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Abstract—This paper presents the implementation and experi-
mental results of two frameworks for multi-agent systems under
temporal logic tasks, which we have recently proposed. Each
agent is subject to either a local linear temporal logic or a
local signal temporal logic task where each task may further
be coupled, i.e., satisfaction of a task may depend on more
than one agent. The agents are represented by mobile robots
with different sensing and actuation capabilities. We propose to
combine the two aforementioned frameworks to use the strengths
of both linear temporal logic and signal temporal logic. For the
implementation, we take into account practical issues such as
collision avoidance and, in particular for the signal temporal
logic framework, input saturations, the digital implementation
of continuous-time feedback control laws, and a controllability
assumption that was made in the original work. The experimental
results contain three scenarios that show a wide variety of tasks.

Index Terms—Autonomous mobile robots; decentralized
robotic networks; formal methods-based control synthesis; linear
temporal logic (LTL); signal temporal logic (STL).

I. INTRODUCTION

A multi-agent system is a collection of independent agents
with the goal to achieve global or local (individual) tasks.
Collaborative control deals with achieving global tasks such as
consensus [1], formation control [2], connectivity maintenance
[3], and collision avoidance [4], see also [5] for an overview.
To impose more complex tasks such as recurrence, request-
response, and time-constrained tasks, ideas from formal verifi-
cation [6] have been used where the tasks are written as tempo-
ral logic formulas. Control methods for systems under tempo-
ral logic tasks can be seen as multi-purpose tools and are hence
of high interest for practical applications, i.e., tasks can easily
be changed while automatically obtaining correct-by-design
controllers. Linear temporal logic (LTL) is a proposition-
based logic used for single-agent systems [7]–[12] as well
as for multi-agent systems [13]–[18] where, especially for
multi-agent systems, the computational complexity is known
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Fig. 1: TurtleBots (left) and Nexus 4WD Mecanum Robotic
Cars (right) are used in the experiments in Section IV.

to be high. LTL tasks can include combinations of surveillance
(“periodically visit regions A, B, and C”), safety (“always
avoid region D”), and many others. Signal temporal logic
(STL) is a predicate-based logic interpreted over continuous-
time signals [19]. STL entails space robustness [20], a form
of the robust semantics [21], stating how robustly a signal
satisfies a temporal logic formula. Control synthesis under STL
tasks has been considered for single-agent systems [22]–[30]
and for multi-agent systems [31], [32]. A common trade-off is
to find a restricted, yet expressive STL fragment that allows
for computationally-efficient control as in [25], [31]. STL tasks
can again include combinations of surveillance (“visit regions
A, B, and C every 10− 60 sec while agents form a triangular
formation”), safety (“always between 5− 25 sec stay at least
1 m away from D”), and many others. Compared with LTL,
STL now allows to impose desired quantitative temporal and
spatial properties on the system. Multi-agent systems under
temporal logic tasks are separated into two classes: top-down
and bottom-up. In the former, a global task is assigned to
the team of agents, while in the latter each agent is subject
to a local (individual) task regardless of what other agents
are assigned. These local tasks may be coupled, i.e., the
satisfaction of a local task may depend on the behavior of other
agents. Top-down approaches usually resort to decomposing
the global task into local ones. We argue hence that a bottom-
up approach is more general and considered here.

We consider a heterogenous multi-agent system consisting
of mobile robots as in Fig. 1. Each robot is subject to
either a local LTL or a local STL task. Our main contribu-
tion is the implementation and experimental results of the
frameworks [14] and [31] to demonstrate the advantages of
the computationally-efficient and robust methods presented
therein. To account for the computational burdens of the LTL
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plan synthesis, poses of interest are considered in [14] for
the abstraction of the workspace, while the approach for STL
control synthesis in [31] is inherently computationally-efficient
due to the use of time-varying feedback control laws. We also
aim at demonstrating the practical advantages of using both
LTL and STL at the same time. Note that STL is a more
complex task specification language than LTL. In fact, STL
allows to impose timed tasks such as strict deadlines while
admitting predicates as opposed to simple propositions in LTL.
For multi-agent systems this implies that predicates can be
used to couple agents with each other in a straightforward
manner. Control approaches for LTL are mature and allow to
use the full LTL fragment while STL control methods are still
being investigated, currently only with results for fragments of
STL [25], [31]. Existing methods for the full STL fragment
[22], [28] discretize time (hence are, in some sense, equivalent
to LTL) and are computationally demanding. We propose to
use STL when timed tasks or tasks involving the coupling
of agents are of interest while, otherwise, methods for LTL
can be used. One of the emerging features is the following:
the STL fragment in [31] does not allow to specify periodic
tasks, but by coupling an agent, by means of an STL task, to
agents under LTL tasks, periodic and complex behaviors can
be induced. Agents also need to avoid collisions so that both
dynamical and task level couplings are present.

Section II summarizes [14] and [31], while Section III
describes our implementation. Experimental results are shown
in Section IV, followed by conclusions in Section V.

II. PRELIMINARIES

Let Rn be the n-dimensional real vector space. The set of
real and non-negative real numbers are R and R≥0, respec-
tively; 0n is a vector containing n zeros.

Consider M agents where MLTL ≤ M agents are subject
to local LTL tasks, while MSTL := M − MLTL agents are
subject to local STL tasks. Each agent i is described by
three states xi,1, xi,2, and xi,3 where xi,1 and xi,2 describe
the agent’s two-dimensional position, while xi,3 describes the
agent’s orientation with respect to the x1-axis. Let xi :=[
zTi xi,3

]T ∈ X ⊆ R3 where zi :=
[
xi,1 xi,2

]T
and X

is the workspace. We model each agent i ∈ {1, . . . ,M} by

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t) + wi(t) (1)

where ui ∈ Rmi and wi ∈ R3 are the control input and
additive disturbance, respectively. Furthermore, define x :=[
x1

T . . . xM
T
]T

. The multi-agent system is modeled by
an undirected graph G := (V, E) [5]. The set of agents is
V := {1, 2, . . . ,M}, while the edge set E ∈ V × V indicates
communication links. We define the behavior of agent i to be
agent i’s trajectory, i.e., the solution xi : R≥0 → R3 to (1).

A. Linear Temporal Logic (LTL)

For each i ∈ {1, . . . ,MLTL}, consider the set of atomic
propositions APi; αi ∈ APi can either be true (>) or false
(⊥) and, for instance, indicate whether or not an agent is in
a certain region or performing a certain action. We assume

that the satisfaction of αi does only depend on the behavior
of agent i. The set of linear temporal logic (LTL) formulas is

φi ::= > | αi | ¬φi | ◦ φi | φ′i ∧ φ′′i | φ′i U φ′′i , (2)

where φ′i and φ′′i are LTL formulas associated with agent i and
∧, ¬, ◦, and U denote the conjunction, negation, next, and
until operators, respectively. The disjunction (∨), eventually
(F ), and always (G) operators can be derived similarly [6]. An
infinite word over the alphabet 2APi , where 2APi is the power
set of APi, is an infinite sequence σi := σi,0σi,1σi,2 · · · ∈
(2APi)ω where σi,k ∈ 2APi is the set of atomic propositions
that are true at time step k. The semantics of LTL are given in
[6, Def. 5.6] and stated as a relation (σi, k) |= φi, which means
that σi satisfies a formula φi at time step k. For instance,
(σi, 0) |= φi with φi := G¬α′i ∧ Fα′′i implies that ∀k ≥ 0,
α′i /∈ σi,k (α′i is always avoided) and ∃l ≥ 0 such that
α′′i ∈ σi,l (eventually α′′i holds). The set of words that satisfy
φi is given by Words(φi) := {σi ∈ (2APi)ω|(σi, 0) |= φi}.
Each φi can be translated into a language equivalent Büchi
Automaton Aφi := (Qi, 2

APi ,∆i, Qi,0,Fi) where Qi is a
finite set of states; Qi,0 ⊆ Qi is a set of initial states; 2APi is
the alphabet; ∆i : Qi × 2APi → 2Qi is a transition relation;
Fi ⊆ Qi is a set of accepting states. The sequence qi :=
qi,j0qi,j1qi,j2 · · · ∈ Qωi is a run of Aφi for σi if qi,j0 ∈ Qi,0
and ∆i(qi,jk , σi,k) = qi,jk+1

for all k ≥ 0. The run qi is
accepting if qi,jk ∈ Fi for infinitely many k. Let Lω(Aφi) :=
{σi ∈ (2APi)ω|qi is an accepting run of Aφi for σi}. There
always exists a Aφi with Words(φi) = Lω(Aφi) [6, Thm.
5.41]. For more intuition on LTL and this terminology, we
refer to [17, Ex. 1] and [6, Sec. 5] as well as the three
experiments that we present in Section IV. Each agent i ∈
{1, . . . ,MLTL} has a set of propositions Πi ⊆ APi where
αi,m ∈ Πi is associated with a set Xi,m ⊆ R3 so that
αi,m = > if xi ∈ Xi,m. A transition from αi,m to αi,n is
enabled if a navigation controller ui exists that is able to drive
the agent from any pose in Xi,m to some pose in Xi,n in finite
time. Based on this, define a weighted finite-state transition
system as a tuple Ti := (Πi,→i,Πi,0, Li,Wi) where Πi are
the poses of interest; →i⊆ Πi × Πi is the transition relation
when there exists a navigation controller ui; Πi,0 ⊆ Πi is the
set of initial regions; Li : Πi → 2APi is the labeling function;
Wi : Πi × Πi → R≥0 is the weight function associated with
a transition. Note that propositions in APi \ Πi are generic
propositions that may hold for some poses of interest. We
define an infinite path of Ti as an infinite state sequence τi =
πi,j0πi,j1 . . . such that πi,j0 ∈ Πi,0 and a transition →i exists
from πi,jk to πi,jk+1

for all k ≥ 0. A state sequence induces an
infinite word Word(τi) = Li(πi,j0)Li(πi,j1) . . . . For a given
formula φi and a path τi, we have that (Word(τi), 0) |= φi
if Word(τi) ∈ Words(φi). A weighted product Büchi au-
tomaton, capturing the behavior of an agent that satisfies φi,
is defined as A′φi := Ti×Aφi = (Q′i, 2

APi ,∆′i, Q
′
i,0,F ′i ,W ′i ),

where Q′i := Πi × Qi, q
′
i := 〈πi,m, qi,m〉 ∈ Q′i, for all

πi,m ∈ Πi and for all qi,m ∈ Qi; ∆′i : Q′i → 2Q
′
i ,

〈πi,n, qi,n〉 ∈ ∆′i(〈πi,m, qi,m〉) if and only if (πi,m, πi,n) ∈→i

and qi,n ∈ ∆i(qi,m, Li(πi,m)); Q′i,0 := Πi,0 × Qi,0 is the
set of initial states; F ′i := Πi × Fi is the set of accepting
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Fig. 2: Funnel-based control law for G[5,7]ψi with ri := 0.25 (left). Funnel repairs in the first repair stage (right).

states; W ′i : ∆′i → R≥0 is the weight function indicating
the Euclidean distance for a transition. By following the
approach in [14, Sec. IV] and applying a modified Dijkstra
search algorithm [15, Alg. 3], we find a run in prefix-suffix
structure q̃i := q′i,j0q

′
i,j1
· · · = 〈πi,j0 , qi,j0〉〈πi,j1 , qi,j1〉 . . .

with τi := πi,j0πi,j1 . . . so that (Word(τi), 0) |= φi. This
then implies that agent i has to move from region πi,jk to
region πi,jk+1

for each k ≥ 0 by applying the corresponding
navigation controller ui to satisfy φ.

B. Signal Temporal Logic (STL)

Considering a predicate µi associated with an agent i ∈
{MLTL,+1, . . . ,M}, we use the STL fragment of [31] as

ψi ::= > | µi | ¬µi | ψ′i ∧ ψ′′i (3a)
φi ::= G[ai,bi]ψi | F[ai,bi]ψi (3b)

where ψ′i and ψ′′i in (3a) are formulas of class ψi given
in (3a). Note that, unlike LTL operators, G[ai,bi] (always)
and F[ai,bi] (eventually) are time restricted on [ai, bi] where
ai, bi ∈ R≥0 with ai ≤ bi. The satisfaction of µi depends
on the behavior of agent i and possibly on the behavior of
other agents j ∈ V \ {i}. If the satisfaction of φi depends
on the behavior of j ∈ V , i.e., on xj(t), we say that
agent vj is participating in φi. The formula φi consequently
depends on a set of agents Vi := {vj1 , . . . , vjPi } ⊆ V
where Pi indicates the total number of participating agents.
Define x̄i(t) :=

[
xj1(t)

T
. . . xjPi (t)

T ]T ∈ R3Pi and let
x̄i : R≥0 → R3Pi be the solution to (1). A predicate µi is
evaluated at time t by its predicate function hi : R3Pi → R

as µi :=

{
> if hi(x̄i(t)) ≥ 0

⊥ if hi(x̄i(t)) < 0.
The semantics of STL are

given in [19, Def. 1] and stated as a relation (x̄i, t) |= φi,
which means that x̄i satisfies φi at t. For instance, (x̄i, 0) |=
φi with φi := G[5,10]µ

′
i ∧F[10,15]µ

′′
i implies that ∀t′ ∈ [5, 10],

h′i(x̄i(t
′)) ≥ 0 and ∃t′′ ∈ [10, 15] such that h′′i (x̄i(t

′′)) ≥ 0.
Note that µ′i and µ′′i in the above example can encode agent
formations, connectivity constraints, or other collaborative
tasks that couple agents due to the use of the stacked vector
x̄i. STL admits robust semantics [20], while we use a modified
version thereof similarly to [31] by under-approximating the
min-operator of conjunctions in the original semantics as

ρµi(x̄i, t) := hi(x̄i(t))

ρ¬µi(x̄i, t) := −hi(x̄i(t))

ρψ
′
i∧ψ

′′
i (x̄i, t) := −1

η
ln
(

exp(−ηρψ
′
i(x̄i, t))

+ exp(−ηρψ
′′
i (x̄i, t))

)
ρG[ai,bi]

ψi(x̄i, t) := min
t1∈[t+ai,t+bi]

ρψi(x̄i, t1)

ρF[ai,bi]
ψi(x̄i, t) := max

t1∈[t+ai,t+bi]
ρψi(x̄i, t1)

where η > 0 with the property that limη→∞ ρψ
′
i∧ψ

′′
i (x̄i, t) =

min(ρψ
′
i(x̄i, t), ρ

ψ′′
i (x̄i, t)); ρφi(x̄i, t) states how robustly x̄i

satisfies φi at time t and we have (x̄i, t) |= φi if ρφi(x̄i, t) > 0
[21, Prop. 16]. Formulas of class ψi in (3a) are boolean formu-
las and t is contained in ρψi(x̄i, t) through the composition of
ρψi with x̄i so that we use the shorthand notation ρψi(x̄i(t)).

Assumption 1: Each ψi in (3b) is: 1) s.t. ρψi(x̄i) is concave;
2) well-posed in the sense that ρψi(x̄i) > 0 implies ‖x̄i‖ ≤ C̄
for some C̄ ≥ 0; 3) η is s.t. ρψi(x̄i) > 0 for some x̄i ∈ R3Pi .

Assumption 2: The function wi : R≥0 → R3 is piecewise
continuous, fi : R3 → R3 and gi : R3 → R3×mi are locally
Lipschitz continuous, and gi(xi)gi(xi)

T is positive definite.
Remark 1: Part 3 of Assumption 1 implies that ψi is

satisfiable, i.e., ∃x̄i ∈ R3Pi s.t. (x̄i, 0) |= ψi, while Part 2
of Assumption 1 and Assumption 2 guarantee, in conjunction
with ui proposed later, existence of a solution xi(t) to (1)
defined for all t ≥ 0. Part 1 of Assumption 1 implies that
only concave predicate functions hi(x̄i) are allowed which
includes the class of linear functions; gi(xi)gi(xi)

T being
positive definite implies that mi ≥ ni, see [31, Rem. 1-3].

The controller in [31] relies on two steps. First, a funnel-
based control law is derived when all agents in Vi are subject
to the same task. According to [31, Thm. 2], if for all agents
i, j ∈ Vi we have φi = φj and (i, j) ∈ E , and all i ∈ Vi apply

unom,i(x̄i, t) := −εi(x̄i, t)gi(xi)T
∂ρψi(x̄i)

∂xi
(4)

where εi(x̄i, t) := ln
(
− ξi(x̄i,t)+1

ξi(x̄i,t)

)
, ξi(x̄i, t) :=

ρψi (x̄i)−ρmax
i

γi(t)

with ρmax
i and γi(t) as explained in [31, eq. (6)-(11)] and

ξi(x̄i, t) = ξj(x̄i, t) for all i, j ∈ Vi, then 0 < ri ≤
ρφi(x̄i, 0) < ρmax

i so that (x̄i, 0) |= φi; ri > 0 is a parameter
that indicates the robustness by which φi is satisfied. The
idea behind (4) is illustrated in Fig. 2 (left); (4) confines
ρψi(x̄i(t)) within the funnel given by the red curves and
achieves −γi(t) + ρmax

i < ρψi(x̄i(t)) < ρmax
i for all t ≥ 0.

By the choice of γi it follows that ri ≤ ρφi(x̄i, 0) < ρmax
i .

In the second step of [31], dealing with cases where agents
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in Vi are subject to different tasks, the conditions in [31,
Thm. 2] do not hold. If (4) is still applied by each agent
i, (4) may become singular since εi(x̄i(t), t) → ∞ as
ρψi(x̄i(t))→ {−γi(t)+ρmax

i , ρmax
i }. We use (4) in conjunction

with an online detection & repair scheme that takes care
of critical events, which are the events where ρψi(x̄i(t)) ∈
{−γi(t)+ρmax

i , ρmax
i }. Upon detection of a critical event, three

repair stages are initiated. The first repair stage enlarges the
funnel as illustrated in Fig. 2 (right) by relaxing ri, ρmax

i , and
γi (see [31, Sec. 3.2] for details); ri remains positive, while γi
is such that 0 < ri ≤ ρφi(x̄i, 0) < ρmax

i if no further critical
event occurs. Let Ni indicate the maximum number of critical
events in the first repair stage. After detection of Ni critical
events in the first stage, the second repair stage is enabled if,
in case that all agents in Vi first satisfy φi collaboratively, there
is enough time left so that all agents j ∈ Vi\{i} can satisfy φj
afterwards. The funnel is enlarged the same way as in the first
repair stage and all agents j ∈ Vi \ {i} replace, temporarily,
εj(x̄j , t), ρψj (x̄j), and ψj in (4) by εi(x̄i, t), ρψi(x̄i), and ψi,
respectively, to collaboratively satisfy φi by [31, Thm. 2], i.e.,
the agents j ∈ Vi \{i} are subject to φi until φi is satisfied. If
the second repair stage is not enabled, the third repair stage
is enabled. At each further critical event the funnel is relaxed
as in Fig. 2 (right), but now by allowing ri < 0. In particular,
we set ri = ri − δi where δi > 0 is a design parameter. As a
consequence, the control law in (4) changes since εi(x̄i, t) and
ρψi(x̄i) change due to the change in ri, ρmax

i , and γi. By [31,
Thm. 3], it holds that ρφi(x̄i, 0) ≥ r̄i where r̄i is maximized.

C. Problem Formulation

In the remainder of the paper, we use the term robot instead
of agent due to the use of mobile robots in the experiments.
In particular, we consider a group of mobile robots where the
robots have different sensing and actuation capabilities. Each
robot indexed by i ∈ {1, . . . ,MLTL} is subject to an LTL
formula φi of the form (2) and each each robot indexed by
i ∈ {MLTL + 1, . . . ,M} is subject to an STL formula φi of
the form (3b). The objectives are, based on Sections II-A and
II-B, to implement a control algorithm so that:
• for each i ∈ {1, . . . ,MLTL}, (σi, 0) |= φi,
• for each i ∈ {MLTL + 1, . . . ,M}, ρφi(x̄i, 0) ≥ r̄i where
r̄i is maximized,

• and, for each i, j ∈ V with i 6= j, ‖xi(t)−xj(t)‖ ≥ Ri,j
for all t ≥ 0 where Ri,j depends on the agents’ geometry,
i.e., collisions are mutually avoided.

For the STL approach, we in particular need to account for
input limitations that are not considered in [31]. Furthermore,
we want to show that Assumption 2 is not restrictive in practice
when omnidirectional robots are considered. Finally, our goal
is to show the computationally-efficient and robust nature
of our control strategies and that considering LTL and STL
mission specifications at the same time can be beneficial.

III. MULTI-ROBOT SYSTEMS UNDER LTL AND STL
The implementation of our framework, which can be found

in [33], is written in Python and C++ and embedded in
the Robot Operating System (ROS) [34]. In the experiments,
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Fig. 3: Control architecture used for robots under LTL tasks.

Turtlebots and Nexus 4WD Mecanum Robotic Cars, omni-
directional robots, are considered (see Fig 1). The omnidi-
rectional robots satisfy Assumption 2, while this is not the
case for the Turtlebots. The omnidirectional robots are hence
subject to STL tasks, while the TurtleBots are subject to
LTL tasks. Due to different sensing and actuation capabilities,
different communication and control strategies are derived,
resulting in different degrees of decentralization.

LTL tasks: TurtleBots are modelled with fi(xi) := 03

and gi(xi) :=
[
cos(xi,3)ui,1 sin(xi,3)ui,1 ui,2

]T
in (1).

Sensing is performed locally by the use of onboard sensors
with a directional field of view. Let Vcol,i(t) ⊆ V \ {i} denote
the set of agents that are in the field of view at time t,
to be used for collision avoidance. Since LTL tasks are not
coupled (as assumed in Section II-A) and due to local sensing,
no communication between robots in i ∈ {1, . . . ,MLTL} is
needed. The control architecture is shown in Fig. 3. The
discrete LTL task planner, introduced in Section II-A, is further
summarized in Algorithm 1 below.

Algorithm 1 Discrete LTL task planner for robot i

1: Form Aφi corresponding to φi
2: Construct Ti considering the poses of interest in Πi

3: Construct the product automaton A′φi := Ti ×Aφi
4: Apply the modified Dijkstra search algorithm [15, Alg. 3]

to obtain q̃i := q′i,j0q
′
i,j1
· · · = 〈πi,j0 , qi,j0〉〈πi,j1 , qi,j1〉 . . .

5: Output τi := πi,j0πi,j1 . . .

Navigation according to the obtained high-level LTL plan
τi while adhering to collision avoidance is achieved by the
combination of a global (ROS package global planner) and a
local (ROS package dwa local planner) planner within the
move base ROS package. The global planner finds, using
a Dijkstra algorithm, a set of sampled waypoints xi,0, xi,1,
xi,2, . . . which sequentially connect the initial position xi(0)
and the poses of interest πi,j0 , πi,j1 , πi,j2 , . . . as closely as
possible while taking into account obstacles that may result in
a collision. The set of waypoints is then followed in the local
planner as accurately as possible by avoiding these obstacles
under consideration of the robot dynamics in (1) using the
dynamic window approach [35], outputting ui(t). Both global
and local planner take obstacles into account by creating a
dynamic cost map using the ROS package costmap 2d which
is based on the local sensors of each turtlebot. This package
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Fig. 4: Control architecture used for robots under STL tasks.

creates a grid of the workspace with different costs for each
cell in the grid indicating how close the robot is in the vicinity
to an obstacle and how close the robot is to the goal. Local and
global cost maps are different since the goals for the global
planner are poses of interest πi,j0 , πi,j1 , πi,j2 , . . ., while the
local planner considers the waypoints xi,0, xi,1, xi,2, . . ..

STL tasks: Using the approach presented in Section II-B,
we assume the dynamics in (1) with unkown fi(xi). For the
omnidirectional robots, it holds that mi := 3. Since gi(xi) is
a square matrix, it is straightforward to show that

unom,i(x̄i, t) := −εi(x̄i, t)
∂ρψi(x̄i)

∂xi
(5)

gives the same guarantees as (4), but without knowing fi(xi)
and gi(xi) illustrating the robustness of the controller. Hence,
unom,i(x̄i, t) as in (5) will be used instead of (4). The control
architecture is shown in Fig. 4. For collision avoidance, we
again only consider robots within a neighborhood of robot i
and within a range of R, where R > Ri,j for all j ∈ V ,
as Vcol,i(t) := {j ∈ V|‖xi(t) − xj(t)‖ ≤ R}. Sensing
is done by means of a motion capture system that can be
replaced, in experiments performed outside the lab, by using
laser range finders [36] or visual odometry [37]. Let us define
Vsens,i(t) := Vi ∪Vcol,i(t) to denote the robot information that
is needed at time t. In [31], we have shown that the control
law βiucol,i(x) +unom,i(x̄i, t) with βi ≥ 0 provides the same
guarantees as [31, Thm. 2] when ucol,i(x), used for collision
avoidance, is locally Lipschitz continuous in x. In real physical
systems, however, the input is limited by umax,i ∈ R≥0 and
hence we first define

ūnom,i(x̄i, t) :=

{
unom,i(x̄i, t) if ‖unom,i(x̄i, t)‖ ≤ umax,i

umax,i
unom,i(x̄i,t)
‖unom,i(x̄i,t)‖ otherwise

and ūcol,i(x) :=
[
ũcol,i(x)

T
0
]T

where, for R1 < R,

ũcol,i(x) :=
∑

j∈V:‖zi−zj‖<R1

umax,iD(zi, zj)

+
∑

j∈V:R1≤‖zi−zj‖≤R

ki

(
R− ‖zi − zj‖
‖zi − zj‖3R

)
D(zi, zj)

with D(zi, zj) :=
zi−zj
‖zi−zj‖ and where ki := umax,i

RR3
1

R−R1

ensures that ūcol,i(x) is continuous. Let umix,i(x, t) :=
βiūcol,i(x) + ūnom,i(x̄i, t) so that we define the control law

ūmix,i(x, t) :=

{
umix,i(x, t) if ‖umix,i(x, t)‖ ≤ umax,i

umax,i
umix,i(x,t)
‖umix,i(x,t)‖ otherwise.

(6)

The parameter βi determines how much collision avoidance
is taken into account. For only two robots, βi ≥ 1 ensures
collision avoidance since ūcol,i(x) dominates ūnom,i(x̄i, t).
The obtained control commands (6) are forwarded to a low-
level PID controller that is integrated into each omnidirectional
robot to track these velocity commands. Input limitations, the
collision avoidance mechanism, and the digital implementation
of (6) are the reason why the guarantees of [31, Thm. 2] do not
hold anymore. As a result, more critical events may occur. As
shown in Section IV, satisfactory behavior can still be achieved
when deadlines of the STL task are not too tight due to the
detection & repair scheme, summarized in Algorithm 2.

Algorithm 2 Detection & Repair Scheme for robot i

1: Calculate initial ri, ρmax
i , γi [31, Sec. 3.2]

2: Set ce := 0 . Counter for critical events
3: Set ci := 0 . Indicates 2nd repair stage
4: repeat
5: if Critical Event and cj := 0 for all i ∈ Vj \ {j} then
6: Set ce := ce+ 1
7: if ce ≤ Ni then . 1st repair stage
8: Calculate new ri, ρmax

i , γi [31, Sec. 3.2]
9: else . 2nd and 3rd repair stages

10: if 2nd repair stage and ci = 0 then
11: Calculate new ri, ρmax

i , γi [31, Sec. 3.2]
12: Set ci := i; send ρmax

i , γi, ψi to j ∈ Vi\{i}
13: else if 2nd repair stage and ci = i then
14: ri := ri − δi; Calculate new ρmax

i , γi
15: Send ρmax

i , γi, ψi to j ∈ Vi \ {i}
16: else 3rd repair stage
17: ri := ri − δi; Calculate new ρmax

i , γi
18: end if
19: end if
20: if cj = j and i ∈ Vj \ {j} then. 2nd repair stage
21: Set ρmax

i := ρmax
j , γi := γj , ψi := ψj

22: end if
23: if cj changed from j to −1 and i ∈ Vj \ {j} then
24: Reset ψi, Calculate new ri, ρmax

i , γi
25: end if
26: end if
27: Calculate and output ε(x̄i, t) and ρψi(x̄i)
28: until ρφi(x̄i, 0) ≥ r̄i where r̄i is maximized.
29: Set ci := −1

Algorithm 2 follows Section II-B and uses a parameter ci
indicating, when ci 6∈ {0,−1}, that the second repair stage has
been initiated by agent i (lines 10-12). Agents j ∈ Vi \ {i}
then collaborate to satisfy φi (lines 20-21). If φi is satisfied,
collaboration is terminated and ci = −1 (line 29) so that robots
in j ∈ Vi \ {i} can continue with φj (line 24). We obtain
ρφi(x̄i, 0) ≥ r̄i where r̄i is maximized (line 28).
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(a) Robot trajectories from 0-30 seconds. (b) Robot trajectories from 30-90 seconds. (c) Robust semantics ρψ
′
4(x̄4(t)) for φ′

4.

(d) Robust semantics ρψ
′
5(x̄5(t)) for φ′

5. (e) Robust semantics ρψ
′′
3 (x̄3(t)) for φ′′

3 . (f) Robust semantics ρψ
′′
4 (x̄4(t)) for φ′′

4 .

Fig. 5: Robot trajectories and evolution of the robust semantics for selected robots of Scenario 1.

IV. EXPERIMENTAL RESULTS

We now present the experimental results for three different
scenarios that were performed on a rectangular workspace of
size [−3.5,−3.5]× [3.5, 3.5] (measured in meters). Videos of
the three scenarios can be found in [38]–[40], respectively.

Scenario 1: The first scenario demonstrates the full func-
tionality of the presented framework. We employ MLTL = 2
and MSTL = 3 robots. For robots 1 and 2, we define
the propositions α1,1, α1,2, α2,1, and α2,2 as illustrated in
Fig. 5. The LTL tasks are φ1 := GF (α1,1 ∧ α1,2) and
φ2 := GF (α2,1 ∧ α2,2) or, in words, robot 1 (robot 2)
should periodically visit α1,1 and α1,2 (α2,1 and α2,2). For
robot 3, define µ3,1 := (‖z3 −

[
0 −2

]T ‖ ≤ 0.1), µ3,2 :=

(‖z3 −
[
1.5 −1.5

]T ‖ ≤ 0.1), µ3,3 := (‖z3 − z4‖ ≤ 0.7),
φ′3 := G[21,30]µ3,1, and φ′′3 := F[57,58](µ3,2 ∧ µ3,3). Robot 3
is then subject to φ3 := φ′3 ∧φ′′3 or, in words, always between
21-30 sec be in region µ3,1 and eventually between 57-58
sec be in region µ3,2 while being at least 0.7 m close to
robot 4. For robot 4, define µ4,1 := (‖z4−

[
2 2

]T ‖ ≤ 0.1),
µ4,2 := (‖z4 − z3‖ ≤ 1), µ4,3 := (‖z4 − z5‖ ≤ 1),
φ′4 := G[5,30](µ4,2 ∧ µ4,3), and φ′′4 := F[83,87]µ4,1. Robot 4 is
subject to φ4 := φ′4 ∧ φ′′4 or, in words, always between 5-30
sec be 1 m close to agent 3 and 5 and eventually between 83-
87 seconds be in region µ4,1. Robot 5 should always between
21-30 sec be in region µ5,1 and eventually between 44-47 sec
be in region µ5,2 where µ5,1 := (‖z5−

[
0 2

]T ‖ ≤ 0.1) and

µ5,2 := (‖z5 −
[
−1 0.5

]T ‖ ≤ 0.1) so that φ5 := φ′5 ∧ φ′′5
where φ′5 := G[21,30]µ5,1 and φ′′5 := F[44,47]µ5,2. The
trajectories of the robots for 0-30 seconds and 30-90 seconds
are shown in Fig. 5a and 5b, respectively. The evolution of
a robot over time is indicated by increasing color intensity
and it can hence be seen that collisions are avoided. Note
that robots 3 and 4 are coupled to other robots. In Fig.
5a, showing φ′3, φ′4, and φ′5, robot 4 needs to stay close
to robot 3 and 5, while robots 3 and 5 are supposed to
move to µ3,1 and µ5,1, respectively, so that agent 4 can
not satisfy φ′4. Robot 4 finds a least violating solution by
successively reducing the robustnes r4 (third repair stage, see
Fig. 5c) and consequently staying as close as possible to
robots 3 and 5. Robots 3 and 5 satisfy their tasks φ′3 and
φ′5, respectively, as illustrated for robot 5 in Fig. 5d. More
formally, we have ρφ

′
3(x̄3, 0) ≥ −0.18, ρφ

′
4(x̄4, 0) ≥ −1.11,

and ρφ
′
5(x̄5, 0) ≥ −0.12. In Fig. 5b, showing φ′′3 , φ′′4 , and

φ′′5 , robot 3 needs to move to µ3,2 while staying close to
robot 4. Robot 4, however, is supposed to move to µ4,1.
Therefore, at some point, robot 3 establishes communication
with robot 4 to collaboratively satisfy φ′′3 (second repair stage,
see Fig. 5e). Afterwards, robot 4 continuous with φ′′4 (see Fig.
5f). It holds that ρφ

′′
3 (x̄3, 0) ≥ 0.02, ρφ

′′
4 (x̄4, 0) ≥ −0.4, and

ρφ
′′
5 (x̄5, 0) ≥ 0.5. This scenario illustrates how the online

detection & repair scheme handles critical events so that, even
when obstacles need to be avoided or when local tasks are not
satisfiable, ρφi(x̄i, 0) ≥ r̄i is achieved where r̄i is maximized.
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(a) Robot trajectories from 23-45 seconds.

(b) Robust semantics ρψ3(x̄3(t)) for φ3.

Fig. 6: Robot trajectories and robust semantics for Scenario 2.

As can be seen in the video in [38], the workspace is densely
filled with robots so that collision avoidance is the main reason
why the robustness r̄i is decreased.

Scenario 2: In this scenario, we couple robots under STL
tasks to robots under LTL tasks to induce periodic motion.
Consider MLTL = 2 and MSTL = 2 robots. For robots 1 and
2, φ1 := GF (α1,1 ∧ α1,2) and φ2 := GF (α2,1 ∧ α2,2) again
encode to periodically visit the regions α1,1, α1,2 and α2,1,
α2,2, respectively (see Fig. 6a). For robots 3 and 4, define
µ3 := (‖z3 − z1‖ ≤ 0.6), µ4 := (‖z4 − z2‖ ≤ 0.6), φ3 :=
G[0,90]µ3, and φ4 := G[0,90]µ4, i.e., robots 3 and 4 track robots
1 and 2, respectively. The robots under STL tasks congest
the path so that collision are expected. The trajectories of the
robots from 23-45 sec are shown in Fig. 6a. The LTL tasks
φ1 and φ2 are satisfied while the robots under STL tasks track
the robots under LTL tasks closely (see Fig. 6b); φ3 and φ4

are not satisfied due to collision avoidance and the induced
repair stages; however, we obtain ρφ3(x̄3, 0) ≥ −0.45 and
ρφ4(x̄4, 0) ≥ −0.47.

Scenario 3: We again couple robots to other robots, but in a
more complex way. Consider MLTL = 1 and MSTL = 3 robots.
We have φ1 := F (α1,1 ∧ α1,2 ∧ α1,3 ∧ α1,4 ∧ α1,5) where the
propositions can be seen in Fig. 7a. The method proposed in
Section III will find the shortest path satisfying φ1, which is

(a) Robot trajectories.

(b) Robust semantics ρψ3(x̄3(t)) for φ3.

Fig. 7: Robot trajectories and robust semantics for Scenario 3.

to sequentially move to α1,1, α1,2, α1,3, α1,4, and α1,5. The
robots under STL tasks are supposed to form a formation with
respect to the LTL robot and to also track its orientation. Let
µ2,1 := (‖z2 − z1 −

[
sin(x1,3) − cos(x1,3)

]T
) ≤ 0.1 and

µ2,2 := (|x2,3 − x1,3|) ≤ 0.09 so that φ2 := G[10,100](µ2,1 ∧
µ2,2) which means, in words, that robot 2 should always be to
the right of robot 1 and track its orientation. Let also µ3,1 :=

(‖z3 − z1 −
[
− sin(x1,3) cos(x1,3)

]T
) ≤ 0.1 and µ3,2 :=

(|x3,3 − x1,3|) ≤ 0.09 so that φ3 := G[10,100](µ3,1 ∧ µ3,2),
i.e., robot 3 should always be to the left of robot 1 and track
its orientation. Similarly, φ4, omitted here, means that robot
4 should always be behind robot 1 and track its orientation.
The robustness function for robot 3 is shown in Fig. 7b.

It has been shown that the proposed method is robust in the
sense that STL tasks can be satisfied with a given robustness.
Input limitations, collision avoidance, the digital implementa-
tion of (6), or cases not covered by [31, Thm. 2], however,
may induce critical events that are handled by the detection &
repair scheme. The computation times of Algorithm 1 are, on
average, 0.5 seconds. The control loops for robots under LTL
and STL tasks are run with 5 Hz and 100 Hz, respectively.
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V. CONCLUSION

We presented the implementation and experimental results
of [14] and [31], which present theoretical frameworks for
the control of multi-agent systems under linear temporal logic
and signal temporal logic tasks. In particular, each agent is
represented by a mobile robot that is either subject to a local
linear temporal logic or a local signal temporal logic task. Our
implementation deals with practical issues such as collision
avoidance, input saturations, the digital implementation of
continuous-time feedback control laws, and a controllability
assumption that was made in the original works. We also
argued that using linear temporal logic and signal temporal
logic at the same time can be beneficial. A particular strength
of combining these temporal logics is that signal temporal
logic tasks can depend on the agents under periodic linear
temporal logic tasks. We provided three experiments and have
shown that our method can be used as a multi-purpose tool.
For the future, we plan to introduce a robustness recovery
mechanism that can be integrated into the online detection
& repair scheme of the signal temporal logic framework.
Thereby, the robustness, by which a signal temporal logic
task is satisfied, can again be increased after the occasion of
unforeseen events that potentially decreased this robustness.
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