (q, q̇, α, α̇), with Y (·) as given in (2). We design next the control and

adaptation law u,
˙̂
θ, respectively, as

u = Yαθ̂ −Kvev − ex, ˙̂
θ = −Γ

(
1

kv
Y >α ev + σθ θ̂

)
. (5)
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By substituting these in V̇ and setting kv as the minimum eigenvalue of Kv, we
obtain after straightforward algebraic manipulations

V̇ ≤− ktr‖etr‖2 − kr‖ηr‖2 − 1
2‖ev‖

2 − σθ
2 ‖eθ‖

2 + dx,

where ktr, kr are the minimum eigenvalues of the matrices Ktr and Kr, respec-

tively, and dx := d̄2

2k2v1
+ σθ

2 ‖θ‖
2.

Therefore, V̇ is negative when ‖etr‖ ≥
√

dx
ktr

, or ‖ηr‖ ≥
√

dx
kr

, or ‖ev‖ ≥
√

2dx, or ‖eθ‖ ≥
√

2dx
σθ

. By using Theorem 4.18 of [28], we conclude that there ex-

ists a finite T such that the state will enter the set Ωx := {x ∈ R2n+` : ‖etr(t)‖ ≤√
dx
ktr
, ‖ηr(t)‖ ≤

√
dx
kr
, ‖ev(t)‖ ≤

√
2dx, ‖eθ(t)‖ ≤

√
2dx
σθ
} and remain there, i.e.,

x(t) ∈ Ωx, ∀t ≥ T . If x starts in Ωx, i.e., x(0) ∈ Ω, then x(t) ∈ Ωx, ∀t ∈ [0, tf ]. If

not, then by using T as the time when x(t) enters Ωx, it holds that V̇ (x(t)) ≤ 0,
and hence V (x(t)) ≤ V (x(0)) and ‖etr(t)‖ ≤ 2V (x(0)), ‖ηr(t)‖ ≤ V (x(0)),

∀t ∈ [0, T ]. Therefore, it holds that ‖etr(t)‖ ≤ ētr := max
{

2V (x(0)),
√

dx
ktr

}
,

‖ηr(t)‖ ≤ η̄r := max
{
V (x(0)),

√
dx
kr

}
, ∀t ∈ [0, tf ]. Moreover, since Ωx is a com-

pact set and V̇ ≤ 0 outside of it, we conclude that V (x(t)) stays always bounded,
for all t ∈ [0, tf ]. This implies that ηr(t) also remains bounded and erj (t) 6= π,
∀t ∈ [0, tf ], j ∈ {1, . . . , nr}. Note that this stems from the term ex in the control
law (5), which is infinity when erj = π. Intuitively, as erj approaches to π, for
some j ∈ {1, . . . , nr}, the control law u increases to infinity to prevent that from
happening. Nevertheless, the ultimate boundedness of the signals in Ωx implies

that u(t),
˙̂
θ(t), and θ̂(t) remain also bounded, ∀t ∈ [0, tf ]. The aforementioned

discussion is summarized in the following theorem:

Theorem 1. Consider the dynamics (1), a reference trajectory qd : [0, tf ]→ T,
as well as the constant V0 := 1

2‖etr(0)‖2 + ‖ηr(0)‖2 + 1
2kv

ev(0)>B(q(0))ev(0) +
1
2eθ(0)>Γ−1eθ(0). Then, if erj (0) 6= π, ∀j ∈ {1, . . . , nr}, the control protocol (5)
guarantees that

‖etr(t)‖ ≤ ētr := max

{
2V0,

√
dx
ktr

}
, ‖ηr(t)‖ ≤ η̄r := max

{
V0,

√
dx
kr

}
, (6)

as well as the boundedness of all closed-loop signals, ∀t ∈ [0, tf ].

Note that the disturbance term d(t) prohibits the system from achieving
asymptotic convergence, i.e., limt→∞(q(t) − qd(t)) = 0. Nevertheless, Theorem
1 establishes a funnel around the desired trajectory qd where the state q(t)
will evolve in. This funnel will be used as clearance in the motion planner of
the subsequent section to derive a collision-free path to the goal region. Note
however, that this funnel cannot be accurately known by the user/designer,
since V0 cannot be accurately known (the terms B(q(0)) and eθ(0) contain the
unknown terms θ). Lower and upper bounds of θ can be obtained, however,



8 Christos Verginis et al.

since these involve mass and moments of inertia, which can be estimated by
the geometry and the material of the links/motors. Hence, one can obtain an
upper bound on V0. On the same note, a conservative estimate of dx, appearing
in (6), can be obtained by estimating an upper bound of d(t) (e.g., by testing
suitable trajectories on the robot) and using the aforementioned upper bound of
θ. Therefore, we can obtain an overestimate of the bounds in (6), which will be
used in the motion planner of the next section. These bounds can be tightened
by appropriate tuning of the gain constants, as elaborated in the next remark.

Remark 1. The collision-free geometric trajectory qd of the motion planner will
connect the initial condition q(0) to the goal and hence it is reasonable to enforce
qd(0) = q(0). By also reasonably assuming that that q̇(0) = 0, V0 from Theorem
1 becomes V0 = 1

2kv
q̇d(0)B(q(0))q̇d(0)+ 1

2eθ(0)>Γ−1eθ(0), which can be rendered

arbitrarily small by choosing large values for the control gains kv and Γ . In the

same vein, choosing large values for kv, ktr, and kr shrinks the constants
√

dx
ktr

and
√

dx
kr

, respectively. Therefore, the size of the funnel dictated by (6) can

become smaller by appropriate gain tuning. This will lead to less conservative
solutions for the motion planner of the next section, as will be clarified in the
next subsection. Nevertheless, it should be noted that too large gains might result
in excessive control inputs that cannot be realized by the actuators in realistic
systems. Finally, note that the incorporation of kv in the adaptation law (5),
which is not common in standard adaptive control techniques, has been included
to create an extra degree of freedom for reducing the value of V0. This, along
with the tracking using the chordal metric dC for the rotation part, constitute
the differences of the proposed control scheme with respect to standard adaptive
control for uncertain robotic systems.

3.2 Motion Planner

We describe here the construction of the sampling-based motion planner, referred
to as Bounded-RRT or B-RRT, that drives the robot from an initial state to
the goal, which follows similar steps as the standard geometric RRT algorithm.
Before presenting the algorithm we define the extended-free space, which will be
used to integrate the results from the feedback control of the previous subsection.
In order to do that, we define first the open polyhedron as

P(q, δ) := {y = [y>tr, y
>
r ]> ∈ T : ‖ytr − qtr‖ < δtr, ‖H(yr, qr)‖ < δr}, (7)

for q = [q>tr, q
>
r ]> ∈ T and δ = (δtr, δr) ∈ R2, where H(·) is the metric intro-

duced in (3). We define now the δ-extended free space Āfree(δ) := {q ∈ T :
Ā(q, δ)∩O = ∅}, where Ā(q, δ) :=

⋃
x∈P(q,δ)A(x). Note that Āfree((δ1tr , δ1r )) ⊆

Āfree((δ2tr , δ2r )) if δ1tr ≥ δ2tr and/or δ1r ≥ δ2r .

Remark 2. Since Afree is open, there exist positive constants δtr, δr such that
Qg ⊂ Āfree((δtr, δr)) and the feasible path qp from Assumption 1 satisfies qp(τ) ∈
Āfree((δtr, δr)), ∀τ ∈ [0, σ].
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The control scheme of the previous subsection guarantees that the robot
can track a trajectory within the bounds (6). In other words, given a desired
trajectory signal qd : [t0, tf ] → T, the control algorithm (5) guarantees that
q(t) ∈ Āfree((ētr, η̄r)), ∀t ∈ [t0, tf ], with ētr, η̄r as defined in (6). Hence, the
motion planner developed here takes that into account by producing trajecto-
ries that belong to the extended free space Āfree((ētr, η̄r))

3. The respective
algorithm is presented in Algorithm 1. It is a variant of the standard RRT al-
gorithm. The main difference, which constitutes the key point of the algorithm,
is the procedure that aims to find a collision-free trajectory from a node on the
tree towards the sampled point. In particular, the sampling of new nodes-points
as well as the collision checker of the path between two nodes are carried out
with respect to the extended free space Āfree((ētr, η̄r)). Moreover, the motion
planner does not need to integrate the system dynamics (1) with sampled input
values in order to design a feasible and collision-free robot trajectory. Instead,
we use the established evolution funnel of Section (3.1) to design a collision-free
trajectory for the robot, without involving the dynamics. This implies that the
motion planner is purely geometrical.

Algorithm 1 B-RRT

1: procedure TREE
2: V ← {q(0)}; E ← ∅; i← 0
3: while i < N do
4: G ← (V, E);
5: qrand ← Sample(i); i← i+ 1;
6: qnearest ← Nearest(G, qrand);
7: qnew ← Steer(qnearest, qrand);
8: if ObstacleFree(qnearest, qnew) then
9: V ← V ∪ {qnew}; E ← E ∪ {(qnearest, qnew)};

The functions that appear in Algorithm 1 are the following:

– Sample(i): Samples qrand from a uniform distribution in the extended free
space Āfree((ētr, η̄r)), where ētr, η̄r are the constants from (6) that define the
funnel polyhedron P(qd(t), (ētr, η̄r)) (see (7)) around a reference trajectory
qd(t) that q(t) can evolve in.

– Nearest(G, q): Finds the node qnearest in the tree such that dT(qnearest, q) =
minz∈V dT(z, q).

– Steer(q, z): Computes a point qnew lying on the straight line from z to q
such that dT(q, qnew) = ε, where ε is a tuning constant that represents the
incremental distance from q that to qnew.

– ObstacleFree(q, z): Checks whether the path XLine : [0, σ] → T, for some
positive σ, from q to z is collision free with respect to the extended free
space, i.e., check whether q′ ∈ Āfree((ētr, η̄r)), ∀q′ ∈ XLine.

3 We keep the same notation (ētr, η̄r), although only upper bounds of these values can
be actually estimated and hence used by the planner
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The difference hence of B-RRT with respect to the standard RRT algorithm
is the use of the extended free space Āfree((ētr, η̄r)) in the procedures of sampling
new points (function Sample) and checking collisions of the path between two
nodes (function ObstacleFree). As stated before, this stems from the control
design of the previous section, which guarantees that the robot trajectory will
evolve in Āfree((ētr, η̄r)) with respect to a desired trajectory qd.

The resulting smooth (at least twice cont. different.) path is endowed with
time constraints to derive a timed trajectory qd : [0, tf ] → Āfree((ētr, η̄r)), for
some tf > 0, which is given as the desired trajectory input to the control protocol
designed in the previous section. The actual trajectory of the system q(t) is
guaranteed to track qd(t) in the funnel defined by ētr, η̄r. Since these bounds
are taken into account in the design of the trajectory qd by Algorithm 1, the
system will remain collision free. Note also that tf and hence the velocity of the
formed trajectory qd is chosen by the user. Therefore, the robot can execute the
respective path in a predefined time interval.

The probabilistic completeness of the algorithm is stated in the next theorem.

Theorem 2. Under Assumption 1 and for sufficiently high gains kv, ktr, kr,
as introduced in eq. (4), (5), Algorithm 1 is probabilistically complete.

Proof. Assumption 1 and Remark 2 imply that there exist positive δtr and δr and
(at least) one twice differentiable path qp : [0, σ]→ Āfree((δtr, δr)) connecting q0

and Qg. As stated in Remark 1, by increasing the values of the control gains kv,
ktr, kr, one can decrease the constants ētr, η̄tr from eq. (6) such that ētr < δtr,
η̄r < δr. Hence, Qg satisfies Qg ⊂ Āfree((δtr, δr)) ⊂ Āfree((ētr, η̄r)) and the
feasible path satisfies qp(τ) ∈ Āfree((δtr, δr)) ⊂ Āfree((ētr, η̄r)), ∀τ ∈ [0, σ], which
guarantees the feasibility of Algorithm 1. Next, by following similar arguments
with Lemma 2 of [29], one can prove that for any q ∈ Āfree((ētr, η̄r)) and ε > 0,
it holds that limi→∞ P(Di,q < ε), where Di,q is the random variable associated
with the minimum distance of the tree G to the point q (in terms of dT), after
iteration i. Hence, the vertices V of G converge to the sampling distribution
in Āfree((ētr, η̄r)), which is assumed to be uniform. Therefore, since qp lies in

Āfree((ētr, η̄r)), a subset of V converges to it and the proof follows.

3.3 Collision Checking in Āfree(ētr, η̄r)

The proposed feedback control scheme guarantees that q(t) ∈ P(qd(t), (ētr, η̄r))
for any trajectory qd(t), formed by the several line segments XLine that connect
the nodes in V sampled in Algorithm 1. Therefore, checking whether the points
qs ∈ XLine belong to Afree, as in standard motion planners [5,30], is not suf-
ficient. For each such point qs ∈ XLine, one must check whether z ∈ Afree,
∀z ∈ P(qs, (ētr, η̄r)), which is equivalent to checking if qs ∈ Āfree(ētr, η̄r). There
are two procedures that we use for that. Firstly, for each qs, a finite number of
points z can be sampled from a uniform distribution in P(qs, (ētr, η̄r)) and sepa-
rately checked for collision. Then, for a sufficiently high number of such samples,
and assuming a certain “fat”-structure of the workspace obstacles (e.g., there
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are no long and skinny obstacles such as wires, cables and tree branches, etc., see
([31]) for more details), this approach can be considered to be complete, i.e., the
resulting path will belong to the extended free space Afree. Secondly, we calculate
the limit poses of each link of the robot, based on the lower and upper bounds
by the joints that affect it, as defined by (ētr, η̄r). Subsequently, we compute the
convex hull of these limit poses, which is expanded by an appropriate constant
to yield an over-approximation of the swept volume of the potential motion of
the link, as described in [32]. The resulting shape is then checked for collisions
for each link separately.

4 Experimental Results

This section presents experimental results for a UR5 robot, which consists of 6
rotational degrees of freedom (see Fig. 1), using the V-REP environment ([21]).
We assume that the first joint is free to move on the unit circle, i.e., qr1 ∈ [0, 2π),
whereas the rest of the joints are restricted to [−π, π] to avoid problematic con-
figurations. We consider that the robot end-effector has to sequentially navigate

Fig. 1: A UR5 robotic arm in an obstacle-cluttered environment with 4 targets.

from its initial configuration q0 = [0, 0, 0, 0, 0, 0] to the following four target
points (depicted in Fig. 1):

– Target 1: T1 = (−0.15,−0.475, 0.675) and orientation (π2 , 0, 0), which yields
the configuration q1 = [−0.07,−1.05, 0.45, 2.3, 1.37,−1.33]>.

– Target 2: T2 = (−0.6, 0, 2.5) and orientation (0,−π2 ,−
π
2 ), which yields the

configuration q2 = [1.28, 0.35, 1.75, 0.03, 0.1,−1.22]>

– Target 3: T3 = (−0.025, 0.595, 0.6) and orientation (−π2 , 0, π), which yields
the configuration q3 = [−0.08, 0.85,−0.23, 2.58, 2.09,−2, 36]>

– Target 4: T4 = (−0.525,−0.55, 0.28) and orientation (π, 0,−π2 ), which yields
the configuration q4 = [−0.7,−0.76,−1.05,−0.05,−3.08, 2.37]>

Regarding the collision checking in Āfree(ētr, η̄r) of the B-RRT algorithm, we
check a finite number of samples around each point of the resulting trajectory
qd for collision. We run B-RRT with 10 and 50 such samples and we compared
the results to a standard geometric RRT algorithm in terms of time per number
of nodes. The results for 30 runs of the algorithms are given in Fig. 2 for the
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four paths, in logarithmic scale. One can notice that the average nodes created
do not differ significantly among the different algorithms. As expected, however,
B-RRT requires more time than the standard geometric RRT algorithm, since it
checks the extra samples in Āfree(ētr, η̄r) for collision. One can also notice that
the time increases with the number of samples. However, more samples imply
greater coverage of Āfree(ētr, η̄r) and hence the respective solutions are more
likely to be complete with respect to collisions.

Since, in contrast to the standard geometric RRT, B-RRT implicitly takes
into account the robot dynamics through the designed tracking control scheme
and the respective extended free space Āfree(ētr, η̄r), we compare the results to a
standard kinodynamic RRT algorithm that simulates forward the robot dynam-
ics, assuming known dynamical parameters. In particular, we run the algorithm
only for the first two joints, with initial and goal configurations at (0, 0) and
(− π

18 ,
π
4 ) rad, respectively, and keep the other joints fixed at 0. For the forward

simulation of the respective dynamics we chose a sampling step of 10−3 sec and
total simulation time 30 sec for each constant control input. The termination
threshold distance was set to 0.25 (with respect to the distance dT), i.e., the al-
gorithm terminated when the forward simulation reached a configuration closer
than 0.25 units to the goal configuration. The results for 10 runs of the algorithm
are depicted in Fig. 3, which provides the execution time and number of nodes
created in logarithmic scale. Note that, even for these simple case (planning
for only two joints), the execution time is comparable to the B-RRT case of 50
samples in the fourth path scenario q3 → q4. As pointed out in Section 1, this
is justified by the fact that the inputs are randomized as well as the complex
dynamics of the considered robotic system.

Next, we illustrate the motion of the robot through the four target points via
the control design of Section 3.1. For each sub-path (qi → qi+1, ∀i ∈ {0, 1, 2, 3})
we fit a smooth timed trajectory qd(t) = [qd,1(t), . . . , qd,6(t)]> on the generated
nodes, whose total time duration depends on the distance between successive
nodes. The output sequence of points along with the interpolated trajectories
are depicted in Fig. 4, where we have added an extra time offset after each qd(t).
Note from the figure that the trajectories do not exactly fit the generated nodes,
without however affecting the safety of the proposed scheme.

The estimates of the masses and inertias of the robot links and rotors, com-
posing θ̂, were initialized at 60% of the actual values. Morever, in view of (6),
we aim to impose an upper bound of 0.1 rad for each |qrj −qd,j |, ∀j ∈ {1, . . . , 6}.
To that end, we choose the control gains as kr1 = · · · = kr6 = 0.005, Kv =

diag{[35, 65, 45, 20, 10, 0.5]}, and Γ = 50diag{θ̂(0)}, where the diag{z} operator
returns the diagonal n × n matrix whose diagonal values are the elements of
the vector z ∈ Rn. The results are depicted in Fig. 5 (a), which shows the error
values erj (t) = qrj (t)−qd,j(t), ∀j ∈ {1, . . . , 6}, and all four paths. One can verify
that the error values stay always bounded in the region (−0.1, 0.1) rad, achiev-
ing thus the desired performance. For comparison purposes, we also simulate
a PID controller of the form u = −K1ex − K2(q̇ − q̇d) − K3

∫
ex(τ)dτ , where

K1 = diag{100, 1000, 1000, 100, 1, 1}, and K2 = K3 = I6 are positive definite
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Fig. 2: Box plots showing the execution time (top) and the nodes (bottom) created of
the three algorithms (in logarithmic scale) for the four paths (organized in two groups
of two (left and right)); ’+’ indicate the outliers.
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Fig. 3: Box plots showing the execution time (a) and number of nodes (b) created
for the kinodynamic RRT in logarithmic scale (for the first two joints and the path
(0, 0)→ (− π

18
, π
4

)).

gain matrices. The errors erj (t) = qrj (t) − qd,j(t), ∀j ∈ {1, . . . , 6}, for the four
paths are shown in Fig. 5 (b). Note that they exceed the interval (−0.1, 0.1),
which defined the clearance in the B-RRT algorithm, jeopardizing hence the ac-
tual trajectory of the robot. We acknowledge, nevertheless, that appropriate yet
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Fig. 4: The output sequence of points and the respective trajectories for the four paths.
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Fig. 5: The error values erj (t) = qrj (t)− qd,j(t) for the adaptive controller (a) and the
PID one (b).

tedious gain tuning might yield better results for a PID control scheme. A video
illustrating the robot trajectory using the two control laws can be found here:
https://youtu.be/y7bCoUoTlPA.

https://youtu.be/y7bCoUoTlPA
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5 Discussion

We developed a two-layer motion planning scheme for 2nd-order systems with
dynamic uncertainties. We integrated an adaptive control scheme that guaran-
tees trajectory tracking withing certain bounds with an appropriately designed
geometric RRT-based motion planner. The proposed methodology can solve ef-
ficiently the motion planning problem without neglecting the system dynamics.
A drawback of the proposed scheme is the fact that the bounds (6) that the
system trajectory evolves in (with respect to a desired trajectory) are not accu-
rately known. Overestimates of the dynamical parameters as well as the external
disturbances need to be obtained and gain tuning might be needed in order to
achieve the desired bounds. Future efforts will be devoted in developing more
sophisticated feedback control algorithms that provide known bounds as well as
extending the B-RRT algorithm to account for optimality.
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