
1

Asymptotic Tracking of Second-Order Nonsmooth
Feedback Stabilizable Unknown Systems with
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Abstract—This paper considers the asymptotic tracking control
problem for a class of nonlinear systems subject to predefined
constraints for the system response, such as maximum overshoot
or minimum convergence rate. In particular, by employing
discontinuous control protocols and nonsmooth analysis, we
extend previous results on funnel control to guarantee at the
same time asymptotic trajectory tracking. We consider 2nd-
order systems that are affine in the control input and contain
completely unknown nonlinear and nonsmooth vector fields,
with no boundedness or approximation/parametric factorization
assumptions. Simulation results verify the theoretical findings.

Index Terms—Uncertain systems, Robust adaptive control,
Asymptotic stability, funnel control, prescribed performance
control, nonlinear systems, non-smooth systems.

I. INTRODUCTION

CONTROL of uncertain systems is one of the main
research topics in systems theory. Robust and adaptive

control as well as neural network/fuzzy logic control are the
dominant methodologies dealing with such systems [1], [2].
There exists a variety of works achieving both asymptotic
and “practical” (ultimately bounded errors) stability under the
presence of model uncertainties (e.g., [3]–[12]). The majority
of the related works that achieve asymptotic stability assume
parametric dynamic uncertainties and/or growth conditions and
gain tuning [4], local Neural network approximations [11], or
fuzzy logic controllers [12].

A well-studied special instance of adaptive control is funnel
control, where the output of the system is confined to a
predefined funnel [13]–[17]. It is a model-free control scheme
of high-gain type, with numerous applications during the last
years. Examples include electrical circuits [18], Lagrangian
systems [19]–[21] and multi-agent systems [21]–[23]. The in-
tuition behind funnel control is the incorporation of an adaptive
gain in the control scheme, which increases (in absolute value)
as the system’s output reaches the funnel’s boundary. In that
way, the system’s output is “pushed” to always remain inside
the funnel. Funnel control has been developed for both linear
[18] and nonlinear systems [13] involving parametric [19] as
well as structural [13], [14] dynamic uncertainties.
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An important property that most related funnel-control
works fail to achieve is that of asymptotic stability subject
to unknown nonlinear dynamics. Traditional funnel control
guarantees only confinement of the system output in a pre-
specified funnel, and thus the closest property to asymptotic
stability that can be achieved is that of “practical stability”,
where the funnel converges arbitrarily close to zero. The latter,
however, might yield undesired large inputs due to the small
funnel values, and can be problematic in real-time systems.
Such a scheme was developed in the works [24], [25] for
first-order systems, where the funnel converges to zero. This,
however, can create numerical ill-conditioning in the practical
computation of the control input, since it involves the product
of “large” and “small” quantities (the funnel reciprocal and
and the error signal) [25]. On the other hand, with potential
guarantees of asymptotic stability, the funnel is not needed to
converge close to zero, and can be used in order to encode
just transient constraints for the system. Asymptotic tracking
subject to transient constraints has been considered in several
works [19], [22], [26], [27]; [22], [26], [27] consider linear
systems (LTI and double integrator), whereas [19] assumes
known model structure, with the uncertainties being only
parametric; One can conclude that the aforementioned works
cannot be extended in a straightforward manner to nonlinear
systems where the dynamic terms have both parametric and
structural uncertainties. In addition, a class of systems for
which funnel control has not been taken into account in
the related works is the non-smooth type, i.e., systems with
discontinuous right-hand side. Such models are motivated by
real-time systems, where several dynamic terms (e.g., friction)
can be accurately modeled by discontinuous state functions.

In this paper, we consider the asymptotic tracking control
problem subject to transient constraints imposed by a prede-
fined funnel. We consider MIMO systems of the form

ẋ1 = x2, (1a)
ẋ2= F (x, z, t) +G(x, z, t)u, y = x1 (1b)
ż= Fz(x, z, t), (1c)

where z ∈ Rnz , x := [x>1 , x
>
2 ]> ∈ R2n, with xj :=

[xj1 , . . . , xjn ]> ∈ Rn, ∀j ∈ {1, 2}, are the system’s states,
y := [y1, . . . , yn]> ∈ Rn is the system’s output, which
is required to track a desired trajectory yd(t), and F :
R2n+nz × [t0,∞) → Rn, Fz : R2n+nz × [t0,∞) → Rnz
G : R2n+nz × [t0,∞) → Rn×n are unknown vector fields,
not necessarily continuous. We assume that x is available
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for measurement, whereas z is not. In fact, the dynamics
governing z is called dynamic uncertainty and represents
unmodeled dynamic phenomena that potentially affect the
closed-loop response. The assumptions on the system dynam-
ics are restricted to local boundedness and measurability as
well as controllability conditions on G and internal stability
of z, without considering any uniform boundedness/growth
condition or model approximation:

Assumption 1: The maps (x, z) 7→ F (x, z, t) : R2n+nz →
Rn, (x, z) 7→ G(x, z, t) : R2n+nz → Rn×n, (x, z) 7→
Fz(x, z, t) : R2n+nz → Rnz are Lebesgue measurable and
locally bounded for each fixed t ∈ [t0,∞), uniformly in
t, and the maps t 7→ F (x, z, t) : [t0,∞) → Rn and
t 7→ G(x, z, t) : [t0,∞) → Rn×n are Lebesgue measurable
and uniformly bounded for each fixed (x, z) ∈ R2n+nz , by
unknown bounds.

Assumption 2: The matrix

G̃(x, z, t) := G(x, z, t) +G(x, z, t)>

is positive definite, ∀(x, z, t) ∈ R2n+nz × [t0,∞), i.e., it
holds that λmin(G̃(x, z, t)) > 0, where λmin(G̃(x, z, t)) is its
unknown minimum eigenvalue.

Assumption 3: There exists a sufficiently smooth function
Uz : Rnz → R≥0 and class K∞ functions γ

z
(·), γ̄z(·), γz(·)

such that γ
z
(‖z‖) ≤ Uz(z) ≤ γ̄z(‖z‖), and(

∂Uz
∂z

)>
Fz(x, z, t) ≤ −γz(‖z‖) + πz(x, z, t),

where x 7→ πz(x, z, t) : R2n → R≥0 is continuous and class
K∞ for each fixed (z, t) ∈ Rnz × [t0,∞), and (z, t) 7→
πz(x, z, t) : Rnz × [t0,∞) → R≥0 is uniformly bounded for
each fixed x ∈ R2n.

Assumption 4: The state x is available for measurement.
Assumption 5: The desired trajectory and its derivatives are

bounded by finite and unknown constants ȳd,0, ȳd,1 > 0, i.e.,
‖yd(t)‖ < ȳd,0 ≤ ȳd, ‖yd(t)‖ < ȳd,1 ≤ ȳd, ∀t ∈ [t0,∞),
where ȳd := maxj∈{0,1}{ȳd,j}.
Note that Assumption 2 is a sufficient controllability condition
and Assumption 3 suggests that z is input-to-state practically
stable with respect to x, z, t implying stable zero (internal)
dynamics [13]. Note also that the vector fields F (·) and G(·)
are not required to be continuous everywhere.

According to the authors’ best knowledge, this is the first
work that guarantees asymptotic stability for a 2nd-order
system subject to funnel constraints and under the considered
assumptions 1-5, from all initial conditions that are compliant
with the funnel and independent of the system model. In fact,
according to the authors’ best knowledge, asymptotic stability
(even without funnel constraints) for 2nd-order systems has
not been guaranteed in the related literature under these
assumptions (i.e., unknown nonlinear discontinuous dynamics
and no boundedness/growth assumptions on F (·)) and from
initial conditions independent of the system model. Regarding
the latter, note that, if the initial value of the funnel is a design
parameter, it can be always set larger than the initial value of
the error to be confined in the funnel, rendering thus the results
global. This work extends our preliminary results [28], which

considered the special instance of time-invariant 2nd-order
Lagrangian systems, to systems with more general dynamic
terms F , G and relaxation of the positive definitiveness of G.

The rest of the paper is structured as follows. Section II
introduces some preliminary background and the notation fol-
lowed throughout the article. Section III provides the proposed
control protocol as well as the corresponding stability analysis.
Finally, simulation results are given in Section IV and Section
V concludes the paper.

II. NOTATION AND PRELIMINARIES

A. Notation

The sets of real and positive real numbers are denoted by
R and R>0, respectively; ‖x‖ denotes the 2-norm of a vector
x ∈ Rn; The open and closed balls with respect to the 2-norm
and with radius δ, centered at x ∈ Rn, are denoted by B(x, δ)
and B̄(x, δ), respectively.

B. Nonsmooth Analysis

Consider the following differential equation with a discon-
tinuous right-hand side:

ẋ = f(x, t), (2)

where f : D × [t0,∞) → Rn, D ⊂ Rn, is Lebesgue
measurable and locally essentially bounded, uniformly in t.
The Filippov regularization of f is defined as [29]

K[f ](x, t) :=
⋂
δ>0

⋂
µ(N̄)=0

co(f(B(x, δ)\N̄), t), (3)

where
⋂
µ(N̄)=0 is the intersection over all sets N̄ of Lebesgue

measure zero, and co(E) is the convex closure of the set E.
Definition 1 (Def. 1 of [30]): A function x : [t0, t1)→ Rn,

with t1 > t0, is called a Filippov solution of (2) on [t0, t1) if
x(t) is absolutely continuous and if, for almost all t ∈ [t0, t1),
it satisfies ẋ ∈ K[f ](x, t), where K[f ](x, t) is the Filippov
regularization of f(x, t).

Lemma 1 (Lemma 1 of [30]): Let x(t) be a Filippov solution
of (2) and V : D × [t0, t1) → R be a locally Lipschitz,
regular function1. Then V (x(t), t) is absolutely continuous,
V̇ (x(t), t) = ∂

∂tV (x(t), t) exists almost everywhere (a.e.), i.e.,

for almost all t ∈ [t0, t1), and V̇ (x(t), t)
a.e
∈ ˙̃
V (x(t), t), where

˙̃
V :=

⋂
ξ∈∂V (x,t)

ξ>
[
K[f ](x, t)

1

]
,

and ∂V (x, t) is Clarke’s generalized gradient at (x, t) [30].
Theorem 1 (Corollary 2 of [30]): For the system given in

(2), let D ⊂ Rn be an open and connected set containing
x = 0 and suppose that f is Lebesgue measurable and x 7→
f(x, t) is essentially locally bounded, uniformly in t. Let V :
D × [t0, t1) → R be locally Lipschitz and regular such that
W1(x) ≤ V (x, t) ≤W2(x), ∀t ∈ [t0, t1), x ∈ D, and

z ≤ −W (x(t)), ∀z ∈ ˙̃
V (x(t), t), t ∈ [t0, t1), x ∈ D,

1See [30] for a definition of regular functions.
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where W1 and W2 are continuous positive definite functions
and W is a continuous positive semi-definite on D. Choose
r > 0 and c > 0 such that B̄(0, r) ⊂ D and c <
min‖x‖=rW1(x). Then for all Filippov solutions x : [t0, t1)→
Rn of (2), with x(t0) ∈ D := {x ∈ B̄(0, r) : W2(x) ≤ c},
it holds that t1 = ∞, x(t) ∈ D, ∀t ∈ [t0,∞), and
limt→∞W (x(t)) = 0.

III. MAIN RESULTS

The control objective is the asymptotic output tracking of a
desired bounded trajectory yd := [y1,d, . . . , yn,d] : [t0,∞) →
Rn, with bounded derivatives, as stated in Assumption 5.
Moreover, as discussed in Section I, we aim at imposing a
certain predefined behavior for the transient response of the
system. More specifically, motivated by funnel control tech-
niques [14], [31], [32], given n predefined funnels, described
by the smooth functions (also called performance functions in
[13]) ρpi : [t0,∞)→ [ρ

pi
, ρ̄pi ] ⊂ R>0, where ρ

pi
, ρ̄pi ∈ R>0

are positive lower and upper bounds, respectively, we aim at
guaranteeing that2 −ρpi(t) < yi(t) − yi,d(t) < ρpi(t), ∀t ∈
[t0,∞), given that −ρpi(t0) < yi(t0) − yi,d(t0) < ρpi(t0),
∀i ∈ {1, . . . , n}. These functions can encode maximum
overshoot or convergence rate properties. Note that, compared
to the majority of the related works on funnel control (e.g.,
[13], [14], [24], [31]), we do not require arbitrarily small
final values limt→∞ ρpi(t), which would achieve convergence
of yi(t) − yi,d(t) arbitrarily close to zero, since one of the
objectives is actual asymptotic stability. In this section, the
problem statement is as follows:

Problem 1: Consider the system (1) and let a desired
trajectory yd : [t0,∞)→ Rn as well as n prescribed funnels,
described by ρpi : [t0,∞) → [ρ

pi
, ρ̄pi ], ∀i ∈ {1, . . . , n}.

Design a control protocol u ∈ Rn such that

1) limt→∞(yi(t)− yi,d(t)) = 0,
2) −ρpi(t) < yi(t)− yi,d(t) < ρpi(t),

∀i ∈ {1, . . . , n}, t ∈ [t0,∞), and all closed loop signals
remain bounded.
Our solution to Problem 1 is based on the error transformation
proposed in [13], which converts the constrained error behav-
ior −ρpi(t) < yi(t) − yi,d(t) < ρpi(t) to an unconstrained
one. More specifically, we define the errors

ep :=
[
ep1 , . . . , epn

]>
:= y − yd, (4)

as well as the error transformations εpi ∈ R according to:

epi = ρpiT (εpi), ∀i ∈ {1, . . . , n}, (5)

where T : R → (−1, 1) is a smooth, strictly increasing
analytic function, with T (0) = 0. Since T is increasing, the
inverse mapping T−1 : (−1, 1) → R is well-defined, and it
holds that

lim
ζ→−∞

T (ζ) = −1, lim
ζ→+∞

T (ζ) = 1 (6a)

2The analysis can be extended to non-symmetric funnels.

and hence, if εpi remains bounded in a compact set, the desired
funnel objective −ρpi(t) < epi(t) < ρpi(t) is achieved, ∀i ∈
{1, . . . , n}. We further require that

|ζ| <
∣∣∣∣∂T−1(ζ)

∂ζ
T−1(ζ)

∣∣∣∣ , ∀ζ ∈ (−1, 1). (7)

A possible choice that satisfies the aforementioned specifica-
tions is T (ζ) = exp(ζ)−1

exp(ζ)+1 .
From (5), we obtain

εpi = T−1

(
epi
ρpi

)
, (8)

which, after differentiation, becomes

ε̇pi =
rpi
ρpi

(
x2i − ẏi,d −

ρ̇piepi
ρpi

)
, (9)

or, in stack vector form,

ε̇p = rpρ
−1
p

(
x2 − ẏd − ρ̇pρ−1

p ep
)
, (10)

where εp := [εp1 , . . . , εpn ]>, rpi := ∂T−1(ζ)
∂ζ

∣∣
ζ=

epi
ρpi

, rp :=

diag{rp1 , . . . , rpn}, and ρp := diag{ρp1 , . . . , ρpn}. Due to the
increasing property of T (·), it holds that rp is positive definite,
and thus in order to render ε̇p negative a straightforward choice
for a desired value for x2 is

x2,d := ẏd + ρ̇pρ
−1
p ep − kprpεp, (11)

where kp ∈ R>0 is a positive and constant scalar gain.
Since, however, x2 is not the system’s input, we follow a
backstepping-like methodology and define the error

ev :=
[
ev1 , . . . , evn

]>
:= x2 − x2,d. (12)

Next, we proceed in a similar manner and define a funnel
for each evi , i ∈ {1, . . . , n}, described by the functions
ρvi : [t0,∞) → [ρ

vi
, ρ̄vi ] ⊂ R>0, where ρ

vi
, ρ̄vi ∈ R>0

are the positive lower and upper bounds, respectively, with
the constraint ρvi(t0) > |evi(t0)|, i ∈ {1, . . . , n}. Note that
evi(t0) = x2(t0)−x2,d(t0) can be calculated at t = t0 since it
is a function of the state, the funnel functions and the desired
trajectory profile. Then, we define the open set

Du,t :={(x, t) ∈ R2n × [t0,∞) : ρp(t)
−1ep(t) ∈ (−1, 1)n,

ρv(t)
−1ev(t) ∈ (−1, 1)n}, (13)

and design the control law u : Du,t → Rn as

u =− kv2ρ−1
v

(
kv3‖rpεp‖+ kv4 d̂

)
sv − kv1ρ−1

v rvεv (14)

where

sv :=

{
rvεv
‖rvεv‖ , if ‖rvεv‖ 6= 0,

0, otherwise,

ρv := diag{ρv1 , . . . , ρvn}, εv := [εv1 , . . . , εvn ]>, εvi :=

T−1
(
evi
ρvi

)
, rv := diag{rv1 , . . . , rvn}, rvi := ∂T−1(ζ)

∂ζ

∣∣
ζ=

evi
ρvi

,

kvi ∈ R>0, i ∈ {1, . . . , 4} are positive constant scalar gains,
and d̂ is an adaptive variable gain, subject to the constraint
d̂(t0) ≥ 0, and dynamics

˙̂
d = γd‖rvεv‖, (15)
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where γd ∈ R>0 is a positive constant gain.
Remark 1: The control design procedure follows closely

the prescribed performance backstepping-like methodology of
the previous works [21], [23], [33], introduced in [34]. The
desired signals and control laws in these works consist only
of proportional terms with respect to the transformed errors
εp, εv , i.e., −kprpεp and −kv1ρ−1

v rvεv in (11) and (14),
respectively, which are guaranteed to be ultimately bounded. In
this work, we incorporate (a) the extra terms in (11) that would
render (10) exponentially stable, and (b) the discontinuous
term in (14), which, as will be shown in the sequel, enforces
convergence of the transformed errors to zero, guaranteeing
thus asymptotic stability. A similar discontinuous term was
employed in [25] to achieve asymptotic stability, by enforcing
however the funnel functions to converge to zero, which is
not required in the proposed framework. Finally, we note that
the adaptive term d̂ = γd

∫ t
0
‖rv(s)εv(s)‖ds in (14) is similar

to the integrator term in PI-funnel control [16], introduced
to attempt asymptotic stability, without, however, providing
theoretical guarantees for the class of systems considered here.

Remark 2: Note that no information regarding the dynamic
model is incorporated in the control protocol (4)-(15). All the
necessary signals consist of the funnel terms ρp, ρv and of
known functions of the state and the desired trajectory yd.
Furthermore, no a-priori gain tuning is needed and, as the next
theorem states, the solution of Problem 1 is guaranteed from
all initial conditions that satisfy −ρpi(t0) < yi(t0)−yi,d(t0) <
ρpi(t0), ∀i ∈ {1, . . . , n}. As will be revealed subsequently,
the adaptive gain d̂ compensates the unknown dynamic terms,
which are proven to be bounded due to the confinement of the
state in the prescribed funnels.

The correctness of the control protocol (4)-(15) is shown in
the next theorem.

Theorem 2: Consider a system subject to the dynamics (1),
Assumptions 1-5, as well as a desired trajectory yd and funnels
as described in Problem 1 satisfying −ρpi(t0) < yi(t0) −
yi,d(t0) < ρpi(t0), ∀i ∈ {1, . . . , n}. Then the control protocol
(4)-(15) guarantees the existence of at least one local Filippov
solution of the closed-loop system (1)-(14) that solves Problem
1. Moreover, every such local solution can be extended to a
global solution and all closed-loop signals remain bounded,
for all t ≥ t0.

Proof: The intuition of the subsequent proof is as follows:
We first show the existence of at least one Filippov solution of
the closed loop system in Du,t for a time interval I ⊆ [t0,∞).
Next, we prove that for any of these solutions, the state remains
bounded in I by bounds independent of the endpoint of I .
Hence, the dynamic terms of (1) are also upper bounded by a
term, which we aim to compensate via the adaptation gain d̂.

We start by defining some terms that will be used in
the subsequent analysis: Mp := maxi∈{1,...,n}{ρ̄pi}, mp :=

mini∈{1,...,n}{ρpi}, Mṗ := maxi∈{1,...,n}{supt≥t0{|ρ̇pi |}},
Mv := maxi∈{1,...,n}{ρ̄vi}, mv := mini∈{1,...,n}{ρvi},
λ := λmin

(
ρ−1
v G̃(x, z, t)ρ−1

v

)
, β := (kv2kv4λ)

−1, rp :=

infζ∈(−1,1)
∂T−1(ζ)

∂ζ . Note that all the aforementioned terms
are strictly positive. In particular, λ is strictly positive due to
the definition of the funnels ρv and Assumption 2, and rp is
strictly positive due to the strictly increasing property of T (·)
and hence of T−1(·). Moreover, in view of (6), it holds that
arg infζ∈(−1,1)

∂T−1(ζ)
∂ζ ∈ (−1, 1).

By employing (14), (15), we can write the closed loop
system

ẋ1 = x2, (16a)
ż ∈ K[Fz](x, z, t), (16b)
ẋ2 ∈ K[F ](x, z, t) + K[G](x, z, t)K[u](x, t), (16c)
˙̂
d = γd‖rvεv‖, (16d)

where K[F ](x, z, t), K[G](x, z, t), K[u](x, t) are the Filip-
pov regularizations (see (3)) of the respective terms. For
u specifically, K[u](x, t) is formed by substituting the term
sv with its reguralized term, which is Sv = rvεv

‖rvεv‖ if
‖rvεv‖ 6= 0, and Sv ∈ (−1, 1)n otherwise. Note that, in
any case, it holds that (rvεv)

>Sv = ‖rvεv‖. Define now
x̃ := [x>, z>, d̂] ∈ R2n+nz+1 and consider the open set
Dc := {(x̃, t) ∈ R2n+nz+1 × [t0,∞) : (x, t) ∈ Du,t}. Since
ρpi(t0) > |epi(t0)| and ρvi(t0) > |evi(t0)|, ∀i ∈ {1 . . . , n},
the set Dc is nonempty. Moreover, since T (·), and hence
its derivative, are analytic, their zero sets have zero mea-
sure [35] and thus the right hand-side of (16) is Lebesgue
measurable and locally essentially bounded in x̃ over the set
{x̃ : (x̃, t) ∈ Dc}, and Lebesgue measurable in t over the
set {t : (x̃, t) ∈ Dc}. Hence, according to Prop. 3 of [36], for
each initial condition (x̃(t0), t0) ∈ Dc, there exists at least one
Filippov solution x̃(t) of (16), defined in I := [t0, tmax), where
tmax > t0 such that (x̃(t), t) ∈ Dc, ∀t ∈ I . By applying (8),
we conclude the existence of the respective Filippov solutions
εp(t), εv(t) ∈ Rn, ∀t ∈ I . Let now x̃(t0) denote the initial
condition of the system (16) satisfying (x̃(t0), t0) ∈ Dc and
consider the family of Filippov solutions starting from x̃(t0)
denoted by the set X. Note that, although not explicitly stated,
tmax and I might be different for each solution in X. We aim
to prove that all εp(t), εv(t) are bounded and converge to zero,
for all x̃(t) ∈ X.

In view of the definition of Dc (see also (13)), for all x̃(t) ∈
X it holds that

|epi(t)| < ρ̄pi , |evi(t)| < ρ̄vi , (17)

∀t ∈ I , where ρ̄pi and ρ̄vi are the upper bounds of ρpi(t)
and ρvi(t), respectively, ∀i ∈ {1, . . . , n}. Consider now the
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Lyapunov function Vp := 1
2‖εp‖

2, for which it holds, in view
of (10), (11), (12), and (17)

V̇p =ε>p rpρ
−1
p (x2 − ẏd − ρ̇pρ−1

p ep)

=− kpε>p rpρ−1
p rpεp + ε>p rpρ

−1
p ev

<− kp
Mp
‖rpεp‖2 +

Mv

mp
‖rpεp‖,

∀t ∈ I . Hence, we conclude that V̇p < 0 when ‖rpεp‖ >
MvMp

kpmp
. Since rpi is positive definite, ∀i ∈ {1, . . . , n}, the

latter is equivalent to ‖εp‖ > MvMp

kpmprp
⇒ V̇p < 0. Hence, we

conclude that all x̃(t) ∈ X satisfy

‖εp(t)‖ ≤ ε̄p := max

{
‖εp(t0)‖, MvMp

kpmprp

}
.

Since ε̄p is finite, it holds that T (ε̄p) < 1 and hence
|T (εpi(t))| ≤ T (ε̄p) < 1, ∀i ∈ {1, . . . , n}, t ∈ I . Moreover,
since T (·) and T−1(·) are smooth, the derivative ∂T−1(ζ)

∂ζ ap-
proaches infinity only when ζ → ±1. Therefore, in view of the
definition of rpi in (10), we conclude the existence of a finite
r̄p > 0 such that ‖rp(t)‖ ≤ r̄p, ∀t ∈ I . Next, (5) implies that
‖ep(t)‖ ≤ ēp := MpT (ε̄p)

√
n, ∀t ∈ I . Hence, we conclude

that ‖x2,d(t)‖ ≤ x̄2,d := ȳd +
Mṗ

mp
ēp + kpr̄pε̄p, ∀t ∈ I , where

ȳd is the uniform bound of the desired trajectory, introduced in
Assumption 5. We also conclude that ‖x1(t)‖ ≤ x̄1 := ēp+ȳd,
∀t ∈ I . In addition, by employing x2 = ev + x2,d and (17),
we conclude that ‖x2(t)‖ < x̃2 := Mv

√
n + x̄2,d, ∀t ∈ I .

Finally, by differentiating x2,d, employing the smoothness and
boundedness of ρp and its derivatives, the smoothness of
T (·), the boundedness of ÿd(t) as well as the aforementioned
bounds, we can conclude the existence of a bound v̄d such
that ‖ẋ2,d(t)‖ ≤ v̄d, ∀t ∈ I .

Furthermore, the boundedness of x(t) and Assumption
3 imply the existence of a positive finite constant z̄ such
that ‖z(t)‖ ≤ z̄, ∀t ∈ I . Hence, since F (x, z, t) is
Lebesgue measurable and locally essentially bounded in
R2n+nz and ‖x1(t)‖ ≤ x̄1 < ∞, ‖x2(t)‖ < x̃2 < ∞,
‖z(t)‖ ≤ z̄, ∀t ∈ I , there exists some positive F̄ , such that
‖F (x(t), z(t), t)‖

a.e.
≤ F̄ , ∀t ∈ I , and hence, for each (x, z),

since K[F ] is formed by the convex closure of F , it holds that
maxζ∈K[F ](x(t),z(t),t){ζ} ≤ F̄ , ∀t ∈ I and x̃(t) ∈ X. Note
that, in view of the aforementioned discussion, F̄ depends
solely on the initial conditions and the parameters of the funnel
functions. Define now the finite constant term d ∈ R>0 as

d :=
β

mv

(
F̄ + v̄d +Mṗ

√
n
)
. (18)

Note that the term in the parenthesis of (18) is an upper bound
for the term ‖F (x(t), z(t), t)− ẋ2,d(t)− ρ̇v(t)ρv(t)−1ev(t)‖,
for all x̃(t) ∈ X and almost all t ∈ I .

Define also the signal d̃ := d̂ − d, where d̂ is the adaptive
gain introduced in (14). Consider now the function

V (ε̃) :=αVp +
β

2
‖εv‖2 +

1

2γd
d̃2,

where ε̃ := [ε>p , ε
>
v , d̃]>, and α > 0 is a positive constant to be

defined; V (ε̃) satisfies W1(ε̃) ≤ V (ε̃) ≤W2(ε̃), for W1(ε̃) :=

min
{
α
2 ,

β
2 ,

1
2γd

}
‖ε̃‖2 and W2(ε̃) := max

{
α
2 ,

β
2 ,

1
2γd

}
‖ε̃‖2.

Then, according to Lemma 1, V̇ (ε̃(t))
a.e.
∈ ˙̃

V (ε̃(t)) with
˙̃
V :=

⋂
ξ∈∂V (ε̃) ξ

>K
[
˙̃ε
]
. Since V (ε̃) is continuously dif-

ferentiable, its generalized gradient reduces to the standard
gradient and thus it holds that ˙̃

V = ∇V >K
[
˙̃ε
]
, where

∇V = [αε>p , βε
>
v ,

1
γd
d̃]>. After using (1), (14), (15), and

x2 = x2,d + ev , one obtains

˙̃
V ⊂ W̃s := −αkpε>p rpρ−1

p rpεp + αε>p rpρ
−1
p ev

− βkv1ε>v rvρ−1
v K[G](x, t)ρ−1

v rvεv + d̃‖rvεv‖
+ βε>v rvρ

−1
v

(
K[F ](x, t)− ẋ2,d − ρ̇vρ−1

v ev
)

− βkv2ε>v rvρ−1
v K[G](x, t)ρ−1

v Sv

(
kv3‖rpεp‖+ kv4 d̂

)
.

Note that, since d̂(t0) ≥ 0, (15) implies that d̂(t) ≥ 0, ∀t ∈ I .
Moreover, since the Filippov regularization (3) is defined as
a closed set and ˙̃

V ⊂ W̃s, it holds that max
ζ∈ ˙̃
V
{ζ} ≤

max
ζ∈W̃s

{ζ}. By substituting G = G+G>

2 + G−G>
2 and

employing the skew-symmetry of the second term, we obtain
in view of Assumption 2 and the definition of d in (18):

max
ζ∈ ˙̃
V

{ζ} ≤ max
ζ∈W̃s

{ζ} ≤ −α kp
Mp
‖rpεp‖2 − kv1βλ‖rvεv‖2−

kv2kv4βλ‖rvεv‖d̂− kv2kv3βλ‖rvεv‖‖rpεp‖+ d̃‖rvεv‖
+ ‖rvεv‖d+ α‖ε>p rpρ−1

p ev‖,

for all solutions x̃(t) ∈ X. By setting ζ = T (εvi) in (7),
we obtain |T (εvi)| ≤ |rviεvi | and hence by employing evi =
ρviT (εvi), i ∈ {1, . . . , n}, we obtain that

α‖ε>p rpρ−1
p ev‖ ≤ α

Mv

mp
‖rpεp‖‖rvεv‖.

Therefore, by setting α =
kv2kv3mpβλ

Mv
, employing d = d̂− d̃,

and in view of the fact that β = (kv2kv4λ)−1, we obtain

max
ζ∈ ˙̃
V

{ζ} ≤ − α kp
Mp
‖rpεp‖2 − kv1βλ‖rvεv‖2 =: −W (ε̃),

∀t ∈ I , x̃(t) ∈ X, where W is continuous and positive semi-
definite on R2n+1, since rv and rp are positive definite. Hence,
we conclude that ζ ≤ −W (ε̃), ∀ζ ∈ ˙̃

V (ε̃(t)), ∀t ∈ I and
all x̃(t) ∈ X. Choose now any finite r > 0 and let c <
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min‖ε̃‖=rW1(ε̃). Note that all the conditions of Theorem 1
are satisfied and hence, all Filippov solutions starting from
ε̃(t0) ∈ Ωf := {ε̃ ∈ B(0, r) : W2(ε̃) ≤ c} are bounded and
remain in Ωf , ∀t ∈ I . Moreover, tmax = ∞, implying that
I = [t0,∞) and it also holds that limt→∞W (ε̃) = 0, which,
by invoking the increasing property of T (·) as well as the
boundedness of V (which imply the positive definiteness and
boundedness of rp, rv), suggests that limt→∞ ‖εp(t)‖ = 0
and limt→∞ ‖εv(t)‖ = 0. The latter, in view of the increasing
property of T (·) and the fact that T (0) = 0, implies that
limt→∞ ‖ep(t)‖ = 0 and limt→∞ ‖ev(t)‖ = 0.

Note that r, and hence c, can be arbitrarily large al-
lowing any finite initial condition ε̃, which implies any
(x̃(t0), t0) ∈ Dc. In addition, it holds that ‖ε̃‖2 ≤ c̃ :=
(max{α2 ,

β
2 ,

1
2γd
})−1c, which implies the boundedness of

‖εp‖, ‖εv‖ and d̃ by
√
c̃. Therefore, we conclude that ‖d̂(t)‖ ≤

d̄ := d+
√
c̃, ∀t ∈ I . Moreover, by employing (5), we conclude

that |ρvi(t)−1evi(t)| ≤ T (
√
c̃) < 1, and hence |evi(t)| ≤

MvT (
√
c̃) ⇒ ‖x2(t)‖ ≤ x̄2 := MvT (

√
c̃)
√
n + x̄2,d, ∀t ∈ I .

Therefore, we conclude that all solutions are bounded in
compact sets ∀t ∈ I , which means that u, and ˙̂

d, as designed
in (14) and (15), respectively, remain also bounded, ∀t ∈ I .

Remark 3: It is straightforward to apply the proposed
methodology to the simpler case of first-order systems, i.e.,
when (1a) and (1b) are replaced by ẋ = F (x, z, t) +
G(x, z, t)u. The control law then takes the form u =

−k2ρ
−1
p d̂sv − k1ρ

−1
p rpεp, with ˙̂

d = γd‖rpεp‖, and sv de-
fined using rpεp. The boundedness of the solutions in the
maximal interval of existence I implies the boundedness of
F (·) and ep, and, by following a similar procedure with V

and V̇ , the derivative of Vp1 := α1

2 ‖εp‖
2 + 1

2γd
d̃2 yields

max
ζ∈ ˙̃
Vp1
{ζ} ≤ −k3‖rpεp‖2 for some positive constants α1,

k3, implying limt→∞ ‖εp(t)‖ = 0.
Remark 4: Note that no boundedness assumptions or

growth conditions are needed for the vector fields F (x, z, t)
and G(x, z, t). In particular, the effect of F (x, z, t) is canceled
by the introduced adaptive signal d̂, which increases according
to (15). It is proved, nevertheless, that this adaptive signal
remains bounded. Moreover, the response of the system is
solely determined by the funnel functions ρpi and ρvi (and
ρsi in the second control scheme), isolated from the system
dynamics and the control gains selection. Nevertheless, we
note that appropriate gain tuning might be needed to suppress
chattering in real life scenarios. Similarly, note that the region
of attraction (initial conditions) of (εp, εv) = (0, 0) is indepen-
dent from the system dynamics and the control gain selection
and depends only on the choice of the funnel functions ρpi ,
∀i ∈ {1, . . . , n}. In particular, if ρpi(t0) are design parameters,
we can always choose them such that −ρpi(t0) < epi(t0) <

ρpi(t0), ∀i ∈ {1, . . . , n}, which renders the result global. In
fact, the choice limt→t+0

1
ρpi (t0) = 0, ∀i ∈ {1, . . . , n} [14] is

not excluded from our control scheme and does not restrict the
initial condition y(t0). More specifically, one can redefine the
transformed errors as εpi = T−1(φpiepi), εvi = T−1(φvievi),
with φpi , φvi being the reciprocals of the funnel boundaries
satisfying φpi(t0) = φvi(t0) = 0. The control law is then
defined by replacing ρpi , ρvi by φ−1

pi , φ−1
vi in (14), ∀i ∈

{1, . . . , n}, and setting x2,d(t0) = ẏd − kprpεp, x2,d(t) =

ẏd +
∂φ−1

p

∂t φpep−kprpεp, for t > t0, since
∂φ−1

p

∂t is not defined
at t = t0. One can conclude that the aforementioned analysis is
still valid and V̇ ∈ ˙̃

V still holds for almost all t ≥ t0, implying
limt→∞ ‖εp(t)‖ = limt→∞ ‖εv(t)‖ = 0. Finally, noise can be
taken into account in the measurement of x2, i.e., consider
that x2 + n(x, t) is available for measurement, where n(x, t)
is an unknown noise signal with appropriate continuity and
boundedness properties. By redefining ev = x2+n(x, t)−x2,d
and including the time derivative of n(x, t) in (18), the analysis
still holds. Note, however, that in this case it can only be
deduced that limt→∞(x2(t)+n(x, t)−x2,d(t)) = 0 and hence
x2(t) does not necessarily converge to x2,d(t).

Remark 5: Since funnel control traditionally guarantees con-
finement of the state in the desired funnel, a common practice
is to tune the funnel to converge to arbitrarily small values,
achieving thus “practical stability”, i.e., the state converging
arbitrarily close to zero. Note that, in our case, the funnel func-
tions ρpi , ρvi , are not required to decrease to values arbitrarily
close to zero, yet asymptotic stability is still achieved. In fact,
the proposed control schemes can be used to achieve merely
asymptotic stability results without any funnel constraints, if
the latter is not required. More specifically, given the initial
errors epi(t0), for two control schemes, respectively, we can
use the proposed control protocols by employing any constant
values ρpi > |epi(t0)|, ∀i ∈ {1, . . . , n}. Finally, the proposed
control scheme can be extended to systems of the form
ẋi = ẋi+1, i ∈ {1, . . . , k − 1}, ẋk = F (x, z, t) + G(x, z, t)u
for some k > 0, where the funnel constraints are set for the
combined signal

∑
j∈{1,...,k−1} e

(k)
p .

IV. SIMULATION RESULTS

We consider here the simulation of two inverted pendulum
connected by a spring and a damper [13], with dynamics:

J1ẍ11 = gs sin(x11)− 0.25Fs cos(x11 − θ)− T1 + u1

J2ẍ12 = 1.25gs sin(x12) + 0.25Fs cos(x12 − θ)− T2 + σ(t)u2,

where Fs := 150(ds − 0.5) + ḋs is the force between the
connection points of the spring and damper, and

ds :=
√
.25 + .25(sin(x11 − x12)) + 0.125(1− cos(x12 − x11))
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is the distance between these points; θ is defined as

θ := tan−1

(
0.25(cos(x12)− cos(x11))

0.5 + 0.25(sin(x1)− sin(x2))

)
and T1, T2 are friction terms on the motors evolving according
to Ti = dai(t) + τi + τ̇i + ẋ1i , with

τ̇i = ẋ1i −
|ẋ1i |

1 + exp

(
−
∣∣∣ ẋ1i
0.1

∣∣∣2)
and dai(t) := (−1)i−1 cos(t)2, for t ∈

[
0, 3π

2

)
∪ [ 7π

2 ,
11π
2 ) ∪

[ 21π
2 , 27π

2 ) ∪ [ 35π
2 , 50) and 0 otherwise, i ∈ {1, 2} being an

additional disturbance. The time varying signal σ(t) is:

σ(t) =

{
1 if t ∈ [0, 3) ∪ [3.5,∞),

0.5 if t ∈ [3, 3.5)

modeling a loss of effectiveness of the second motor when
t ∈ [3, 3.5). We also choose gs = 9.81 as the gravity
constant and J1 = 0.5, J2 = 0.625. The initial conditions
are t0 = 0, x(0) = [0, 0, 0, 0]>, τ1(0) = τ2(0) = 0 and the
desired trajectory yd = [2 cos(t), π2−2 sin(t)]>. The prescribed
funnel functions are chosen as ρpi(t) = 2.5 exp(−0.1t) + 2.5,
∀i ∈ {1, 2}, which converge to 2.5. We also choose ρvi(t) =
(‖ev(0)‖1−2) exp(−0.1t)+2.5, as well as the gains kp = 10,
kv1 = 2 · 103, kv2 = 0.1, kv3 = 0.025, kv4 = 0.05, and
γd = 50. The simulation results are depicted in Figs. 1-4 for
t ∈ [0, 55] sec. More specifically, Fig. 1 depicts the errors
ep(t), ev(t) along with the performance functions ρp(t), ρv(t).
One can conclude that ep(t) and ev(t) not only respect their
imposed funnels but also converge asymptotically to zero,
without the need of arbitrarily small values for limt→∞ ρp(t)
and limt→∞ ρv(t). This can be verified also by Fig. 2, which
depicts the evolution of the transformed errors εp(t), εv(t),
∀t ∈ [0, 55] sec, and shows their asymptotic convergence to
zero. Finally, Figs. 3 and 4 illustrate the inputs u(t) as well as
the adaptation signal d̂(t), ∀t ∈ [0, 55] sec. One can conclude
the convergence of d̂(t) to a constant value as well as the
boundedness of the control input u(t), as was proved in the
theoretical analysis.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel control scheme that guarantees
asymptotic stability subject to funnel constraints for a class
of 2nd-order systems with unknown, nonlinear, and possibly
discontinuous dynamics, from all initial conditions that satisfy
the funnel constraints. We design a control protocol based
on adaptive and discontinuous control methodologies and the
correctness of the proposed scheme is independent from the
control gain selection. Future efforts will be devoted towards
extending the proposed scheme to more general systems with
potential controllability relaxations.

0 20 40

-5

0

5

0 20 40

-5

0

5

0 20 40

-200

-100

0

100

200

0 20 40

-200

-100

0

100

200

Fig. 1. The evolution of the errors ep(t) (top), ev(t) (bottom), depicted with
blue, along with the performance functions ρp(t), ρv(t), depicted with red,
∀t ∈ [0, 55] sec.
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Fig. 2. The evolution of the transformed errors εp(t), εv(t), ∀t ∈ [0, 55] sec.
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Fig. 3. The evolution of the control inputs u(t) = [u1(t), u2(t)]>, ∀t ∈
[0, 55] sec.
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Fig. 4. The evolution of the adaptation signal d̂(t), ∀t ∈ [0, 55] sec.
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