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Abstract— This paper considers the asymptotic tracking
problem for 2nd-order nonlinear Lagrangian systems subject
to predefined constraints for the system response, such as
maximum overshoot or minimum convergence rate. In par-
ticular, by employing discontinuous adaptive control protocols
and nonsmooth analysis, we extend previous results on funnel
control to guarantee at the same time asymptotic trajectory
tracking from all the initial conditions that are compliant with
the given funnel. The considered system contains parametric
and structural uncertainties, with no boundedness or approxi-
mation/parametric factorization assumptions. The response of
the closed loop system is solely determined by the predefined
funnel and is independent from the control gain selection.
Finally, simulation results verify the theoretical findings.

I. INTRODUCTION

Analysis and control of uncertain systems consists one
of the dominant topics in control theory and design, since it
has numerous applications in real-world scenarios, where the
systems are affected by modeling uncertainties and external
disturbances. One of the main control methodologies devel-
oped to tackle uncertain systems is adaptive control, where
a time-varying gain is employed to estimate/compensate the
system uncertainties [1]–[3], [3]–[5].

A well-studied instance of adaptive control is funnel
control, where the goal is the confinement of the system
state to a predefined funnel [6]–[8]. Funnel control is a
high-gain control scheme that usually does not use any
information on the system model, and has had numerous
applications during the last years. Examples include chemical
reactors [9], robotic manipulation [10], [11], vehicle pla-
tooning [12], temporal logic planning [13], and multi-agent
systems [14]–[16]. Intuitively, funnel control design is based
on an adaptive gain, which increases to infinity as the system
state approaches the funnel boundary, “pushing” in that way
the state to remain in the funnel, by also compensating
for the (possibly unknown) dynamics. The intuition behind
funnel control is the incorporation of an adaptive gain in
the control scheme, which increases (in absolute value) as
the system’s output reaches the funnel’s boundary. In that
way, the system’s output is “pushed” to always remain inside
the funnel. Funnel control has been developed for both
linear (e.g., [17]) and nonlinear systems (e.g., [6], [8], [18]),
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involving parametric (e.g., [10]) as well as structural (e.g.,
[8]) dynamic uncertainties, for a wide class of systems. It
was also combined with a bang-bang controller for SISO
systems in [19] and input saturation in [20].

Traditionally, funnel control guarantees that the state is
confined in a predefined funnel, without necessarily con-
verging to zero, i.e., asymptotic stability is not taken into
account. As a workaround, if the funnel is specified by the
control designer, it can “shrink” asymptotically, i.e., become
arbitrarily narrow around zero as time grows to infinity,
achieving thus “practical stability”. This, however, might
yield undesired large inputs due to the small funnel values,
and can be problematic in real-time systems. On the other
hand, by achieving asymptotic stability for the state, the
funnel is not needed to converge close to zero, and can
be used in order to encode just transient constraints for
the system. Asymptotic tracking subject to funnel transient
constraints has been considered in several works [10], [15],
[17], [21]; [15], [17], [21] consider linear systems, whereas
[10] assumes a known model structure, with the uncertainties
being only parametric; The aforementioned works cannot
be extended in a straightforward manner to cases where
the dynamic terms are nonlinear and have both parametric
and structural uncertainties. In addition, a class of systems
for which funnel control has not been considered in the
related works is the non-smooth type, i.e., systems with
discontinuous right-hand side terms (e.g., friction terms).
Such models are motivated by real-time systems, where
several dynamic terms (e.g., friction) are accurately modeled
by discontinuous functions of the state.

In this paper, we consider the asymptotic tracking control
problem subject to transient constraints imposed by a prede-
fined funnel for 2nd-order Lagrangian systems with uncertain
and nonsmooth nonlinear terms. More specifically, we design
a discontinuous adaptive control protocol that guarantees
confinement of the state in the given funnel as well as
asymptotic stability, from all initial conditions that satisfy
the initial funnel constraints, independently of the system
model. The proposed control law is of low complexity and
does not incorporate any information on the system model,
and no boundedness assumptions or growth conditions are
considered. Discontinuous control schemes have been con-
sidered in the related literature, mostly for stabilization of
nonholonomic systems, e.g., [22]–[26], without taking into
account transient funnel constraints. Moreover, many of these
works deal with parametric model uncertainties or assume
uniform boundedness and/or growth conditions on the un-
known dynamical terms. Discontinuous control schemes for



system uncertainties are also used in our works [27], [28]
that tackle multi-agent problems. The model uncertainties in
these works, however, are restricted to uniformly bounded
disturbances and terms bounded by the state norm.

The rest of the paper is structured as follows. Section
II introduces preliminary background notation. Section III
describes the tackled problem and Section IV provides the
proposed control protocol and the stability analysis. Finally,
simulation results are given in Section V and Section VI
concludes the paper.

II. NOTATION AND PRELIMINARIES

A. Notation

The sets of real and positive real numbers are denoted
by R and R>0, respectively; ‖x‖1 and ‖x‖ denote the
1- and 2-norm, respectively, of a vector x ∈ Rn; The
open and closed balls with radius δ, centered at x ∈ Rn,
are denoted by B(x, δ) and B̄(x, δ), respectively. The sign
function is defined as sgn(x) = {−1, 0, 1} for x < 0, x =
0, x > 0, respectively; its vector counterpart is defined
as sgn(x) = [sgn(x1), . . . , sgn(xn)]> ∈ Rn, for x =
[x1, . . . , xn]> ∈ Rn. Given a function f : Rn → Rk,
its Filippov regularization is defined as [29] K[f ](x) :=
∩δ>0 ∩µ(N̄)=0 co(f(B(x, δ)\N̄), t), where

⋂
µ(N̄)=0 is the

intersection over all sets N̄ of Lebesgue measure zero, and
co(E) is the convex closure of the set E. The Filippov
regularization of sgn(x) ∈ R is denoted by K[sgn](x) =
SGN(x) where SGN(x) = −1, if x < 0, SGN(x) = 1,
if x > 0, and SGN(x) ∈ [−1, 1], if x = 0. For a vector
x = [x1, . . . , xn]> ∈ Rn, we use the notation SGN(x) :=
[SGN(x1), . . . ,SGN(xn)]> ∈ Rn.

B. Nonsmooth Analysis

Consider the following differential equation with a discon-
tinuous right-hand side:

ẋ = f(x, t), (1)

where f : D × [t0,∞) → Rn, D ⊂ Rn, is Lebesgue
measurable and locally essentially bounded.

Definition 1 (Def. 1 of [30]): A function x : [t0, t1) →
Rn, with t1 > t0, is called a Filippov solution of (1) on
[t0, t1) if x(t) is absolutely continuous and if, for almost all
t ∈ [t0, t1), it satisfies ẋ(t) ∈ K[f ](x, t), where K[f ](x, t) is
the Filippov regularization of f(x, t).

Lemma 1 (Lemma 1 of [30]): Let x(t) be a Filippov so-
lution of (1) and V : D× [t0, t1)→ R be a locally Lipschitz,
regular function1. Then V (x(t), t) is absolutely continuous,
V̇ (x(t), t) = ∂

∂tV (x(t), t) exists almost everywhere (a.e.),

i.e., for almost all t ∈ [t0, t1), and V̇ (x(t), t)
a.e
∈ ˙̃
V (x(t), t),

where ˙̃
V := ∩ξ∈∂V (x,t)ξ

>[K[f ](x, t)>, 1]>, and ∂V (x, t) is
Clarke’s generalized gradient at (x, t) [30].

Theorem 1 (Corollary 2 of [30]): For (1), let D ⊂ Rn be
an open and connected set containing x = 0 and suppose
that f is Lebesgue measurable and x 7→ f(x, t) is essentially

1See [30] for a definition of regular functions.

locally bounded, uniformly in t. Let V : D× [t0, t1)→ R be
locally Lipschitz and regular such that W1(x) ≤ V (x, t) ≤
W2(x), ∀t ∈ [t0, t1), x ∈ D, and z ≤ −W (x(t)),∀z ∈
˙̃
V (x(t), t), t ∈ [t0, t1), x ∈ D, where W1 and W2 are
continuous positive definite functions and W is a continuous
positive semi-definite function on D. Choose r > 0 and
c > 0 such that B̄(0, r) ⊂ D and c < min‖x‖=rW1(x).
Then for all Filippov solutions x : [t0, t1)→ Rn of (1), with
x(t0) ∈ D := {x ∈ B̄(0, r) : W2(x) ≤ c}, it holds that
t1 =∞, x(t) ∈ D, ∀t ∈ [t0,∞), and limt→∞W (x(t)) = 0.

III. PROBLEM FORMULATION

Consider a MIMO Lagrangian system of the form

M(x)ẍ+ f(x, ẋ) + g(x) = u, (2)

where x := [x1, . . . , xn]> ∈ Rn, ẋ := [ẋ1, . . . , ẋn]> ∈ Rn
is the system’s state, which is available for measurement,
M : Rn → Rn×n is a positive definite inertia term, f :
R2n → Rn is a term representing Coriolis and friction-
terms, g : Rn → Rn is a gravity term, and u ∈ Rn is
the control input to be designed. The terms M(·), g(·) are
assumed to be continuous everywhere, while the term f(·) is
assumed to be Lebesgue measurable and locally essentially
bounded, which resembles friction-like terms that might be
discontinuous functions of the state. This is rigorously stated
in the following assumption:

Assumption 1: The maps x 7→M(x) : Rn → Rn×n, x 7→
g(x) : Rn → Rn are continuous and the map f : R2n → Rn
is Lebesgue measurable and locally bounded.
Moreover, since (2) represents a Lagrangian system, the
inertia term satisfies the following property:

Property 1: M(x) is symmetric and positive definite,
∀x ∈ Rn, and 0 < mIn ≤ M(x) ≤ m̄In, ∀x ∈ Rn, where
m, m̄ are unknown positive and finite constants.
The aforementioned property poses a controllability condi-
tion (similar to the ones considered in a variety of works,
e.g., [2], [3], [6], [18]).

The control objective is the asymptotic tracking of a
desired bounded trajectory xd := [x1,d, . . . , xn,d] : [t0,∞)→
Rn, with bounded first and second derivatives, i.e., ‖xd(t)‖ <
x̄d,0 ≤ x̄d, ‖ẋd(t)‖ < x̄d,1 ≤ x̄d, ‖ẍd(t)‖ < x̄d,2 ≤
x̄d, t ∈ [t0,∞), for unknown finite constants x̄d,j > 0,
j ∈ {0, 1, 2}, and x̄d := maxj∈{0,1,2}{x̄d,j}. Moreover,
as discussed in Section I, we aim at imposing a certain
predefined behavior for the transient response of the system.
More specifically, motivated by funnel control techniques
[6], [8], [18], given n predefined funnels, described by the
smooth functions (also called performance functions in [6])
ρpi : [t0,∞) → [ρ

pi
, ρ̄pi ] ⊂ R>0, where ρ

pi
, ρ̄pi are the

positive lower and upper bounds, respectively, we aim at
guaranteeing that2 −ρpi(t) > xi(t)− xi,d(t) > ρpi(t), ∀t ∈
[t0,∞), given that −ρpi(t0) > xi(t0) − xi,d(t0) > ρpi(t0),
∀i ∈ {1, . . . , n}. These functions can encode maximum
overshoot or convergence rate properties. Note that, com-
pared to the majority of the related works on funnel control

2The results can be extended to non-symmetric funnels.



(e.g., [6], [8], [18]), we do not require arbitrarily small final
values limt→∞ ρpi(t), which would achieve convergence
of xi(t) − xi,d(t) arbitrarily close to zero, since one of
the objectives is actual asymptotic stability. Formally, the
problem statement is the following:

Problem 1: Consider the system (2) and let a desired
trajectory xd : [t0,∞)→ Rn as well as n prescribed funnels,
described by ρpi : [t0,∞) → [ρ

pi
, ρ̄pi ]. Design a control

protocol u ∈ Rn such that limt→∞(xi(t) − xi,d(t)) = 0
and −ρpi(t) > xi(t) − xi,d(t) > ρpi(t), ∀i ∈ {1, . . . , n},
t ∈ [t0,∞), and all closed loop signals remain bounded.

IV. MAIN RESULTS

Our solution to Problem 1 is based on the error trans-
formation proposed in [6], which converts the constrained
error behavior −ρpi(t) > xi(t) − xi,d(t) > ρpi(t) to an
unconstrained one. More specifically, we define the errors

ep := [ep1 , . . . , epn ]> := x− xd, (3)

as well as the error transformations εpi ∈ R according to:

epi = ρpiT (εpi), ∀i ∈ {1, . . . , n}, (4)

where T : R → (−1, 1) is a smooth, strictly increasing
function, with T (0) = 0. Since T is increasing, the inverse
mapping T−1 : (−1, 1)→ R is well-defined, and

lim
z→−∞

T (z) = −1 lim
z→+∞

T (z) = 1, (5)

and hence, if εpi remains bounded in a compact set, the
desired funnel objective −ρpi(t) < epi(t) < ρpi(t) is
achieved, ∀i ∈ {1, . . . , n}. We further require that

|z| ≤
∣∣∣∣∂T−1(z)

∂z
T−1(z)

∣∣∣∣ , ∀z ∈ (−1, 1). (6)

A possible choice that satisfies the aforementioned specifi-
cations is T (z) := exp(z)−1

exp(z)+1 .

From (4), we obtain εpi = T−1
(
epi
ρpi

)
, which, after dif-

ferentiation, becomes ε̇pi = rpiρ
−1
pi

(
ẋi − ẋi,d − ρ̇piepiρ−1

pi

)
,

or, in stack vector form,

ε̇p = rpρ
−1
p

(
ẋ− ẋd − ρ̇pρ−1

p ep
)
, (7)

where εp := [εp1 , . . . , εpn ]>, rpi := ∂T−1(z)
∂z

∣∣
z=

epi
ρpi

, rp :=

diag{rp1 , . . . , rpn}, and ρp := diag{ρp1 , . . . , ρpn}. Due to
the increasing property of T (·) (and hence of T−1(·)), it
holds that rp is positive definite, and thus in order to render
ε̇p negative a choice for a desired value for ẋ is

vd := ẋd + ρ̇pρ
−1
p ep − kprpεp, (8)

where kp > 0 is a positive scalar constant gain. Since, how-
ever, ẋ is not the system’s input, we follow a backstepping-
like methodology and define the error

ev := [ev1 , . . . , evn ]> := ẋ− vd. (9)

Next, we proceed in a similar manner and define a funnel
for each evi , i ∈ {1, . . . , n}, described by the functions
ρvi : [t0,∞) → [ρ

vi
, ρ̄vi ] ⊂ R>0, where ρ

vi
, ρ̄vi are

the positive lower and upper bounds, respectively, with the
constraint ρvi(t0) > |evi(t0)|, i ∈ {1, . . . , n}. Note that
evi(t0) = ẋ(t0) − vd(t0) can be calculated at t = t0 since
it is a function of the state, the funnel functions and the
desired trajectory profile. Moreover, note that the functions
ρvi represent an artificial funnel, in the sense that they are not
part of the given specification (as ρpi ). The design constraints
they need to satisfy concern boundedness, positivity, and
initial compliance with respect to the respective errors, i.e.,
ρvi(t0) > |evi(t0)|, ∀i ∈ {1, . . . , n}.

Next, we define the open set Du,t := {(x, ẋ, t) ∈
R2n × [t0,∞) : ρp(t)

−1ep(t) ∈ (−1, 1)n, ρv(t)
−1ev(t) ∈

(−1, 1)n}, and design the control law u : Du,t → Rn as

u =− kv2ρ−1
v sgn(rvεv)

(
kv3‖rpεp‖1 + kv4 d̂

)
− kv1ρ−1

v rvεv (10)

where ρv := diag{ρv1 , . . . , ρvn}, εv := [εv1 , . . . , εvn ]>,
εvi := T−1

(
evi
ρvi

)
, rv := diag{rv1 , . . . , rvn}, rvi :=

∂T−1(z)
∂z

∣∣
z=

evi
ρvi

, kvi > 0, i ∈ {1, . . . , 4} are positive scalar

constant gains, and d̂ is an adaptive variable gain, subject to
the constraint d̂(t0) ≥ 0, and dynamics

˙̂
d = γd‖rvεv‖1, (11)

where γd > 0 is a positive constant gain.
Remark 1: The control design procedure follows closely

the prescribed performance backstepping-like methodology
of the previous works [11]–[13], [16], introduced in [31].
The desired signals and control laws in these works consist
only of proportional terms with respect to the transformed
errors εp, εv , which are guaranteed to be ultimately bounded.
In this work, the incorporation of the extra terms in (8) and
(10) achieves convergence of the transformed errors to zero,
guaranteeing thus asymptotic stability.

Remark 2: Note that no information regarding the dy-
namic model is incorporated in the control protocol (3)-
(11). All the necessary signals consist of the funnel terms
ρp, ρv and of known functions of the state and the desired
trajectory xd. Furthermore, no a-priori gain tuning is needed
and, as the next theorem states, the solution of Problem 1 is
guaranteed from all initial conditions that satisfy −ρpi(t0) >
xi(t0) − xi,d(t0) > ρpi(t0), ∀i ∈ {1, . . . , n}. As will be
revealed subsequently, the adaptive gain d̂ compensates the
unknown dynamic terms, which are proven to be bounded
due to the confinement of the state in the prescribed funnels.

The correctness of the control protocol (3)-(11) is shown
in the next theorem.

Theorem 2: Consider a system subject to the dynamics
(2), Assumption 1, Property 1, as well as a desired trajectory
xd and funnels ρpi as described in Problem 1. Then the
control protocol (3)-(11) guarantees the solution of Problem
1 from all initial conditions that satisfy −ρpi(t0) > xi(t0)−
xi,d(t0) > ρpi(t0), ∀i ∈ {1, . . . , n}.

Proof: The intuition of the subsequent proof is as
follows: We first show the existence of at least one Filippov



solution of the closed-loop system in Du,t for a time interval
I ⊆ [t0,∞). Next, we prove that for any of these solutions,
the state remains bounded in I by bounds independent of
the endpoint of I . Hence, the dynamic terms of (2) are also
upper bounded by a term, which we aim to compensate via
the adaptation gain d̂.

We start by defining some terms that will
be used in the subsequent analysis: Mp :=
maxi∈{1,...,n}{ρ̄pi}, mp := mini∈{1,...,n}{ρpi},
Mṗ := maxi∈{1,...,n}{supt≥t0{|ρ̇pi(t)|}}, Mv :=
maxi∈{1,...,n}{ρ̄vi}, mv := mini∈{1,...,n}{ρvi}, λ := 1

M2
vm̄

,

β := (kv2kv4λ)
−1, rp := infz∈(−1,1)

∂T−1(z)
∂z , where m̄ was

introduced in Property 1. Note that all the aforementioned
terms are strictly positive. In particular, λ is a lower bound
for ‖ρ−1

v M(x)−1ρ−1
v ‖ and is strictly positive due to the

definition of the funnels ρv and Property 1, and rp is
positive due to the strictly increasing property of T (·) and
hence of T−1(·). Moreover, in view of (5), it holds that
arg infz∈(−1,1)

∂T−1(z)
∂z ∈ (−1, 1). By employing (10), (11),

the closed loop system becomes

ẍ ∈M(x)−1(K[u](x, ẋ, t)− K[f ](x, ẋ)− g(x)), (12a)
˙̂
d = γd‖rvεv‖1, (12b)

where K[F ](x, ẋ), K[u](x, ẋ, t) are the Filippov regu-
larizations of the respective terms. For u specifically,
K[u](x, ẋ, t) is formed by substituting the term sgn(rvεv)
with SGN(rvεv). Define now x̃ := [x>, ẋ>, d̂] ∈ R2n+1 and
consider the open set Dc := {(x̃, t) ∈ R2n+1 × [t0,∞) :
(x, t) ∈ Du,t}. Since ρpi(t0) > |epi(t0)| and ρvi(t0) >
|evi(t0)|, ∀i ∈ {1 . . . , n}, the set Dc is nonempty. Moreover,
the right hand-side of (12) is Lebesgue measurable and
locally bounded in x̃ over the set {x̃ : (x̃, t) ∈ Dc}, and
Lebesgue measurable in t over the set {t : (x̃, t) ∈ Dc}.
Hence, according to Prop. 3 of [32], for each initial condition
(x̃(t0), t0) ∈ Dc, there exists at least one Filippov solution
x̃(t) of (12), defined in I := [t0, tmax), where tmax >
t0, such that (x̃(t), t) ∈ Dc, ∀t ∈ I . By applying the
transformation T (·)−1, we conclude the existence of the
respective Filippov solutions εp(t), εv(t) ∈ Rn, ∀t ∈ I .
Let now x̃(t0) denote the initial condition of the system
(12) satisfying (x̃(t0), t0) ∈ Dc and consider the family of
Filippov solutions starting from x̃(t0) denoted by the set X.
Note that, although not explicitly stated, tmax and I might
be different for each solution in X. We aim to prove that all
εp(t) and εv(t) are bounded and that converge to zero, for
all x̃(t) ∈ X. In view of Dc, for all x̃(t) ∈ X it holds that

|epi(t)| < ρ̄pi , |evi(t)| < ρ̄vi , (13)

∀t ∈ I , where ρ̄pi and ρ̄vi are the upper bounds of ρpi(t)
and ρvi(t), respectively, ∀i ∈ {1, . . . , n}. Consider now the
Lyapunov function Vp := 1

2‖εp‖
2, for which it holds, in view

of (7) - (9), and (13)

V̇p =ε>p rpρ
−1
p (ẋ− ẋd − ρ̇pρ−1

p ep)

≤− kp
Mp
‖rpεp‖2 +

Mv

mp
‖rpεp‖,

∀t ∈ I . Hence, we conclude that V̇p < 0 when ‖rpεp‖ >
MpMv

kpmp
. Since rpi is positive definite, ∀i ∈ {1, . . . , n}, the

latter is equivalent to ‖εp‖ > MpMv

kpmprp
⇒ V̇p < 0. Hence, we

conclude that all x̃(t) ∈ X satisfy

‖εp(t)‖ ≤ ε̄p := max

{
‖εp(t0)‖, MpMv

kpmprp

}
.

Since ε̄p is finite, it holds that T (ε̄p) < 1. Hence
|T (εpi(t))| ≤ T (ε̄p) < 1, ∀i ∈ {1, . . . , n}, t ∈ I . Moreover,
since T (·) and T−1(·) are smooth, the derivative ∂T−1(z)

∂z
approaches infinity only when z → ±1. Therefore, in view
of the definition of rpi in (7), we conclude the existence of
a finite r̄p > 0 such that ‖rp(t)‖ ≤ r̄p, ∀t ∈ I . Next, (4)
implies that ‖ep(t)‖ ≤ ēp := MpT (ε̄p)

√
n, ∀t ∈ I . Hence,

we conclude that ‖vd(t)‖ ≤ v̄d := x̄d +
Mṗ

mp
ēp + kpr̄pε̄p,

∀t ∈ I , where x̄d is the uniform bound of the desired
trajectory. We also conclude that ‖x(t)‖ ≤ x̄ := ēp + x̄d,
∀t ∈ I . In addition, by employing ẋ = ev + vd and (13),
we conclude that ‖ẋ(t)‖ < ṽ := Mv

√
n + v̄d, ∀t ∈ I .

Finally, by differentiating vd, employing the smoothness and
boundedness of ρp and its derivatives, the smoothness of
T (·), the boundedness of ẍd(t) as well as the aforementioned
bounds, we can conclude the existence of a bound d̄vd such
that ‖v̇d(t)‖1 ≤ d̄vd, ∀t ∈ I .

Note that, since f(x, ẋ) is Lebesgue measurable and
locally bounded in R2n and ‖x(t)‖ ≤ x̄ < ∞, ‖ẋ(t)‖ <
ṽ < ∞, ∀t ∈ I , there exists some positive f̄ such that
‖f(x(t), ẋ(t))‖1 ≤ f̄ , ∀t ∈ I , and hence, for each (x, ẋ),
since K[f ] is formed by the convex closure of f , it holds that
maxz∈K[f ](x(t),ẋ(t)){z} ≤ f̄ , ∀t ∈ I and x̃(t) ∈ X. Similarly,
the continuity of g(·) implies that ‖g(x(t))‖1 ≤ ḡ for a
finite ḡ, ∀t ∈ I . Note that, in view of the aforementioned
discussion, f̄ and ḡ depend solely on the initial conditions
and the parameters of the funnel functions. Define now the
finite constant term d ∈ R>0 as

d :=
β

mvm

(
f̄ + ḡ + d̄vd +Mṗn

)
, (14)

where m was introduced in Property 1. Note that, in view
of (13), the term in the parenthesis of (14) is an upper
bound for the term ‖f(x(t), ẋ(t)) + g(x(t)) + v̇d(t) +
ρ̇v(t)ρv(t)

−1ev(t)‖1, ∀t ∈ I and x̃(t) ∈ X.
Define also the signal d̃ := d̂− d, where d̂ is the adaptive

gain introduced in (10), and consider the function

V (ε̃) :=αVp +
β

2
‖εv‖2 +

1

2γd
d̃2,

where ε̃ := [ε>p , ε
>
v , d̃]>, and α > 0 is a posi-

tive constant to be defined; V (ε̃) satisfies W1(ε̃) ≤
V (ε̃) ≤ W2(ε̃), for W1(ε̃) := min

{
α
2 ,

β
2 ,

1
2γd

}
‖ε̃‖2

and W2(ε̃) := max
{
α
2 ,

β
2 ,

1
2γd

}
‖ε̃‖2. Then, according to

Lemma 1, V̇ (ε̃(t))
a.e.
∈ ˙̃
V (ε̃(t)) with ˙̃

V := ∩ξ∈∂V (ε̃)ξ
>K
[
˙̃ε
]
.

Since V (ε̃) is continuously differentiable, its generalized
gradient reduces to the standard gradient and thus it holds



that ˙̃
V = ∇V >K

[
˙̃ε
]
, where ∇V = [αε>p , βε

>
v ,

1
γd
d̃]>. After

using (2), (10), (11), and x2 = vd + ev , one obtains

˙̃
V ⊂ W̃s := −αkpε>p rpρ−1

p rpεp + αε>p rpρ
−1
p ev−

βkv1ε
>
v rvρ

−1
v M(x)−1ρ−1

v rvεv + d̃‖rvεv‖1−
βε>v rvρ

−1
v M(x)−1 (K[f ](x, ẋ) + g(x) + v̇d + ρ̇vρ

−1
v ev

)
−

βkv2ε
>
v rvρ

−1
v M(x)−1ρ−1

v SGN(rvεv)

(
kv3‖rpεp‖1 + kv4 d̂

)
.

Note that, since d̂(t0) ≥ 0, (11) implies that d̂(t) ≥ 0,
∀t ∈ I . Moreover, since the Filippov regularization is defined
as a closed set and ˙̃

V ⊂ W̃s, it holds that max
z∈ ˙̃
V
{z} ≤

max
z∈W̃s

{z}. Therefore, in view of Assumption 1 and the
definition of d in (14), we obtain:

max
z∈ ˙̃
V

{z} ≤ max
z∈W̃s

{z} ≤ −α kp
Mp
‖rpεp‖2 − kv1βλ‖rvεv‖2−

kv2kv4βλ‖rvεv‖1d̂− kv2kv3βλ‖rvεv‖1‖rpεp‖1 + d̃‖rvεv‖1
+ ‖rvεv‖1d+ α‖ε>p rpρ−1

p ev‖1,

for all solutions x̃(t) ∈ X. By setting z = T (εvi) in (6), we
obtain |T (εvi)| ≤ |rviεvi | and hence by employing evi =
ρviT (εvi), i ∈ {1, . . . , n}, we obtain that

α‖ε>p rpρ−1
p ev‖1 ≤ α

Mv

mp
‖rpεp‖1‖rvεv‖1.

Therefore, by setting α =
kv2kv3mpβλ

Mv
, employing d = d̂−d̃,

and in view of the fact that β = (kv2kv4λ)−1, we obtain

max
z∈ ˙̃
V

{z} ≤ − α kp
Mp
‖rpεp‖2 − kv1βλ‖rvεv‖2 =: −W (ε̃),

∀t ∈ I , x̃(t) ∈ X, where W is continuous and positive
semi-definite on R2n+1, since rv and rp are positive definite.
Hence, we conclude that z ≤ −W (ε̃), ∀z ∈ ˙̃

V (ε̃(t)), ∀t ∈ I
and all x̃(t) ∈ X. Choose now any finite r > 0 and let c <
min‖ε̃‖=rW1(ε̃). Note that all the conditions of Theorem 1
are satisfied and hence, all Filippov solutions starting from
ε̃(t0) ∈ Ωf := {ε̃ ∈ B(0, r) : W2(ε̃) ≤ c} are bounded
and remain in Ωf , ∀t ∈ I . Moreover, tmax = ∞, implying
that I = [t0,∞) and it also holds that limt→∞ ‖εp(t)‖ = 0
and limt→∞ ‖εv(t)‖ = 0, which, in view of the increasing
property of T (·) and the fact that T (0) = 0, implies that
limt→∞ ‖ep(t)‖ = 0 and limt→∞ ‖ev(t)‖ = 0.

Note that r, and hence c, can be arbitrarily large al-
lowing any finite initial condition ε̃, which implies any
(x̃(t0), t0) ∈ Dc. In addition, it holds that ‖ε̃‖2 ≤ c̃ :=(

max
{
α
2 ,

β
2 ,

1
2γd

})−1

c, which implies the boundedness of

‖εp‖, ‖εv‖ and d̃ by
√
c̃. Therefore, we conclude that

‖d̂(t)‖ ≤ d̄ := d+
√
c̃, ∀t ∈ I . Moreover, by employing (4),

we conclude that |ρvi(t)−1evi(t)| ≤ T (
√
c̃) < 1, and hence

|evi(t)| ≤ MvT (
√
c̃) ⇒ ‖x2(t)‖ ≤ x̄2 := MvT (

√
c̃)
√
n +

v̄d, ∀t ∈ I . Therefore, we conclude that all solutions are
bounded in compact sets ∀t ∈ I , which means that u, and
˙̂
d, as designed in (10) and (11), respectively, remain also
bounded, ∀t ∈ I .

Remark 3: Note that no boundedness assumptions or
growth conditions are needed for the vector fields f(x, ẋ) and
g(x), whose effect is compensated by the introduced adaptive
signal d̂. Moreover, the response of the system is solely
determined by the funnel functions ρpi and ρvi , isolated
from the system dynamics and the control gains selection.
Nevertheless, appropriate gain tuning might be needed in
order to suppress chattering due to the discontinuous nature
of the proposed control scheme. In addition, note that the
region of attraction (initial conditions) of (εp, εv) = (0, 0)
is also isolated from the system dynamics and the control
gain selection and depends only on the choice of the funnel
functions ρpi , ∀i ∈ {1, . . . , n}. In particular, if ρpi(t0) are
design parameters, we can always choose them such that
−ρpi(t0) < epi(t0) < ρpi(t0), ∀i ∈ {1, . . . , n}, which ren-
ders the results global. In fact, the choice limt→t+0

1
ρpi (t0) =

0, ∀i ∈ {1, . . . , n} [8] is not excluded from the control
scheme and does not restrict the initial condition x(t0).
Finally, unlike most related works, ρpi are not required to
decrease to values arbitrarily close to zero, and asymptotic
stability is still achieved. In fact, the proposed control
schemes can be used to achieve simply asymptotic stability
results without any funnel constraints, if the latter is not
required. More specifically, given the initial errors epi(t0),
we can use the proposed control protocols by employing any
constant values ρpi > |epi(t0)|, ∀i ∈ {1, . . . , n}.

V. SIMULATION RESULTS

We demonstrate the proposed control scheme using the
dynamical model of a planar two-link robotic manipula-
tor with x = [x1, x2]> ∈ R2, representing the angular
joint positions; f = [f1, f2]> is chosen as The respective
Lagrangian dynamics are given by (2) with M = [Mij ],
f = [f1, f2]>, g = [g1, g2]>, f1 = c1 sin(x2)ẋ1ẋ2 +
c2ẋ1sgn(ẋ1) + c3ẋ

2
2, f2 = c4 sin(x2)ẋ2

1 + c5ẋ2sgn(ẋ2),
g1 = g11 cos(x1) + g12 cos(x1 +x2), g2 = g21 cos(x1 +x2),
and mj , cj , gjk are constant coefficients formed by inertial
and geometrical characteristics of the robot (link lengths,
masses, moments of inertia, friction coefficients). We set
xd = [2 cos(t), π2 − 2 sin(t)]>, t0 = 0, x1(0) = [−2, 2]>,
x2(0) = [0, 0]>, and the prescribed funnel functions as
ρpi(t) = 4.5 exp(−0.25t) + 0.5, ∀i ∈ {1, 2}, which satisfy
ρpi(0) > |xi(0) − xdi(0)|, ∀i ∈ {1, 2} and converge to the
value 0.5. We also choose ρvi(t) = ‖ev(0)‖1 exp(−0.1t) +
0.5, which satisfy ρvi(0) > |evi(0)|, ∀i ∈ {1, 2}, as well as
the gains kp = 1, kv1 = 150, kv2 = 0.01, kv3 = kv4 =
0.5, and γd = 0.01. The simulation results are depicted
in Figs. 1,2 for t ∈ [0, 40] sec. More specifically, Fig. 1
shows the evolution of the transformed errors εp(t), εv(t),
∀t ∈ [0, 40] sec, which, not also remain bounded, but also
converge asymptotically to zero. Hence, one can conclude
that ep(t) and ev(t) not only respect their imposed funnels
but also converge asymptotically to zero, without the need of
arbitrarily small values for limt→∞ ρp(t) and limt→∞ ρv(t).
Finally, Fig. 2 illustrates the inputs u(t) as well as the
adaptation signal d̂(t), ∀t ∈ [0, 40] sec.
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Fig. 1. The evolution of εp(t), εv(t), ∀t ∈ [0, 40] sec.
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Fig. 2. The evolution of u(t) = [u1(t), u2(t)]> (left) and d̂(t) (right),
∀t ∈ [0, 40] sec.

VI. CONCLUSION AND FUTURE WORK
This paper tackles asymptotic stability subject to funnel

constraints for 2nd-order nonlinear and uncertain Lagrangian
systems. We design a control protocol based on adaptive and
discontinuous control methodologies and the correctness of
the proposed schemes is independent from the control gain
selection. Future efforts will address more general systems
of higher order with potential controllability relaxations.
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