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Abstract

This paper presents a novel control protocol for distance and orientation formation control of rigid bodies, whose sensing
graph is a static and undirected tree, in the special Euclidean group SE(3). The proposed control laws are decentralized, in the
sense that each agent uses only local relative information from its neighbors to calculate its control signal, as well as robust
with respect to modeling (parametric and structural) uncertainties and external disturbances. The proposed methodology
guarantees the satisfaction of inter-agent distance constraints that resemble collision avoidance and connectivity maintenance
properties. Moreover, certain predefined functions characterize the transient and steady state performance of the closed loop
system. Finally, simulation results verify the validity and efficiency of the proposed approach.
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1 Introduction

During the last decades, decentralized control of multi-
agent systems has gained a significant amount of atten-
tion due to the great variety of its applications, includ-
ing multi-robot systems, transportation, multi-point
surveillance as well as biological systems. Among the
various research topics in multi-agent systems, the most
popular ones can be considered to be (i) multi-agent
navigation [1], where the agents need to navigate to
predefined positions of the state space, and (ii) consen-
sus [2], where the agents aim to converge to a common
state. At the same time, the agents might need to fulfill
certain transient properties, such as network connectiv-
ity [3] and /or collision avoidance [4]. Another important
problem considered in multi-agent systems is formation
control [5], where the agents aim to form a predefined
shape in the state space, and which can be seen as a
combination of the navigation and consensus problems.
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Formation control is categorized in ([5]) position-based,
distance-based and orientation-based formation control,
as well as a combination of the two, which is also the
focus of this work.

Distance-based formation control has been well-studied
in the related literature (see, indicatively, [6-17]). In
these works, however, the authors consider simplified
single-integrator models for the agent dynamics. Dou-
ble integrator schemes have been studied in [18-20].
Orientation-based formation control has been investi-
gated in [21-24], whereas the authors in [24-26] have
considered the combination of distance- and orientation-
based formation, also employing single integrator or 2D
unicycle dynamics.

The use of simplified dynamics however, like in the afore-
mentioned works, does not apply to realistic engineering
applications, where the systems may have complicated
and uncertain dynamics. Moreover, such systems are in-
herently under the presence of exogenous disturbances.
Two more characteristics not taken into account in most
of the aforementioned works is (i) connectivity preser-
vation among the agents, and (ii) inter-agent collision
avoidance. Both of these properties are important, inher-
ent from the limited sensing capabilities of multi-agent
systems, and dimensionless agents/robots in potential
real-time applications, respectively.
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Motivated by the above, we present in this paper a novel
control protocol for the formation control of multiple
rigid bodies forming a tree sensing graph in SE(3). We
employ the Prescribed Performance Control method-
ology, initially proposed in [27], to achieve predefined
transient- and steady-state performance. Prescribed
performance control has been considered in the frame-
work of multi-agent systems in [28-31]. In [28,29] the
authors tackle the position-based formation control
problem, by taking into-account position-based con-
nectivity maintenance in [29], and [30, 31] consider the
consensus problem. The proposed methodology exhibits
the following attributes: 1) It is decentralized, in the
sense that each agent computes its own control signal
based on its local sensing capabilities, without needing
to communicate with the rest of the agents, or to know
the pose of a global coordinate frame. 2) It is robust
to bounded external disturbances and uncertainties of
the dynamic model, since these are not employed in
the control design. 3) It guarantees satisfaction of cer-
tain distance constraints among the initially connected
agents, which resemble collision avoidance and con-
nectivity maintenance specifications. 4) It guarantees
convergence to a feasible formation configuration with
predefined transient and steady-state performance from
almost all initial conditions. Moreover, in contrast to
standard continuous control methodologies on SO(3)
(where the closer the initial condition is to the unstable
equilibrium, the more the stabilization time approaches
infinity), it guarantees convergence to the formation
configuration arbitrarily fast, regardless of the distance
of the initial system configuration to the unstable equi-
librium. This paper constitutes an extension of our
previous works [32], [33]. In both of these works we ad-
dressed the same problem using Euler angles that suffer
from representation singularities as well as knowledge
of a common global inertial frame; [33] employs a po-
tential function-based solution, inherently exhibiting
local minima, and [32] also uses the idea of prescribed
performance control.

2 Notation and Preliminaries

The set of positive integers is denoted as N. The real
n-coordinate space, with n € N, is denoted as R"; R%
and RZ ) are the sets of real n-vectors with all elements
nonnegative and positive, respectively. Given a set S,
denote by |S]| its cardinality, by S™ = S x ...S its
n-fold Cartesian product, and by 2 the set of all its
subsets. The notation ||z| is used for the Euclidean
norm of a vector x € R™. Given a symmetric matrix
A, Amin(A4) == min{|\| : A € eig(A)} denotes the mini-
mum eigenvalue of A, respectively, where eig(A) is the
set of all the eigenvalues of A and rank(A) is its rank;
| Al|r := tr(AT A) is the Frobenius norm of A, and tr[]
is its trace; det(A) denotes the determinant of a matrix
A € R™ ™. The notation diag{A4s,...,A,} stands for
the block diagonal matrix with the matrices Ay, ..., A,

in the main block diagonal; A® B denotes the Kronecker
product of matrices A, B € R™*" as was introduced
in [34]. Define by I, € R™*™ and 0,,x, € R™*™ the
unitary matrix and the m x n matrix with all entries
zeros, respectively; B(e,r) == {z € R? : ||z — c|| < r}
is the vector-valued mapping representing the 3D ball
of radius 7 € Ry and center ¢ € R3. Given z, y € R3,
S : R® — s0(3) is the skew-symmetric matrix defined
according to S(z)y = = x y, and S71 : 50@) — R3
is its inverse, where s0(3) = {S € R¥3 : 2TS()z =
0,Vx € R3} is the space of skew-symmetric ma-
trices. The special Euclidean group is denoted by
SE(3) == {r(c, R) € R? x SO(3)}, where SO(3) :== {R €
R33 . RTR = I3,det(R) = 1}. Moreover, the tan-
gent space to SO(3) at R is denoted by TrSO(3) and
we also use Tp = R3 x TrSO(3). We define the in-
duced norm in SO(3)N as ||R||r = Yieqr,..ny I1Rillw
for any R = (Ry,...,Ry) € SO(3)". Finally, all the
differentiations are performed with respect to an iner-
tial frame of reference unless otherwise stated. Some
useful properties of skew symmetric matrices [35]:
2 S(y)x = 0:S(Ra) = RS(x)R', —Ltr [S(2)S(y)] =
a2y, tr[AS(z)] = $tr [S(z)(A— AT)] = —2TS7H(A -
AT), for every x, y € R3, A € R3*3 and R € SO(3).

2.1 Prescribed Performance Control

Prescribed Performance Control (PPC), originally pro-
posed in [27], describes the behavior where a tracking
error e(t) : R>¢ — R evolves strictly within a predefined
region that is bounded by certain functions of time,
achieving prescribed transient and steady state per-
formance. The mathematical expression of prescribed
performance is given by the following inequalities:
_pL(t) < e(t) < pU(t)a vt € RZD) where pL(t)va(t)
are smooth and bounded decaying functions of time,
satisfying lim p,(¢) > 0 and lim p,(¢t) > 0, called
t—o0 t—o0

performance functions. Specifically, for the exponential
performance functions p;(t) = (pio — pico)e 1t + Pico,
with  pio, Pico,li € Rso,i € {U,L}, appropriately
chosen constants, p., = p.(0), pvoe = pu(0) are se-
lected such that py, > e(0) > p., and the constants
Pree = Hm pr(t) < pro, pree = lim py(t) < puo
t—o0 t—o00

represent the maximum allowable size of the tracking
error e(t) at steady state, which may be set arbitrarily
small to a value reflecting the resolution of the mea-
surement device, thus achieving practical convergence
of e(t) to zero. Moreover, the decreasing rate of p,(¢),
pu(t), which is affected by the constants [, {, in this
case, introduces a lower bound on the required speed
of convergence of e(t). Therefore, the appropriate selec-
tion of the performance functions p,(t), py(t) imposes
performance characteristics on the tracking error e(t).



2.2  Dynamical Systems

Theorem 1 [36, Theorem 2.1.1] Let 2 be an open set
in R" x R>q. Consider a function g : Q@ — R" that
satisfies the following conditions: 1) For every z € R™,
the functiont — g(z,t) defined on Q, == {t : (2,t) € Q}
is measurable. For every t € Rsq, the function z —
g(z,t) defined on Q4 == {z: (2,t) € Q} is continuous; 2)
For every compact S C 2, there exist constants Cg, Lg
such that: | g(z, )| < s, lg(z, )~ (s | < Lsllz—l.,
V(z,t), (y,t) € S. Then, the initial value problem z =
9(z, 1), z0 = z(tg), for some (zo,t0) € 2, has a unique
and mazimal solution defined in [to, tmax), With tmax > to
such that (z(t),t) € Q,Vt € [to, tmax)-

Theorem 2 [36, Theorem 2.1.4] Let the conditions of
Theorem 1 hold in Q and let a maximal solution of the
initial value problem z = g(z,t), zo = z(to), exists in
[to, tmax) such that (z(t),t) € Q,Vt € [to,tmax). Then,
either tmax = 00 or _ljr{l {||z(t)||+m = 00,
where dg : R™ x 28" — R>¢ is the distance of a point
x € R™ to a set A, defined as ds(x, A) = in£{||:v —yll}
ye

2.8  Graph Theory

An undirected graph G is a pair (N, €), where N is a
finite set of N € N nodes, representing a team of agents,
and € C {{i,j} :Vi,j € N,i # j}, with K = |€], is the
set of edges that model the sensing capabilities between
neighboring agents. For each agent, its neighboring set
N is defined as NV; == {j € N : {i,j} € E}. If there is
an edge {i,j} € &, then i, j are called adjacent. A path
of length r from vertex ¢ to vertex j is a sequence of
r + 1 distinct vertices, starting with ¢ and ending with
7, such that consecutive vertices are adjacent. For i = j,
the path is called a cycle. If there is a path between any
two vertices of the graph G, then G is called connected. A
connected graph is called a tree if it contains no cycles.
Consider an arbitrary orientation of G, which assigns to
each edge {i,j} € & precisely one of the ordered pairs
(4,7) or (4,1). When selecting the pair (4, j), we say that
¢ is the tail and j is the head of the edge {i,j}. By
considering a numbering k € K = {1,..., K} of the
graph’s edge set, we define the N x K incidence matriz
D(G) = [d;j], where: d;; = 1, if ¢ is the head of edge j;
d;; = —1, if i is the tail of edge j; and d;; = 0, otherwise.

Lemma 1 [17, Section III] Assume that the graph G is
a tree. Then, D(G)T AD(G) is positive definite for any
positive definite matriz A € RV*N,

Proposition1 Let f : Rsg — R, with f(z) =
exp(x) [exp(x) — 1] — x2. Then it holds that f(z) > 0,
Vo € RZQ.

Proposition 2 [37] Let Ri, Ry € SO(3), and eg =

SHR] Ry = RY Ra). Then |lexl|® = | i = Ral|3:(1 -
sl —R2H2F)-

Proposition 3 [38] Let Ry,R: € SO(3). Then, for
the rotation matriv Ry R1 € SO(3) it holds that
—1 < tr{Ry Ry] < 3; tr{Ry R1] = 3 if and only if
R;Rl = I3 & R = RQ,’ tT[R;Rl] = —1 when
R1 = Roexp(£nS(x)), for every x in the unit sphere,
where exp(-) here is the matriz exponential.

3 Problem Formulation

Consider a set of N rigid bodies, with A" = {1,2,..., N},
N > 2, operating in a workspace W C R3. We consider
that each agent occupies a ball B(p;, r; ), where p; € R3 is
the position of the agent’s center of mass with respect to
an inertial frame F, and r; € Ry is the agent’s radius.
We also denote as R; € SO(3) the rotation matrix asso-
ciated with the orientation of the ith rigid body. More-
over, we denote by v; 1, € R and w; € R? the linear and
angular velocity of agent ¢ with respect to frame F,. The
vectors p; are expressed in F, coordinates, whereas v; 1,
and w; are expressed with respect to a local frame F;
centered at each agent’s center of mass. The position of
Fo, though, is not required to be known by the agents,
as will be shown later. By defining z; := (p;, R;) € SE(3)
and v; == [v/,w/]T € RS, we model each agent’s mo-
tion with the 2nd order Newton-Euler dynamics:

&; = (Ryvi,L, RiS(w;)) € Tr,, (1a)
u; = Miv; + Ci(vi)vi + gi(3) + wi(ws, vi, t), (1b)

where the matrix M; € R%6 is the constant positive def-
inite inertia matrix, C; : R® — R*6 is the Coriolis ma-
trix, g; : SE(3) — RS is the body-frame gravity vector,
w; : SE(3) x RS x R> — R is a bounded vector repre-
senting model uncertainties and external disturbances,
and Tg, = R3 x TrSO(3), as defined in Section 2. Fi-
nally, u; € R® is the control input vector representing the
6D body-frame generalized force acting on agent i. The
following properties hold for the aforementioned terms:

e The terms M;, C;(+), gi(-) are unknown to the agents,
C;(+), gi(+) are continuous, and it holds that

0<m; <m; <oo (2a)
llgi(x:)|| < g4, Va; € SE(3), (2b)

where g; is a finite unknown positive constant and

m; = Amin(M;), and m; = Apax(M;), which are also
unknown to the agents, Vi € N.

e The functions w;(x;,v;,t) are assumed to be contin-
uous in v; € RS and bounded in (x;,t) by unknown

positive finite constants w;.



The dynamics (1b) can be written in a vector form rep-
resentation as:

& = hy(z,0), (3a)
u= Mo+ C)v+ g(x) + w(x,v,t), (3b)
where z == (z1,...,2n) € SE3)N, v := [v],...,v5]"
€ RN w == [uf,...,u}]" € RN and hy(x,v) =
(hay (x1,v1), ..., th(ZCN,UN)) = ((RIUI L, R1S(w ))
, (Rnun,L, RnS(ww))) € Tr, X Try, M =
diag{[Mi]iey} 6 RGNXGN Cv) = d1ag{r[C V4 Zey}
c RGNXGN

gl(_drfl ,...

agN IN l € RG
wl xlavla ) ]

w(z,v,t) = w(xy,vN,t) RGN
It is also further assumed that each agent has a limited
sensing range of s; > max; jen{r; + r;}. Therefore, by
defining the neighboring function N;(p) = {j € N :
p; € B(pi,si)}, and p = [p{,...,p}]" € RN, agent
i can measure the relative offset R (p; — p;) (i.e., ex-
pressed in 4’s local frame), the distance ||p; — pjl|, as
well as the relative orientation RJ-TRZ- with respect to its
neighbors j € NV;(p). In addition, we consider that each
agent can measure its own velocity subject to time- and
state-varying bounded noise, i.e., agent 4 has continuous
feedback of v; = [@TL,@-T]T = v; +ni(z;,t), Vi € N
n;(x;,t) are assumed to be bounded by unknown posi-
tive finite constants 7i; and n; q(x;, &4, t) = n;(z;,t) are
assumed to be continuous in #; and bounded in (x;, 1)
by unknown positive finite constants n; 4, Vi € N.

Remark 1 [Local relative feedback| Note that the
agents do not need to have information of any com-
mon global inertial frame. The feedback they obtain is
relative with respect to their neighboring agents (ex-
pressed in their local frames) and they are not required
to perform transformations in order to obtain absolute
positions/orientations. In the same vein, note also that
the velocities v; are vectors expressed in the agents’ local
frames.

The topology of the multi-agent network is modeled
through the undirected graph G = (N,€), with & =
{(i,5) € N2 : j € Ni(p(0)) and i € N;(p(0))} (i.e., the
set of initially connected agents), which is assumed to
be nonempty and connected. We further denote K =
{1,..., K} where K = |£|. Given the k-th edge, we use
the simplified notation (k1, ko) for the function that as-
signs to edge k the respective agents, with k1, ks € N,
Vk € K. Since the agents are heterogeneous with respect
to their sensing capabilities (different sensing radii s;),
the fact that the initial graph is nonempty, connected
and undirected implies that

[Pk, (0) = Pry ()| < di com, (4)

with di,con = min{sg,, sk, },Vk € K. In other words,
we consider that the position of the agents at ¢ = 0 is

such that the agents for which (4) holds form a con-
nected sensing graph. We also consider that G is static
in the sense that no edges are added to the graph. We
do not exclude, however, edge removal through connec-
tivity loss between initially neighboring agents, which
we guarantee to avoid. That is, the proposed methodol-
ogy guarantees that ||pk, (t) — pr, (t)|| < di,con, Vk € K,
Vvt € R>p. It is also assumed that at ¢ = 0 the neigh-
boring agents are at a collision-free configuration, i.e.,
di,col < [[Pks(0) = pi, (0)||, Yk € K, with dy col = 1, +
Tk, . Hence, we conclude that

i col < |[Pry(0) = Pry (0)]| < dpcon, Ve € K. (5)

The desired formation is specified by the constants
di,des € R>0, Ry des € S@(?)),Vk € K, for which, the
formation configuration is called feasible if the set
¢ = {:C € SE(3)N : ||pk2 _pk1|| = dk,dcs; R;;Rkl =
Ry des, Vk € K} is nonempty. Apart from achieving a
desired inter-agent formation while maintaining the ini-
tial edges, we aim at guaranteeing that the inter-agent
distance of the edges k € IC (initially connected agents)
stays larger than rg, + rg,, complying with potential
collision avoidance specifications. We also make the
following required assumption:

Assumption 1 The sensing graph G is a tree.

The aforementioned assumption states the initially con-
nected agents in £ must form a tree graph. In cases where
the agents satisfying (4) form a graph that contains cy-
cles, edges can be manually deleted according to certain
criteria (e.g. neighboring priorities) in order to obtain a
tree sensing graph.

Problem 1 Given N agents governed by the dynamics
(1), under Assumption 1 and given the desired inter-
agent configuration constants di des € R>0, R des €
SO(3), with dk,cor < di,des < di,con, Yk € K, design
decentralized control laws u; € RS i € N such that,V k €
KC, the following hold: 1) tlglélo 1pks (B) — Dry (B)]] = die, des;

2) tlggo[Rh (t)]TRkl (t) = Ry des; 3) di,col < Ik, (£) —
Piy (B)]] < d,con, V t € R>g.

The term “robust” here refers to robustness of the pro-
posed methodology with respect to the unknown dy-
namics and external disturbances in (1) as well as the
unknown noise n;(+) in the velocity feedback.

4 Main Results

Let us first introduce the distance and orientation errors:



€k = Hpk2 — Pk, ”2 - di,des €R, (63)
1
Vri= st — RLgnRL Ry | €102, (6b)

Vk € K. The fact that ¢ € [0,2] is derived by using
Proposition 3. Regarding ey, our goal is to guarantee
lim; o ex(t) — 0 from all initial conditions satisfying
(5), while avoiding inter-agent collisions and connectiv-
ity losses among the initially connected agents specified
by £. Regarding ¢y, we aim to guarantee the following: 1)
lim;—, o0 91 (t) — 0, which according to Proposition 3 im-
plies that lim;_, sz( )TRkl( ) Ry des; ) W( )

Vt € R>o, since the configuration ¢, = 2 is an undes1red
equilibrium, as will be clarified later[[] By invoking the
properties of skew symmetric matrices of Section 2, the
errors (6) evolve according to the dynamics:

ér = 2(R} Pryks) (R, RieyViyr — Vi), (7a)

. 1

Yy = 56%,6 (R}, Riywry — Wiy ), (7b)
where D, k) = Pko —Dk, and eg, = S’l(RleRbRk,dcs—

R;— dCSR;—z Ry,), Yk € K. By employing Proposition 2, we
obtain |ler,[|* = R, Rk, — Riaesl[#(1 — IR, Ry, —
Ricacsl[3) as well as || R], Ry, = Rial2 = tr[ (R], Ry, -

Riaes) T (R, Ry, — Rkydcs)} — tr [213 —92R] debszRkl}
= 44),. Hence, it holds that:

ler, [I? = 2tk (2 — ¥), (8)

which implies that: ||er, || = 0 = ¢, = 0 or ¢y, = 2,
Vk € M. The two configurations ¢, = 0 and ¢ =
2 correspond to the desired and undesired equilibrium,
respectively.

The concepts and techniques of prescribed performance
control (see Section 2.1) are adapted in this work in or-
der to: a) achieve predefined transient and steady state
response for the distance and orientation errors e, ¥,
Vk € K, as well as ii) avoid the violation of the distance
and connectivity constraints between initially neighbor-
ing agents, as presented in Section 3. The mathematical
expressions of prescribed performance are given by the
inequality objectives:

—Cl,colPey (t) <ex(t) < Ck.conPes (1), (9a)
0 < Pr(t) < py, (1) < 2, (9b)

. Pey 00
Vk € K, where p,, : R>o — max{Ckfon ol }

P+ R>o — [pw,c,oou pwk,o]a with py, () = (pwk
1 Tt is well known that topological obstructions do not allow

global stabilization on SO(3) with a continuous feedback
control law (see [35,37,38])

—1 . Pey, 00
pwk,oo)e ’l’kt + pwk,oou Pek (t) = |:1 - maX{Ck,foka,col}jl

—le, t Pey. 00
e ek [ . o —
+ ma‘x{ck,con 1Ck,col} ’

bounded, and decreasing functions of time; the constants
lek, lwk € Ryg, and Pey,0o € (O,max{Ckﬁcon,Ckﬁcol}),
Popo € (0,p4,0), Yk € K, incorporate the desired
transient and steady state performance specifications
respectively, as presented in Section 2.1, and Cj col,
Ch,con € Rs0,VEk € K, are associated with the distance
and connectivity constraints. In particular, we select

are designer-specified, smooth,

2 g2 2
dk,col’ Ok,con = dk,con - dk,desv (10)

Ck,col = dz,des -
Vk € IC, which, since the desired formation is compatible
with the constraints (i.e., di.col < di,des < dk.con, Vk €
KC), ensures that Ck col, Ck con € R0, Vk € K, and con-
sequently, in view of (5), that: —C¥ co1pe, (0) < ex(0) <
Per (0)Cl con, Yk € K. Moreover, assuming that 1;,(0) <
2, Vk € K, by choosing:

Poro = pun (0) € (¢k(0), 2), (11)

it is also guaranteed that: 0 < ¥ (0) < py, (0), Vk € K.
Hence, if we guarantee prescribed performance via (9),
by setting the steady state constants p., «, Py, - arbi-
trarily close to zero and by employing the decreasing
property of pe, (t), py, (t),Vk € IC, we guarantee practi-
cal convergence of the errors e (t), ¥ (t) to zero and we
further obtain:

_Ck,col < eg (t) < Ck,conv 0 S U)k (t) < Pwk (t)a (12)

Vt € Rso, which, owing to (10), implies: drco <
lpks (1) — Pry ()| < diocon, VE € K,t € Rsp, provid-
ing, therefore, a solution to problem 1. Moreover, note
that the choice of p,, , along with (12) guarantee that
Yr(t) < 2, V&t € R>g and the avoidance of the unstable
singularity equilibrium.

In the sequel, we propose a decentralized control protocol
that does not incorporate any information on the agents’
dynamic model and guarantees (9) for all ¢ € R>. Given
the errors eg, ¥, we perform the following steps:

Step I-a: Select the corresponding functions pe, (t),
Py, (t) and positive parameters C con, Ch,cols K € K,
following (9), (11), and (10), respectively, in order to
incorporate the desired transient and steady state per-
formance specifications as well as the distance and con-

nectivity constraints, and define the normalized errors,
vk € K,

gek = Pey, (t)_leka fwk = Py, (t)_1¢k- (13)

Step I-b: Define the transformations T¢,
Ck,con) — R, k € IC, and T»¢ :

: (_Ck,cola
[0,1) — [0,00) by



I+ m—
T..(z) = In (1_071> Ty(z) = 1n( ) Vk € K,

Ck,con

and the transformed error states, Vk € K,

Eep = Tek (é-ek)7 Eqpy, = Ti/J (&ﬁk) (14)

Next, we design the decentralized reference velocity vec-

. T T
tor for each agent v; qes = [vi,des7 wiﬁdcs] as

Vi, Ldes
Vi,des =

Wi, des

2 k% a(i, k, Ry, , Ry, ) = (5(5 Lo B Pa ks
— 0 € ) (15)
Z (Z k Rk17Rk2) w(gl(bk))
Kek

where §; € Ry are positive gains, Vi € N, r.,
(—Ch,col; Crcon) — [1,00),7ry = [0,1) — [1,00), with

Tep(T) = aTg’;(z), ry(x) = 9u(@) and « is defined as

ali,k, R, Rk,) = —I, if i is the tail of the kth edge
(i = k1), a(i, k, Ry,, Ry,) = R/ Ry, if i is the head of
the kth edge (i = k2), and 0 otherwise. The assignment
of the head and tail in each edge can be done off-line
according to the specified orientation of the graph, as
mentioned in Section 2.3.

Step II-a: Define for each agent the velocity errors e, :=
[ed1s--s€0, 6] = Ui — Vides, Vi € N, and design
the decreasing performance functions as p,, , : R0 —
[p.0,5 puze ], With py,, (8) = (p.o, = puze ) exp(—lu; ) +
Poze,s where the constants P05 Puse s ly, , incorporate the
desired transient and stead}} state specifications, with
the design constraints p,0 > ey, ,(0)], pu=, € (0,p,0 ),

Ve e {l,...,6},i e N. The term e, ,(0) can be mea-
sured by each agent at t = 0 directly after the calcula-
tion of v; ges(0). Moreover, define the normalized veloc-
ity errors

o = [Cvins - 7§U'L,G]T = pu, () e, (16)
where pvi(') = diag{[pvi,tz(')]le{l ..... 6}}7 VieN.

Step II-b: Define the transformation Ty, : (—1,1) - R

as: Ty(x) :=1In (Hz) and the transformed error states

Tv(gvi71)7 s 7Tv(§vi,6)]—vr(17)

Finally, design the decentralized control protocol for
each agent i € N as

Ev; = [Evs 1y- - - ,sviyg]T =

Ui = = [p'Ui (ﬂ]il Ty (g'Ui)E'Ui’ (18)

where 7,(£y,) = diag{[ry(§v, ,)leeqr,...63) With 7,
(=1,1) = [1,00), ry(x) = anggz)j and v; € Ry are

positive gains, Vi €

Remark 2 [Control protocol intuition| Note that
the selection of Cl cot, Ck,con according to (10) and of
Ppr (t)v P e (t) such that Pyy0 = Py (O) € (d’k (0)7 2)a pu?,
pu.(0) > ey, ,(0)] along with (5), guarantee that
§ek (0) S (Ok,colv Ck,con): U)k (O) S [Oa 2)7 gui,[ (0) S
(-1,1),Vk e K, ¢ € {1,...,6}, i € N. The prescribed
performance control technique enforces these normalized
errors &e, (1), &y, (t) and &, ,(t) to remain strictly within
the sets (—C,coty Ck,con), [0,2), and (—1,1), respec-
tively, Vk € K, £ € {1,...,6},i € N,t > 0, guaranteeing
thus a solution to Problem 1. It can be verified that this
can be achieved by maintaining the boundedness of the
modulated errors €, (t), ey, (t) and €y, (t) in a compact
set, Vt > 0.

Remark 3 [Arbitrarily fast convergence to v, =
0] The configurations where |ler, || = 0 < ¥ = 0
or Y = 2 are equilibrium configurations that result in
Wk ,des = Wko,des = 0, Vk € K. ]f 1/)k(0) = 2, which
is a local minima, the orientation formation specifica-
tion for edge k cannot be met, since the system becomes
uncontrollable. This is an inherent property of stabiliza-
tion in SO(3), and cannot be resolved with a purely con-
tinuous controller [39]. Moreover, initial configurations
Vi (0) starting arbitrarily close to 2 might take infinitely
long to be stabilized at ¥ = 0 with common continu-
ous methodologies [40]. Note however, that the proposed
control law guarantees convergence to 1, = 0 arbitrarily
fast, given that 1,(0) < 2. More specifically, given the
initial configuration ¥ (0) < 2, we can always choose
Pug.o such that Yr(0) < py, 0 < 2, regardless of how
close ¥y (0) is to 2. Then, as proved in the next section,
the proposed control algorithm guarantees (9b) and the
transient and steady state performance of the evolution
of Yi(t) is determined solely by py, (t) and more specif-
ically, its convergence rate is determined solely by the
term ly, . It can be observed from the desired angular ve-
locities w; ges, designed in (15), that close to the config-
uration ¥ (0) = 2, the term eg, (0), which is close to
zero (since ¥y (0) = 2 = ||6Rk( )| =0), is compensated
by the term 14 (&y, (0)) = 1= 5 ¢, 0 which attains large
¥ (0)
P

values (since &y, (0) = — is close to 1). In previous

related approaches, the term er, (0) renders the control
input arbitrarily small in configurations arbitrarily close
to ¥y (0) = 2, resulting thus in arbitrarily large stabiliza-
tion time. Finally, note that potentially large values (but
always bounded, as proved in the next section) for w;, ges
and hence u; due to the term ry(§yp, (0)) can be compen-
sated by tuning the control gains d; and ;.

Remark 4 [Decentralized manner, relative feed-
back, and robustness| Notice by (15) and (18) that the
proposed control protocols are distributed in the sense that



each agent uses only local relative information to calcu-
late its own signal. In that respect, regarding every edge k,
the parameters p., o, Py, .00 lew by, a8 well as the sens-
ing radii s;,Vj € Ni(p(0)), which are needed for the cal-
culation of the performance functions pe, (t), py, (t), can
be transmitted off-line to the agents kyi,ks € N. In the
same vein, regarding py, ,(+), i.e., the constants Pz by

can be transmitted off-line to each agent i, which can
also compute p,o . given the initial velocity errors ey, (0).

Notice also from (15) that each agent i uses only rel-
ative feedback with respect to its neighbors. In particu-
lar, for the calculation of v; 1des, the tail of edge k, i.e.,
agent ki, uses feedback of R) (pr, —pr, ), and the head of
edge k, i.e., agent ko, uses feedback ofR,;;RklR;—l (Pry —
Pry) = R}, (P, — Pr,). Both of these terms are the rel-
ative inter-agent position difference expressed in the re-
spective agent’s local frames. For the calculation of w; ges,
agents k1 and ko require feedback of the relative orienta-
tion R;; Ry, , as well as the signal S’_I(R,;r1 R, Ry des —
R;—) desR;; Ry, ), which is a function ofR,;r2 Ry, . The afore-
mentioned signals encode information related to the rela-
tive pose of each agent with respect to its neighbors, with-
out the need for knowledge of a common global inertial
frame. It should also be noted that the proposed control
protocol (18) depends exclusively on the velocity of each
agent (expressed in the agent’s local frame) and not on
the velocity of its neighbors. Moreover, the proposed con-
trol law does not incorporate any prior knowledge of the
model nonlinearities/disturbances, enhancing thus its ro-
bustness. Nevertheless, note that the proposed protocol
does not guarantee collision avoidance among the agents
that are not initially connected. Formation control with
collision avoidance among all the agents has only been
achieved by using appropriately designed potential fields
(e.g., [33,41-48]), and it features several disadvantages,
like simplified and known dynamics, excessive gain tun-
ing, and non-global results. It is part of our future di-
rections to extend the proposed scheme to account for
collision avoidance among all the agents of the network.
Finally, the proposed methodology results in a low com-
plexity. Notice that no hard calculations (neither analytic
nor numerical) are required to output the proposed con-
trol signal.

Remark 5 [Construction of performance func-
tions and gain tuning| Regarding the construction
of the performance functions, we stress that the de-
sired performance specifications concerning the transient
and steady state response as well as the distance and
connectivity constraints are introduced in the proposed
control schemes via pe, (t), py, (t) and Ck, cot, Ck,con,
k € K. In addition, the velocity performance functions
Pv;,(t), impose prescribed performance on the wveloc-
ity errors ey, = U; — Vides, © € N. In this respect,
notice that v; 4es acts as a reference signal for the cor-
responding velocities v;, i € N. However, it should be
stressed that although such performance specifications

are not required (only the neighborhood position and
orientation errors need to satisfy predefined transient
and steady state performance specifications), their se-
lection affects both the evolution of the errors within
the corresponding performance envelopes as well as
the control input characteristics (magnitude and rate).
More specifically, relaxing the convergence rate and the
steady state limit of the velocity performance functions
leads to increased oscillatory behavior within the pre-
scribed performance region, which is improved when
considering tighter performance functions, enlarging,
however, the control effort both in magnitude and rate.
Nevertheless, the only hard constraint attached to their
definition is related to their initial values. Specifically,
P = P (0) € (¥4(0),2), 0, = iy, (0) > lew,, (O)],
Vk € K, £ € {1,...,6}, i € N. In the same vein, as
will be verified by the proof of Theorem 3, the actual
transient- and steady-state performance of the closed
loop system is solely determined by the performance
functions pe, (t), py,(t), po,,(t), and the constants
Ck,cols Ck,con, k € K, L € {1, .. .,6},i € N, without re-
quiring any tuning of the gains &;,7;, i € N. It should
be noted, however, that their selection affects the control
input characteristics and the state trajectory in the pre-
scribed performance area. In particular, decreasing the
gain values leads to increased oscillatory behavior within
the prescribed performance area, which is improved when
adopting higher values, enlarging, however, the magni-
tude and rate of the control input. Fine gain tuning is
also needed in cases where the control input’s magnitude
and rate need to be bounded by pre-specified saturation
values, since, although the proposed methodology yields
bounded control inputs, it does not guarantee explicit
bounds. In such cases, gain tuning might be needed to
guarantee that the magnitude and rate of the control
input do not exceed these values. A detailed analysis re-
garding the acquirement of such bounds is found in [32].

Remark 6 [Formation rigidity] Note that the desired
distance and orientation formation defined in this work
is not “rigid”, in the sense that the agents can achieve it
under more than one relative configurations. This con-
trasts with certain works in the related literature, where
the desired formation can be visualized as a fized geomet-
ric shape in the configuration space (see, e.g., [6,8-10]).

4.1 Stability Analysis

In this section we provide the main result of this paper,
which is summarized in the following theorem.

Theorem 3 Consider the multi-agent system described
by the dynamics (3), under a static tree sensing graph G,
atming at establishing a formation described by the de-
sired Oﬁsets dk,des € (dk,cola dk,con) and Rk,des; Vk € K:;
while satisfying the distance and connectivity constraints
between initially neighboring agents, represented by dy; o



and di. con, Vk € K. Then, the control protocol (13)-
(18) guarantees the prescribed transient and steady-state
performance —Cl coipe, (t) < er(t) < Chk conpe, (t), 0 <
Yi(t) < py,(t), Yk € K, t € Rxq, under all initial con-
ditions satisfying Y1 (0) < 2, Vk € K and (5), providing
thus a solution to Problem 1.

PROOF. We start by defining some vector and
matrix forms of the introduced signals and func-

tions: e = [e1,...,ex] ¥ = [1,..., 0], er
= [egl,...,eRK] , €y = e;'—l,..., e;'—NT, 0 =
[Cary--r&ax]s & = [;'—1,...,5;;]—'—, Ee = [Eeyye-ny
e, €y = [awl,...,awK]T, Ep = [EII,...,EUTN]T,'ﬁ::
~L,117"'75}27K1]T7 v = [UILV'W’U]—\FI,L]TaULdes =
[vILdes,...,vg)LdeS]T, w = [wlT,...,w]T,]T,wdCS =
(W] s+ Wi des] |+ Vdes = [V] gegs s U des) 5 Pa(t)

= diag{[pa, (Dlkex}, pot) = diag{lpy, (t)]lien},
Te (&) = dl?g{ [rey, (Eex)lkercts Ve (e, t) = T6£§e)pe )~
7y (&) = diag{lry (§p,)Ikex}, Ty (Cy, 1) = 7y (Ey)

Py (t)_la 7(&) = diag{[Fv(&u,)]ien}, To(ost) =

To(&0)po(t) L, where a € {e, v}

With the introduced notation, (7) can be written in vec-
tor form as

¢ =TF,(p)" RDr(R,G) vy, (19a)
) =Fr(er) Dr(R,G) w, (19b)

where R = diag{[Rp,|rex} € RMOBE T, (p) =

Dis1y --- O3x1
2| : € R¥EXK Fp(ep) =
O3x1 -+ DKy K,
er, ... Osx1
LI o o | eR¥EXK and Dy € RPN x RPK i
O3x1 --- €Rrg

the orientation incidence matrixz of the graph:
Dr(R,G) = RT[D(G) ® ;] R, (20)

with R = diag{[Ri]ien’} € R33N and D(G) is the
incidence matrix of the graph. The terms R and R in
Dr(R,G) correspond to the block diagonal matrix with
the agents’ rotation matrices along the main block di-
agonal, and the block diagonal matrix with the rotation
matrix of each edge’s tail along the main block diagonal,
respectively. These two terms have motivated the incor-
poration of the terms «(-) in the desired velocities v; des
designed in (15), since, as shown next, the vector form
Vdes yields the orientation incidence matrix Dg(R, G).

The desired velocities (15) and control inputs (18) can
be written in vector form as

VLdes = ~ADR(R, G)RTF,(p)Sc(ée, hee,  (21a)
Wdes = _ADR(Rv g) [Ew (51!17 t) & I3] €R, (21b)
u= - Ev (51}7 t)gvu (21C)

where A = diag{[6;3]icn} € R33N and T =
diag{[yils)ien’} € RONV*ON Note from (21c) and (13),
(16), (14), (17) that u can be expressed as a function
of the states u(x,v,t). Hence, the closed loop system
can be written as & = hgy(x,v), © = hy(z,v,t) =
—M~YCw) + g(x) + w(z,v,t) — u(z,v,t)}, and by
defining z := (x,v) € SE(3)" x R6V:

2= h(z,t) = (hy(2), ho(z,1)). (22)

Next, define the set Q = {(x,v,t) € SE(3)"V x RN x
RZO : 581@ (pk1 y Pko s t) € (_Ck,colv Ck,con)v 511% (Rkl 5 Rk2 5 t)
< 1,&,(z,vi,t) € (—1,1)5,Vk € K}, where we have ex-
pressed &, , &y, Ev; from (13), (16) as a function of the
states. It can be verified that the set €) is open due to
the continuity of the operators &, (+), &y, (+), &, (+) and
nonempty, due to (10). Our goal here is to prove firstly
that (22) has a unique and maximal solution (z(t),t) in
Q and then that this solution stays in a compact subset
of Q.

It can be verified that the function h : @ — Tpg, X
-+ x Try x RSN is (a) continuous in ¢ for each fixed
(z,v) € {(x,v) € SE(B)N x RSN : (z,v,t) € Q}, and
(b) continuous and locally lipschitz in (x,v) for each
fixed t € Rx>o. Therefore, the conditions of Theorem 1
are satisfied and hence, we conclude the existence of a
unique and maximal solution of (22) for a timed interval
[0, tmax), With tmax > 0 such that (2(¢),t) € Q, V¢ €
[0, tmax). This implies that

Ee, (t) = pe, (1) ter(t) € (=1,1), (23a)
fwk (t) = Py, (t)ilwk (t) <1, (23b)
&u, (1) = pu, (t)ilevi (t) € (-1, 1)67 (23c)

Vk € K,i € N, t € [0,tmax). Therefore, the signals
er(t), Vi (t), ey, (t) are bounded for all ¢ € [0, tmax). In
the following, we aim to show that the solution (z(¢),t)
is bounded in a compact subset of €2 and hence, by em-
ploying Theorem 2, that ty.x = 0.

Consider the positive definite function Vo = 1|ec|?,
which is well defined for ¢ € [0, timax), due to (23a). By

differentiating V., we obtain V. = e] X (&, t){—pe(t)&e
+F,(p) " RDR(R,G) vy}, which, by substituting vy, =
UL —Np(x,t) = €y, +VLdes — Np(2, 1) and (19), becomes:



Ve = =& Se(be, )Fp(B) ' D(G)Fp(B) e (&e, t)eet
&l Ze(Ee,)[Fo(B) RDA(R, 9) (€0, = mi(e,8)) = pe(De],
where D(G) := RDr(R,G)"Dr(R,G)RT = (D(G)T ®

I3) A (D(G) ®I3) € R¥¥*3K (by employing (20)),
and e,,, ny(x,t) are the linear parts of e, and n(x,t)
(i.e., the stack vector of the first three components
of every e,,, ni(z;,t)), respectively. Note first that,
due to (23c), the function e, (t) is bounded for all
t € [0,tmax).- Moreover, note that (23a) implies that

0 < dk col < ||Pk1( ) pkg( )” < dk con vt € [0 tmax)
Therefore, it holds that rank(FF, (p ())) = K, Vt €

[0, tmax). In addition, since G is a connected tree
graph and 6; € Ryg, Vi € N, 5(9) is positive defi-
nite and rank(D(G)) = 3K. Hence, we conclude that
F, (5(0)] T DG)F, (5(1) )
definiteness of [F,(5(£))] T D(G)F, (p(t)), Vt € [0, tmax) is
deduced. In addition, since ||pk, (t) — pr, (1)|| < dk,con,

we also conclude that the term F,(p)T RDg(R,G)T
is upper bounded, V¢ € [0,tmax). Finally, pc(t)
and np(x,t) are bounded by definition and assump-
tion, respectively, Vz € SE(3)V,t € Rsg. We ob-

. . B.
i Vo< —aglS el [IZ6 el - £,
Vt € [0, tmax), where

rank( | = K and the positive

A~ = min
D p(t),t€[tg,tmax)

{nin (B (5(6) T DG, (5(1))) }
> d} e rmin(D(G)) > 0,

and B, 17s a positive constant, independent of ¢y,ax, sat-
isfying B. > ||F,(p) " RDr(R,G)" (e, () — ny(x,1)) —
pe(t)éc(t)|l,Vt € [0, tmax). Note that, in view of the afore-
mentioned discussion, B, is finite.

Hence, we conclude that V, < 0 < ||Zc(ée, t)ee|| > Lo
—D

1

1
—+—
It holds that re, () = 2@ — Tl Trcon

ox B
1+Ck:,col 1_Ck con

> Ckl,col ﬁv Vx € (_Ok,colack,con); and pek( ) S
1,vt € Rsg, £ € K, and thus we conclude that

2600 0] = \[Sior B e, (0 2

Cllee(t)]], Vt € [0, tmax), where C' := max {M}

ke Ck,c01Ck,con

Hence, we conclude that V,(e.) < 0, V|e| > (17

Vt € [0,tmax). Therefore, by invoking Theorem 4 8 in
[44] we conclude that

lee(t)|| < &e = max {56(0),;;—%}, (24)

t € [0,tmax), and by taking the inverse logarithm func-
tion:

- Ck,col < _§€ S gek (t) S ge < C'k,cona (25)

YVt € [0, tmax), Where & = %C}c con, and §

EZ‘(;’E#C;C con- Note that £.(0) is finite due to the as-

sumption d. col < ||k, (0) — Pk, (0 )u < dj,con- Therefore,
since Ag is strictly positive and B, is also finite, &, is
well defined. Hence, (24) and (25) imply the bounded-
ness of g, (t), re, (&, (t), P(t), and p(t) in compact sets,
Vk € K, and therefore, through (15), the boundedness
of Ui,Ldes(t)a Vi € N, te [0, tmax)'

Similarly, consider the positive definite function V, =

23" cx Evrs Whose derivativeis Vy, =237, Tzfl(”t’“)) (¢
k

— Py, ). After substituting (7b), (19), we obtain

6; [Ew (51!17 t) ® I3] DR(R7 g)T [Wdes + Cuorp — TLR(CE, t)} )

where e,,, and ng(z,t) are the angular parts of e, and
n(x,t) (i.e., the stack vector of the last three components
of every e,,, ni(z,t)), respectively. By substituting (21b)
and defining Ew(éw,t) = Ew(éw,t) ® I3 € RSKXBK,
Dr(R,G) = Dr(R,G)"ADg(R,G) € R¥**3K we ob-

tain

Vy= - eggw(ﬁwvt)ﬁR(R,g)iw(éw,t)eze
+ egzw(&/)v )DR(Rv g)T [eUR - nR(xv t)]

_2ZT¢(€¢k> (t )gwk

ke Por (t)

According to (20), Dr(R,G) = R [D(G) ® Is] R. Since
R and R are rotation (and thus unitary) matrices, the
singular values of Dgr(R,G) are identical to the ones of
D(G), and hence Apin(Dr(R,G)) = Amin(D(G)) > 0.
Indeed, let D(G) ® I3 = UXpV' be a singular
value decomposition of D(G) ® I3, where U, V
are unitary matrices, and ¥p is a diagonal ma-
trix containing the singular values of D(G) ® Is.

Then Dp(R,G) = RTUSpVTR = USpVT where

U:= R'U, and V = RTV are unitary matrices (be-
ing products of unitary matrices). Thus, UEDVT is
the singular value decomposition of Dgr(R,G), and
hence its singular values are the diagonal wvalues
of ¥p. By further defining 8 = [8],...,8x]" =
Dr(R,G)"(evr — nr(z,t)) € R*M, with 8, € R?



Vk € K, Vi becomes

Vi <= Amin(D(9)) 1S (&4, )6R||2

+Z?‘w€wk 5_22 Ty (€

kex k kex k

)&llk

Note that, by construction, &, > 0, V& € K, and
ry(x) = 8Tg—w(m) = = > 1,Vz < 1. Hence, in view of
(23b), we conclude that 7y (£, () > 1, Vt € [0, tmax)-
By noting also that py, (f) < 0,Vt € Rso and after
substituting (8), Vi becomes

2
Vd)(&b) < - /\min(f)(g)) Z [Lgl(p;))] ler,|I?
kex L Pvx
= Ty (Ey)
B A \>Vk/
+ wlgc pwk(t) ” RkH
+2max{ly, (Pu,.0 = Puy.o0) Y T;fw s

ke

where Bwl is a positive constant, independent of t,,x,
satisfying By, > maxgeic{||Bk ()|}, Vt € [0, tmax). Note
that By, is finite, V¢ € [0, tmax), due to (23b) and the
boundedness of the noise signals n(z, t).

From (23b) and the definition of vy, we conclude that
0 < Yr(t) < py(t) < py,.0 <2, and hence 2 — Yy (t) >
2= py0=tp, >0Vte [0, tmax), k € K. Moreover,
by noticing that 2 — p < 2, py, () < py, .0, and Py, =
e Pu (1), YK € K, Vi becomes

Vi < =10 ) Iro(&e)) €uy

kel
2B¢1 Z
T (Eu) Ve
?a%{\/pwk o} rek
+2maX lwk(pwk,o_pwk,oo) ZT (5 )g
wek Poro PY\Shr )Shr s

keKx

2min (D(9)) mingex{p, }

where pi == . In view of (23b), it
dekGK{Pwk 0}
holds that &y, (t) < \/&y, (1), Vk € K. By also employing

Zkelc Tapy, fwk V fwk < \/_\/Zkelc ka 51/%)) fwka we

obtain
? fd)k {ﬁ

> (e,

ke ke

where

Z [ka (&bk)]z éwk - Bw }7

10

Bdf = 2\/_

Ly, (Pwk,o - Pwk,oo) }
Py, 0

Therefore, Vy < 0 & \/ZkelC [ro (o)) €y > %.
From (14), given y

Bwl ax {
rgleag{\/pwk o7

; = Ty(x), we obtain [ry(z)]*z =
%52 T 0) = e T ) = T ) =

exp(y) [exp(y) — 1], ¥z € [0,1). Therefore, [ry &y, )] &y,
= exp(ey,) [exp(ey,) — 1], and according to Prop. 1,

> lro ()]

ke

2 fwk = \/Z eXP(Ewk) [exp(gwk) - 1]

ke

> > e =lleyl-
kex

Hence, we conclude that V,

fore,
lew(®)ll < &y = max {es(0). 2}, (26)
Vt € [0, tmax), and by taking the inverse logarithm:
0< -, <&, () <& <1, (27)
Wk € K, where £ = “ZEL and ¢ = SRCESL

Note that By as well as g,4(0) are ﬁmte due to the
choice 5(0) < py, (0) < 2, Vk € K. Hence, since [ is
strictly positive, &y is also finite. Therefore, we conclude
the boundedness of ey, , ry, (§u, (t)), ev(t) in compact
sets, Vk € K, and therefore, through (15), the bounded-
ness of w; des(t), Vi € N,t € [0, tmax). From the proven
boundedness of p(t) and p; qes(t), we also conclude the
boundedness of n(x(t), t) and invoking v = v+ n(x,t) =
ey(t) — vges(t) and (23c), the boundedness of v(t) and
Z(t), Vt € [0, tmax). Moreover, in view of (24), (25), (22),
(15), we also conclude the boundedness of Dges(t)

Proceeding along similar lines, we consider the pos-
itive definite Lyapunov candidate V, : R — Rxo
with V,(e,) = ie/Te,. By computing V,(e,) =

AV, (ey)
Oy

—po(t)&,), we obtain:

T .
} ¢, and using the dynamics &, = p, (t) 71 (é,(t)

Vi(ey) = —&) Sy (Eo, ) TM TITE, (€4, ey
TS, (o, t){I‘M_l [c(v)v + g(z) + w(z, v, t)]

— (@, ) + Daes + ,bv(t)fv}. (28)



Since we have proven the boundedness of v(t) and z,
Vit € [0, tmax) the terms C(v)v, n(z,t), and w(x,v,t)
are also bounded, t € [0, tmax), due to the continuities
of C(+), w(-), and n(-) in v, & and the boundedness of
w(-) and n() in z,t. Moreover, g(z), & (t), and p,(t)
are also bounded due to (2b), (23c), and by construc-
tion, respectively. By also using (2a), we obtain from
(28): Vi(ew) < —AglBo(Go,t)eul® + 150 (&0, t)eu]| By,
where B, is a positive term, independent of t,,.x, sat-

isfying B, > H% [C’(v)v + g(z) + w(z, v, t)} —
(2, t) + Odes () + po(t)Es(t ‘ Vit € [0, bmax) and Ay =

)
> 0. Hence, V,(c,) < 0 & [|Zy(&, )en|| >

mingen{v:}*
maxleN{m } or
£=. By noting that r,(z) = 5951) = (1+m)2(171) >
2 S 1, Vo € (=1,1), as well as py, ,(t) < pyo,, V€
{1,...,6},t € R>g, we conclude that || X, (& (t), t)ey, (t)]]
[""v(EUZ (t)]?
e Teen, o S e (0 2 L0
Vt € [0, tmax), Where p = max {p.o }. Hence, we
mejﬁ,...ﬁ} ’

conclude that V,(g,) < 0,V|le,| > ’J)\B”,Vt € [0, tmax),
Ai

and consequently that

g, maxil

A i
Ak gre%l{v }

lew(t)]] < &, == max ¢ £,(0), , (29)

Vt € [0, tmax), and by taking the inverse logarithm func-
tion: ~ ~
-1< _gv S 5171',1 (t) S g'U < 15 (30)
Ve € {1,...,6},t € [0,tmax) where &, = % =
—opl=e)=Ll " Note that the terms B, finite, V¢ €
exp(—ey)+1

[0, tmax). Moreover, the term &,(0) is finite due to the
choice po, > lev, ,(0), V€ € {1,...,6},i € N. Hence,
since Ap is strictly positive, the term &, is also finite.
Thus, the terms e,(t), 7,(&,(t)) and hence the con-
trol laws (18) are also bounded in compact sets for
all t € [0,¢max). What remains to be shown is that
tmax = 00. Towards that end, suppose that ¢, is fi-

nite, i.e., tmax < 00. Then, according to Theorem 2, it
holds that

L= 111{1

t—t

=00, (31)

1
(1=l + dg((z(t),t),aQ)}

where ||z]] == ||p|| + ||v|| + | R||z and, with a slight abuse
of notation with respect to Section 2, ds((z(t),t), Q) :
inf.,  ryeonl{llzne = 2,0l + IR = Rz}, and 2z, :
[p",v"]T € RN x RN, We now aim to prove that
(31) is a contradiction. Firstly, it holds that |R(t)||r =
Yien IBi@llr < Nsupypoy,, ) {maxien{Ri(t)}}.

max

11

However, according to Proposition 3, it holds that
—1 < tr(R) < 3 for any R € SO(3). Hence, ||R(t)|r <
3N, Vt € [0, tmax]. Moreover, from (30) and (16) we ob-
tain |le,(t)]| < V6Eup, Yt € [0, tmax). By invoking (24),
(26), we can also conclude that there exists a finite Uges
such that [|vdes(t)|| < Vdes, V& € [0, tmax). Therefore,
since H?’Ll(I“t)” < ng, Va, € SE(3),t S Rzo,i S N,
v =U—n(x,t) = €, +vd4es —n(z,t) implies that there ex-
ists a ﬁnite v such that ||v(t)|| < 7, Vt € [0, tmax)- Hence,

tmax tmax D
lp@®I = Il Jo™ R(s t (s)ds|| < [o™ lIR(s)v(s)||ds =
fo”’a” HU ds < [i™vds = [p(D)]| < tmax?,
vt € [0,tmax), wh1ch proves the boundedness of

[[p(t)]|, since tmax is bounded. Next, note that 09
{(p,v, R,t) € RN x RN x SOB)N x Rxo : (Fk
K §8k (pkupkzat) = _Ck#lOl or 581@ (pklapkzvt)
Ckcon 0r &y (Riys Riyyt) = 1) or (Fi € N, L
{1,...,6} : &, (z,v5,t) = —1or&, ,(z,v;,t) = 1)
We have proved, however, from (25), (27), and (30)
that the maximal solution satisfies the strict in-
equalities —Clcor < —§ Eer (D, (8), 1y (8),8) <
Ee < Cheony Sy (B, (1), Biy (1),1) < & < 1, and
v, o (x(t),vi(t), )] < & < 1,Vk € K, £ € {1,...,6},
it € N, t € [0, tmax). Therefore, we conclude that there
exists a strictly positive constant €,, € Rsg such that
ds((z(t),t),0Q) > e,. Therefore, we have proved that
L < (tmax + 1)U + 3N + ¢, 1, which is finite, since tmyax
is finite. This contradicts (31) and hence, we conclude
that tpax = 00.

mlmoll

We have proved the containment of the errors ej(t),
Y (t) in the domain defined by the prescribed perfor-
mance funnels: —Cj colpe, (t) < er(t) < Chk,conpey(t),
0 < Yr(t) < py,(t), Yk € K, t €€ Rx¢, which also
implies that: di.coi < [|pr, (t) — P ()| < dicon, 0 <
Yr(t) < 2,Vk € K, t € Ry, i.e., avoidance of the singu-
larity v, = 2 and satisfaction of the distance and con-
nectivity constraints for the initially connected edge set
£. The closed loop signals and functions are also proven
to be bounded for all ¢ € [0, 00), which leads to the con-
clusion of the proof.

Remark 7 (Prescribed performance) We can de-
duce from the aforementioned proof that the proposed
control scheme achieves its goals without resorting to the
need of rendering €., €y, €, arbitrarily small by adopting
extreme values of the control gains &;,~;. Notice that
(24), (26), and (29) hold no matter how large the finite
bounds ., &y, €, are. Hence, the actual performance of
the system is determined solely by the performance func-
tions pe(t), py (t), pu(t) and the parameters Ci cot, Ck, con,
as mentioned in Remark 5.

5 Simulation Results

We considered N = 5 spherical agents with N/ =
{1,...,5}, with dynamics of the form (1), with r; = 1m,
s; = 4m, and dynamic parameters (mass and moment of
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Crconp, Cleonp.,
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Fig. 1. The distance errors ex(t) along with the performance functions —Cl, colpey, (), Cr,conpey (1), Yk € K.
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Fig. 2. The orientation errors vy (t) along with the performance function py, (t), Vk € K.
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Fig. 3. The control inputs of the agents u;(t), Vi € V.

inertia) randomly selected in (0,1), i € A/. We selected Ck,con = 9.75. Moreover, the parameters of the perfor-

the exogenous disturbances and measurement noise mance functions were chosen as p., o = py, . = 0.1,
as w; = Ay, sin(||p1]|1tr(Ri)ww it + dwi)vi, and n; = Pugo = 1.99 > max{p, (0),p,,(0),p,,(0)} and
Ap, sin(||p1|l1tr(Ri)wn, it + én,i)vi, where the parame- le, = ly, = 1.5. In addition, we chose p,o =
ters AwiyAnivww,iywn,iv¢w,i7¢n,i are randomly chosen 2|6 v (0)| +1,1,, = 02 and p,~ = 0.1, for Zévery
in (0,0.1), Vi € N. The initial conditions were taken as: N o . Vi o
p1(0) = [0,0,0]T m, po(0) = [~2.1,-2.3,2] T m, p3(0) = i€ N, e {l,...,6}. Finally, the control gains were
[13 1.3 15]T m p4(0) — [_2 3.95 22] m p5(0) _ set to 51 = 0.1 anq Yi : 15, Vi € N. The sunul'atlon
2 2’_4 _,0'15]T II,I Ry1(0) = R4(O) =7R5(0) :’13 R (0) results are shown in Figs. 1-3. In particular, Figs. 1
= ’[—0.8253 0.0.5646:0.1.0.2562: —0.5646.0 —6.8253] and 2 depict the distance and orientation errors eg(t),
Rs(0) = [~0.3624,0,0.9320:0.6591,0.7071,0.2562:—0.6591,  k(t), respectively, along with the corresponding per-
0.7071,-0.2562], v,(0) = v2(0 = v3(0) = v(4) = formance functions pk(t), Py, (t), Yk € K. Moreover,
Osx1, which form the edge set € = {{1,2}, {1,3}, Fig. 3 depict the control inputs of the agents, Vtg [Q,.S]
(3,4}, {3,5}}. The desired graph formation was de- seconds. It can be observed that, although the initial
fined by the constants dy e — 2.5m and R des — errors ey (0) and ¢ (0) are very close to the performance
[0.5, —0.8660, 0; 0.6124, 0.3536, —0.7071; 0.6124, 0.3536 bounds, the proposed control algorithm achieves con-
0'70’71] Vi ’67 5 ’ 4}. V{/e Select(;d dy )1 _ 2’ vergence to the desired formation configuration in a
- eon i 4, and i view of (10), Ch.con :’Cg'% and short time interval without significant control effort. A

video illustrating the simulation results can be found in
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https: / /www.youtube. com/watch?v=_274xLyO1twok.

6 Conclusions and Future Work

In this paper we proposed a robust decentralized control
protocol for distance- and orientation-based formation
control of multiple rigid bodies with unknown dynamics
in the special Euclidean group SE(3). The proposed con-
trol protocol guarantees collision avoidance and connec-
tivity maintenance with the initially connected agents.
Moreover, the transient- and steady-state trajectories of
the closed loop system are determined by pre-specified
performance functions. Simulation examples have veri-
fied the efficiency of the proposed approach. Future ef-
forts will be devoted towards extending the current re-
sults to collision avoidance among all the agents as well
as collision avoidance with obstacles in the environment.
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