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Abstract—This paper presents two novel control methodologies
for the cooperative manipulation of an object by N robotic
agents. Firstly, we design an adaptive control protocol which
employs quaternion feedback for the object orientation to avoid
potential representation singularities. Secondly, we propose a
control protocol that guarantees predefined transient and steady-
state performance for the object trajectory. Both methodologies
are decentralized, since the agents calculate their own signals
without communicating with each other, as well as robust to
external disturbances and model uncertainties. Moreover, we
consider that the grasping points are rigid, and avoid the need
for force/torque measurements. Load distribution is also included
via a grasp matrix pseudo-inverse to account for potential differ-
ences in the agents’ power capabilities. Finally, simulation and
experimental results with two robotic arms verify the theoretical
findings.

Index Terms—cooperative manipulation, multi-agent systems,
adaptive control, robust control, unit quaternions, prescribed
performance control.

I. INTRODUCTION

MULTI-agent systems have gained significant attention

the last years due to the numerous advantages they

yield with respect to single-agent setups. In the case of

robotic manipulation, heavy payloads and challenging maneu-

vers necessitate the employment of multiple robotic agents.

Although collaborative manipulation of a single object, both in

terms of transportation (regulation) and trajectory tracking, has

been considered in the research community the last decades,

there still exist several challenges that need to be taken into

account by on-going research, both in control design as well

as experimental evaluation.

Early works develop control architectures where the robotic

agents communicate and share information with each other,

and completely decentralized schemes, where each agent uses

only local information or observers, avoiding potential com-

munication delays (see, indicatively, [1]–[10]). Impedance and

hybrid force/position control is the most common methodol-

ogy used in the related literature [8]–[24], where a desired

impedance behavior is imposed potentially with force regula-

tion. Most of the aforementioned works employ force/torque
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sensors to acquire feedback of the object-robots contact

forces/torques, which however may result in performance

decline due to sensor noise or mounting difficulties. When

the grasping object-agents contacts are rigid, the need for

such sensors is redundant, since the overall system can be

seen as a closed-chain robot. Regarding grasp rigidity, recent

technological advances allow end-effectors to grasp rigidly

certain objects, motivating the specific analysis.

In addition, many works in the related literature consider

known dynamic parameters regarding the object and the

robotic agents. However, the accurate knowledge of such

parameters, such as masses or moments of inertia, can be a

challenging issue, especially for complex robotic manipulators.

Force/torque sensor-free methodologies have been devel-

oped in [4], [6], [8], [16], [19], [21], [22], [25], [26]; [16]

develops a leader-follower communication-based scheme by

partly accounting for dynamic parametric uncertainty, whereas

[8] and [4] employ partial and full model information, respec-

tively; [6] develops an adaptive control scheme that achieves

boundedness of the errors based on known disturbance bounds,

and [25] proposes an adaptive estimator for kinematic uncer-

tainties, whose convergence affects the asymptotic stability of

the overall scheme. In [21] and [22] adaptive fuzzy estimators

for structural and parametric uncertainty are introduced, with

the latter not taking into account the object dynamics; [26]

develops an adaptive protocol that guarantees boundedness of

the internal forces, and [19] employs an approximate force

estimator for a human-robot cooperative task.

Another important feature is the representation of the agent

and object orientation. The most commonly used tools for

orientation representation are rotation matrices, Euler angles,

unit quaternions, and the angle/axis convention. In this work,

we employ unit quaternions, which do not suffer from rep-

resentation singularities and can be tuned to avoid undesired

local equilibria, issues that characterize the other methods.

Unit quaternions in the control design of cooperative ma-

nipulation tasks have been employed in [11], where the

authors address the gravity-compensated pose regulation of

the grasped object, as well as in [12], where a model-based

force-feedback scheme is developed.

Full model information is employed in the works [1], [7],

[9], [10], [13], [15], [17], [23]; [7] employs a velocity estima-

tor, [23] uses a linearized model, and [14], [15] considers kine-

matic and grasping uncertainties. Adaptive control schemes

are developed in [20], where redundancy is used for obstacle

avoidance and [27], where the object dynamics are not taken
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into account; [28] and [29] propose protocols based on graph-

based communication by neglecting parts of the overall system

dynamics, and [18], [29] consider leader-follower approaches.

An observer-based (for state and task estimation) adaptive

control scheme is proposed in [24]. Model-based force-control

control protocols with unilateral constraints are developed in

[30], [31]. Formation control approaches are considered in

[31], [32] and a navigation-function scheme is used in [33];

[34] includes hybrid control with intermittent contacts and in

our previous works [35], [36] we considered MPC approaches

for cooperative object transportation. Finally, internal force

and load distribution analysis in cooperative manipulation

tasks is performed in a variety of works (e.g., [37]–[41]).

Note that most of the aforementioned adaptive control

schemes (except e.g., [21]) employ the usual regressor matrix

technique to compensate for unknown dynamic parameters

[42], [43], which assumes a known structure of the dynamic

terms. Such structures can still be difficult to obtain accurately,

especially when complex manipulators are considered. More-

over, in terms of load distribution, many of the related works

use load sharing coefficients (e.g., [4], [5], [21]), without

proving that undesired internal forces do not arise, or the

standard Moore-Penrose inverse of the grasp matrix (e.g. [6],

[17]), which has been questioned in [37].

A. Contribution and Outline

In this paper we propose two novel nonlinear control

protocols for the trajectory tracking of an object that is rigidly

grasped by N robotic agents, without using force/torque

measurements at the grasping points. More specifically, our

contribution lies in the following attributes:

1) Firstly, we develop a decentralized control scheme that

combines

• adaptive control ideas to compensate for external

disturbances and uncertainties of the agents’ and the

object’s dynamic parameters,

• quaternion modeling of the object’s orientation that

avoids undesired representation singularities.

2) Secondly, we propose a decentralized control scheme that

does not depend on the dynamic structure or parameters

of the overall system and guarantees predefined transient

and steady-state performance for the object’s center of

mass, using the Prescribed Performance Control (PPC)

scheme [44].

3) We carry out extensive simulation studies and experimen-

tal results that verify the theoretical findings.

Moreover, both control schemes employ the load distribution

proposed in [40] that provably avoids undesired internal forces.

The first control scheme is an extension of our preliminary

work [45], where we designed a similar adaptive quaternion-

based controller, guaranteeing, however, only local stability,

and no experimental validation was provided. Furthermore,

we have employed the PPC scheme in our previous work

[46] to design timed transition systems for a cooperatively

manipulated object. In this work, however, we perform a more

extended and detailed analysis by deriving specific bounds

for the inputs of the robotic arms (i.e., joint velocities and

torques), as well as real-time experiments. It is worth noting

that PPC has been also used for single manipulation tasks in

[47]–[49].

The rest of the paper is organized as follows. Section II

provides the notation used throughout the paper and necessary

background. The modeling of the system as well as the

problem formulation are given in Section III. Section IV

presents the details of the two proposed control schemes with

the corresponding stability analysis, and Section V illustrates

the simulation and experimental results. Finally, Section VI

concludes the paper.

II. NOTATION AND PRELIMINARIES

A. Notation

The set of positive integers is denoted by N and the real

n-coordinate space, with n ∈ N, by Rn; Rn
≥0 and Rn

>0 are

the sets of real n-vectors with all elements nonnegative and

positive, respectively. The n×n identity matrix is denoted by

In, the n-dimensional zero vector by 0n and the n×m matrix

with zero entries by 0n×m. Given a matrix A ∈ Rn×m, we

use ‖A‖ :=
√
λmax(A⊤A), where λmax(·) is the maximum

eigenvalue of a matrix. The vector connecting the origins

of coordinate frames {A} and {B} expressed in frame {C}
coordinates in 3-D space is denoted as pCB/A ∈ R

3. Given

a ∈ R3, S(a) is the skew-symmetric matrix defined according

to S(a)b = a × b. The rotation matrix from {A} to {B}
is denoted as RB/A ∈ SO(3), where SO(3) is the 3-D

rotation group. The angular velocity of frame {B} with respect

to {A} is denoted as ωB/A ∈ R3 and it holds that [43]

ṘB/A = S(ωB/A)RB/A. We further denote as ηA/B ∈ T

the Euler angles representing the orientation of {B} with

respect to {A}, with T := (−π, π) × (−π
2 ,

π
2 ) × (−π, π).

We also define the set M := R3 × T. In addition, Sn

denotes the (n+1)-dimensional sphere. For notational brevity,

when a coordinate frame corresponds to an inertial frame

of reference {I}, we will omit its explicit notation (e.g.,

pB = pI
B/I

, ωB = ωI
B/I

, RB = RB/I etc.). Finally, all vector

and matrix differentiations are expressed with respect to an

inertial frame {I}, unless otherwise stated.

B. Unit Quaternions

Given two frames {A} and {B}, we define a unit quaternion

ζB/A := [ϕB/A, ǫ
⊤
B/A

]⊤ ∈ S3 describing the orientation of {B}
with respect to {A}, with ϕB/A ∈ R, ǫB/A ∈ R3, subject to

the constraint ϕ2
B/A + ǫ⊤B/AǫB/A = 1. The relation between

ζB/A and the corresponding rotation matrix RB/A as well as

the axis/angle representation can be found in [43]. For a given

quaternion ζB/A = [ϕB/A, ǫ
⊤
B/A]

⊤ ∈ S3, its conjugate, that

corresponds to the orientation of {A} with respect to {B},

is [43] ζ+B/A := [ϕB/A,−ǫ⊤B/A]⊤ ∈ S3. Moreover, given two

quaternions ζi := ζBi/Ai = [ϕBi/Ai , ǫ
⊤
Bi/Ai

]⊤, ∀i ∈ {1, 2}, the

quaternion product is defined as [43]

ζ1 ⊗ ζ2 :=

[
ϕ1ϕ2 − ǫ⊤1 ǫ2

ϕ1ǫ2 + ϕ2ǫ1 + S(ǫ1)ǫ2

]
∈ S3, (1)

where ϕi := ϕBi/Ai , ǫi := ǫBi/Ai , ∀i ∈ {1, 2}.
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For a moving frame {B} (with respect to {A}), the time

derivative of the quaternion ζB/A = [ϕB/A, ǫ
⊤
B/A

]⊤ ∈ S3 is

given by [43]:

ζ̇B/A =
1

2
E(ζB/A)ω

A

B/A
, (2a)

where E : S3 → R4×3 is defined as:

E(ζ) :=

[
−ǫ⊤

ϕI3 − S(ǫ)

]
, ∀ζ = [ϕ, ǫ⊤]⊤ ∈ S3.

Finally, it can be shown that E(ζ)⊤E(ζ) = I3, ∀ζ ∈ S3 and

hence (2a) implies

ωAB/A = 2E(ζB/A)
⊤ζ̇B/A. (2b)

C. Prescribed Performance

Prescribed performance control, recently proposed in [44],

describes the behavior where a tracking error e : R≥0 → R

evolves strictly within a predefined region that is bounded

by certain functions of time, achieving prescribed transient

and steady state performance. The mathematical expression of

prescribed performance is given by the inequalities −ρL(t) <
e(t) < ρU (t), ∀t ∈ R≥0, where ρL(t), ρU (t) are smooth and

bounded decaying functions of time satisfying lim
t→∞

ρL(t) > 0

and lim
t→∞

ρU (t) > 0, called performance functions. Specif-

ically, for the exponential performance functions ρi(t) :=
(ρi,0 − ρi,∞) exp(−lit) + ρi,∞, with ρi,0, ρi,∞, li ∈ R>0, i ∈
{U,L}, appropriately chosen constants, the terms ρL,0 :=
ρL(0), ρU,0 := ρU (0) are selected such that ρU,0 > e(0) >
ρL,0 and the terms ρL,∞ := lim

t→∞
ρL(t), ρU,∞ := lim

t→∞
ρU (t)

represent the maximum allowable size of the tracking error

e(t) at steady state, which may be set arbitrarily small to

a value reflecting the resolution of the measurement device,

thus achieving practical convergence of e(t) to zero. Moreover,

the decreasing rate of ρL(t), ρU (t), which is affected by the

constants lL, lU in this case, introduces a lower bound on

the required speed of convergence of e(t). Therefore, the ap-

propriate selection of the performance functions ρL(t), ρU (t)
imposes performance characteristics on the tracking error e(t).

D. Dynamical Systems

Consider the initial value problem:

σ̇ = H(σ, t), σ(0) ∈ Ω, (3)

with H : Ω×R≥0 → Rn where Ω ⊂ Rn is a non-empty open

set.

Definition 1. [50] A solution σ(t) of the initial value problem

(3) is maximal if it has no proper right extension that is also

a solution of (3).

Theorem 1. [50] Consider problem (3). Assume that H(σ, t)
is: a) locally Lipschitz on σ for almost all t ∈ R≥0, b)

piecewise continuous on t for each fixed σ ∈ Ω and c) locally

integrable on t for each fixed σ ∈ Ω. Then, there exists a

maximal solution σ(t) of (3) on [0, tmax) with tmax > 0 such

that σ(t) ∈ Ω, ∀t ∈ [0, tmax).

Fig. 1: Two robotic agents rigidly grasping an object.

Proposition 1. [50] Assume that the hypotheses of Theorem 1

hold. For a maximal solution σ(t) on the time interval [0, tmax)
with tmax < ∞ and for any compact set Ω′ ⊂ Ω there exists

a time instant t′ ∈ [0, tmax) such that σ(t′) /∈ Ω′.

III. PROBLEM FORMULATION

Consider N fully actuated robotic agents (e.g. robotic arms

mounted on omnidirectional mobile bases) rigidly grasping

an object (see Fig. 1). We denote by {Ei}, {O} the end-

effector and object’s center of mass frames, respectively; {I}
corresponds to an inertial frame of reference, as mentioned in

Section II-A. The rigidity assumption implies that the agents

can exert both forces and torques along all directions to the

object. In the following, we present the modeling of the

coupled kinematics and dynamics of the object and the agents,

which follows closely the one in [4], [6].

A. Robotic Agents

We denote by qi, q̇i ∈ Rni , with ni ∈ N, ∀i ∈ N , the gener-

alized joint-space variables and their time derivatives of agent

i, with qi := [qi1 , . . . , qini ]. Here, qi consists of the degrees of

freedom of the robotic arm as well as the moving base. The

overall joint configuration is then q := [q⊤1 , . . . , q
⊤
N ]⊤, q̇ :=

[q̇⊤1 , . . . , q̇
⊤
N ]⊤ ∈ Rn, with n :=

∑
i∈N ni. In addition, the

inertial position and Euler-angle orientation of the ith end-

effector, denoted by pEi and ηEi , respectively, can be derived

by the forward kinematics and are smooth functions of qi, i.e.

pEi : R
ni → R3, ηEi : R

ni → T. The generalized velocity of

each agent’s end-effector vi := [ṗ⊤Ei , ω
⊤
Ei
]⊤ ∈ R

6, can be com-

puted through the differential kinematics vi = Ji(qi)q̇i [43],

where Ji : Rni → R6×ni is a smooth function representing

the geometric Jacobian matrix, ∀i ∈ N [43]. We define also

the set Si := {qi ∈ R
ni : det(Ji(qi)Ji(qi)

⊤) > 0} which

contains all the singularity-free configurations. The differential

equation describing the dynamics of each agent in task-space

coordinates is [43]:

Mi(qi)v̇i +Ci(qi, q̇i)vi + gi(qi) + di(qi, q̇i, t) = ui − fi, (4)

where Mi : Si → Rni×ni is the positive definite inertia

matrix, Ci : Si × Rni → Rni×ni is the Coriolis matrix,

gi : Si → Rni is the gravity term, di : Si×Rni×R≥0 → Rni

is a vector representing unmodeled friction, uncertainties and

external disturbances, fi ∈ R6 is the vector of generalized

forces that agent i exerts on the grasping point with the

object and ui ∈ R6 is the task space wrench, that acts as the

control input; ui is related to the input torques, denoted by τi,
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via τi = J⊤
i (qi)ui + (Ini − J⊤

i (qi)[J
+
i (qi)]

⊤)τi0, where J+
i

is a generalized inverse of Ji [43]. Moreover, τi0 concerns

redundant agents (ni > 6) and does not contribute to end-

effector forces. The agent task-space dynamics (4) can be

written in vector form as:

M(q)v̇ + C(q, q̇)v + g(q) + d(q, q̇, t) = u− f, (5)

where v := [v⊤1 , . . . , v
⊤
N ] ∈ R

6N , M := diag{[Mi]i∈N } ∈
R6N×6N , C := diag{[Ci]i∈N } ∈ R6N×6N , f :=
[f⊤

1 , . . . , f
⊤
N ]⊤, u := [u⊤1 , . . . , u

⊤
N ]⊤, g := [g⊤1 , . . . , g

⊤
N ]⊤,

d := [d⊤1 , . . . , d
⊤
N ]⊤ ∈ R6N .

B. Object

Regarding the object, we denote by xO := [p⊤
O
, η⊤

O
]⊤ ∈ M,

vO := [ṗ⊤
O
, ω⊤

O
]⊤ ∈ R12 the pose and generalized velocity of

its center of mass, with ηO := [φO, θO, ψO]
⊤. We consider the

following second order dynamics, which can be derived based

on the Newton-Euler formulation:

ẋO = JO(ηO)vO, (6a)

MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) + dO(xO, ẋO, t) = fO,
(6b)

where MO : M → R6×6 is the positive definite inertia matrix,

CO : M × R
6 → R

6×6 is the Coriolis matrix, gO : M → R
6

is the gravity vector, dO : M × R6 × R≥0 → R6 a vector

representing modeling uncertainties and external disturbances,

and fO ∈ R6 is the vector of generalized forces acting on

the object’s center of mass. Moreover, JO : T → R6×6 is

the well-known object representation Jacobian and is not well-

defined when θO = ±π
2 , which is referred to as representation

singularity. A way to avoid the aforementioned singularity

is to transform the Euler angles to a unit quaternion for

the orientation. Hence, ηO can be transformed to the unit

quaternion ζO = [ϕO, ǫ
⊤
O
]⊤ ∈ S3 [43], for which, following

Section II-B and (2), one obtains ζ̇O = 1
2E(ζO)ωO and

ωO = 2[E(ζO)]
⊤ζ̇O , Moreover, it can be proved that

‖JO(ηO)‖ =
√

|sin(θO)|+1
1−sin2(θO)

, (7a)

‖JO(ηO)−1‖ =
√
1 + sin(θO) ≤

√
2, (7b)

where JO(·)−1 is the matrix inverse. which constitutes a

singularity-free representation.

C. Coupled Dynamics

In view of Fig. 1, one concludes that the pose of the agents

and the object’s center of mass are related as

pEi(qi) = pO + pEi/O(qi) = pO +REi
(qi)p

Ei
Ei/O

, (8a)

ηEi(qi) = ηO + ηEi/O, (8b)

∀i ∈ N , where p
Ei
Ei/O

and ηEi/O are the constant distance and

orientation offset vectors between {O} and {Ei}. Following

(8), along with the fact that, due to the grasping rigidity, it

holds that ωEi = ωO, ∀i ∈ N , one obtains

vi = JOi(qi)vO, (9)

where JOi : Rni → R6×6 is the object-to-agent Jacobian

matrix [45] for which it can be further proved that

‖JOi(x)‖ ≤
∥∥∥pEiO/Ei

∥∥∥+ 1, ∀x ∈ R
ni , i ∈ N . (10)

The kineto-statics duality along with the grasp rigidity sug-

gest that the force fO acting on the object’s center of mass and

the generalized forces fi, i ∈ N , exerted by the agents at the

grasping points, are related through fO = [G(q)]⊤f , where G :
R

n → R
6N×6, with G(q) := [[JO1

(q1)]
⊤, . . . , [JON (qN )]⊤]⊤,

is the full column-rank grasp matrix. By using the latter along

with (5), (6), (9) and its derivative, we obtain the overall

system coupled dynamics:

M̃(x)v̇O + C̃(x)vO + g̃(x) + d̃(x, t) = [G(q)]⊤u, (11)

where M̃ := MO + G⊤MG, C̃ := CO +G⊤CG + G⊤MĠ,

g̃ := gO + [G(q)]⊤g(q), d̃ := dO +G⊤d, x is the overall state

x := [q⊤, q̇⊤, x⊤
O
, ẋ⊤

O
]⊤ ∈ S × Rn+6 × M, S := S1 × · · · ×

SN , and we have omitted the arguments for notational brevity.

Moreover, the following Lemma, whose proof can be found

in [45], is necessary for the following analysis.

Lemma 1. The matrix M̃(x) is symmetric and positive definite

and the matrix
˙̃
M(x) − 2C̃(x) is skew symmetric.

The positive definiteness of M̃(x) implies mI6 ≤ M̃(x) ≤
m̄I6, ∀x ∈ S × Rn+6 × M, where m and m̄ are positive

unknown constants.

We are now ready to state the problem treated in this paper:

Problem 1. Given a desired bounded object smooth pose

trajectory specified by xd(t) := [pd(t)
⊤, ηd(t)

⊤]⊤, pd(t) ∈
R

3, ηd(t) := [ϕd(t), θd(t), ψd(t)] ∈ T, with bounded first and

second derivatives, and θd(t) ∈ [−θ̄, θ̄] ⊂ (−π
2 ,

π
2 ), ∀t ∈ R≥0,

as well as vO(0) = 06, determine a decentralized control law

u in (11) such that one of the following holds:

1) lim
t→∞

[
[pO(t)− pd(t)]

⊤, [ηO(t)− ηd(t)]
⊤
]⊤

= 03,

2) ‖
[
[pO(t)− pd(t)]

⊤, [ηO(t)− ηd(t)]
⊤
]
‖ ≤ λ exp(−lt) + ρ,

∀t ∈ R≥0, for positive λ, l, ρ.

Part 1 in the aforementioned problem statement corresponds

to the asymptotic stability that will be guaranteed by the

control scheme of Section IV-A, and part 2 is associated

with the predefined transient and steady state performance

that will be guaranteed in Section IV-B. The requirement

θd(t) ∈ [−θ̄, θ̄] ⊂ (−π
2 ,

π
2 ), ∀t ∈ R≥0 is a necessary condition

needed to ensure that tracking of θd will not result in singular

configurations of JO(ηO), which is needed for the control

protocol of Section IV-B. The constant θ̄ ∈ [0, π2 ) can be

taken arbitrarily close to π
2 .

To solve the aforementioned problem, we need the following

assumptions regarding the agent feedback, the bounds of the

uncertainties/disturbances, and the kinematic singularities.

Assumption 1 (Feedback). Each agent i ∈ N has continuous

feedback of its own state qi, q̇i.

Assumption 2 (Object Geometry). Each agent i ∈ N knows

the constant offsets p
Ei
Ei/O

and ηEi/O, ∀i ∈ N .
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Assumption 3 (Kinematic Singularities). The agents operate

away from kinematic singularities, i.e., qi(t) evolves in a

closed subset of Si, ∀i ∈ N .

Assumption 1 is realistic for real manipulation systems,

since on-board sensor can provide accurately the measure-

ments qi, q̇i. The object geometric characteristics in Assump-

tion 2 can be obtained by on-board sensors, whose inaccu-

racies are not modeled in this work. Finally, Assumption 3

states that the qi that achieve xO(t) = xd(t), ∀t ∈ R≥0 are

sufficiently far from singular configurations. Since each agent

has feedback from its state qi, q̇i, it can compute through

the forward and differential kinematics the end-effector pose

pEi(qi), ηEi(qi) and the velocity vi, ∀i ∈ N . Moreover, since

it knows p
Ei
Ei/O

and ηEi/O, it can compute JOi(qi) and xO,

vO by inverting (8) and (9), respectively. Consequently, each

agent can then compute the quaternion signals ζO and ζ̇O.

Note that, due to Assumption 2 and the grasp rigidity, the

object-agents configuration is similar to a single closed-chain

robot. The considered multi-agent setup, however, renders the

problem more challenging, since the agents must calculate

their own control signal in a decentralized manner, without

communicating with each other. Moreover, each agent needs to

compensate its own part of the (possibly uncertain/unknown)

dynamics of the coupled dynamic equation (11), while re-

specting the rigidity kinematic constraints. Regarding Assump-

tion 2, our future directions include its relaxation to uncer-

tain/unknown object offsets for some agents, which would then

not have exact feedback of the object’s pose. In that case, the

team would need to cooperate in a leader-follower fashion for

the compensation/estimation of the state by these agents.

IV. MAIN RESULTS

In this section we present two control schemes for the solu-

tion of Problem 1. The proposed controllers are decentralized,

in the sense that the agents calculate their control signal on

their own, without communicating with each other, as well

as robust, since they do not take into account the dynamic

properties of the agents or the object (mass/inertia moments) or

the uncertainties/external disturbances modeled by the function

d̃(x, t) in (11). The first control scheme is presented in Section

IV-A, and is based on quaternion feedback and adaptation

laws, while the second control scheme is given in Section

IV-B and is inspired by the Prescribed Performance Control

(PPC) Methodology introduced in [44].

A. Adaptive Control with Quaternion Feedback

The proposed controller of this section is based on the

techniques of adaptive control, whose aim is the design of

control systems that are robust to constant or slowly varying

unknown parameters. For more details, we refer the reviewer

to the related literature (e.g., [51] and the references therein).

Firstly, we need the following assumption regarding the

model uncertainties/external disturbances.

Assumption 4 (Uncertainties/Disturbance parameterization).

There exist constant unknown vectors d̄O ∈ RµO , d̄i ∈ Rµ and

known functions δO : M × R6 × R≥0 → R6×µO , δi : R
2ni ×

R≥0 → R6×µ, such that dO(xO, ẋO, t) = δO(xO, ẋO, t)d̄O,

di(qi, q̇i, t) = δi(qi, q̇i, t)d̄i, ∀qi, q̇i ∈ Rni , xO ∈ M, ẋO ∈
R

6, t ∈ R≥0, i ∈ N , where δO(xO, ẋO, t) and δi(qi, q̇i, t) are

continuous in (xO, ẋO) and (qi, q̇i), respectively, and bounded

in t.

The aforementioned assumption is motivated by the use of

Neural Networks for approximating unknown functions in

compact sets [51]. More specifically, any continuous function

f(x) : Rn → Rm can be approximated on a known compact

set X ⊂ Rn by a Neural Network equipped with N Radial Ba-

sis Functions (RBFs) Φ(x) and using unknown ideal constant

connection weights that are stored in a matrix Θ ∈ RN×m as

f(x) = Θ⊤Φ(x) + ε(x); Θ⊤Φ(x) represents the parametric

uncertainty and ε(x) represents the unknown nonparametric

uncertainty, which is bounded as ‖ε(x)‖ ≤ ε̄ in X . In our

case, the functions δO, δi play the role of the known function

Φ(x) and d̄O , d̄i and µ, µO represent the unknown constants Θ
and the number of layers of the Neural Network, respectively.

Nevertheless, in view of Neural Network approximation, As-

sumption 4 implies that the nonparametric uncertainty is zero

and that dO and di are known functions of time. These prop-

erties can be relaxed with non-zero bounded nonparametric

uncertainties and unknown but bounded time-dependent dis-

turbances, i.e. di(qi, q̇i, t) = δi,q(qi, q̇i)d̄i+di,t(t)+εi,q(qi, q̇i)
and dO(xO, ẋO, t) = δO,x(xO, ẋO)d̄O+dO,t(t)+εO,x(xO, ẋO),
where di,t, dO,t, εi,q, εO,x are bounded. In that case, instead

of asymptotic convergence of the pose to the desired one, we

can show convergence of the respective errors to a compact

set around the origin. For more details on Neural Network

approximation and adaptive control with illustrative examples,

we refer the reader to [51, Ch. 12].

The desired Euler angle orientation vector ηd : R≥0 → T

is transformed first to the unit quaternion ζd : R≥0 → S3

[43] and we define the position error ep := pO − pd.

Since unit quaternions do not form a vector space, they

cannot be subtracted to form an orientation error; instead we

should use the properties of the quaternion group algebra. Let

eζ = [eϕ, e
⊤
ǫ ]

⊤ ∈ S3 be the unit quaternion describing the

orientation error. Then, it holds that [43]

eζ = ζd ⊗ ζ+O =

[
ϕd

ǫd

]
⊗
[
ϕO
−ǫO

]
,

which, by using (1), becomes:

eζ =

[
eϕ
eǫ

]
:=

[
ϕOϕd + ǫ⊤

O
ǫd

ϕOǫd − ϕdǫO + S(ǫO)ǫd

]
. (12)

By employing (2) and certain properties of skew-symmetric

matrices [52], the dynamics of ep, eϕ can be shown to be:

ėp =ṗO − ṗd (13a)

ėϕ =1
2e

⊤
ǫ eω (13b)

ėǫ =− 1
2 [eϕI3 + S(eǫ)] eω − S(eǫ)ωd, (13c)

where eω := ωO − ωd is the angular velocity error, with

ωd = 2E(ζd)
⊤ζ̇d, as indicated by (2b). Due to the ambiguity

of unit quaternions, when ζO = ζd, then eζ = [1, 0⊤3 ]
⊤ ∈ S3.

If ζO = −ζd, then eζ = [−1, 0⊤3 ]
⊤ ∈ S3, which, however, rep-

resents the same orientation. Therefore, the control objective is

equivalent to lim
t→∞

[
ep(t)

⊤, |eϕ(t)|, eǫ(t)⊤
]⊤

=
[
0⊤3 , 1, 0

⊤
3

]⊤
.
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The left hand side of (4), after employing (9) and its

derivative, becomes

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) + di(qi, q̇i, t) =

Mi(qi)
(
JOi(qi)v̇O + J̇Oi(qi)vO

)
+ Ci(qi, q̇i)JOi(qi)vO+

gi(qi) + di(qi, q̇i, t).

which, according to Assumption 4 and the fact that the ma-

nipulator dynamics can be linearly parameterized with respect

to dynamic parameters [42], becomes

Mi(qi)JOi(qi)v̇O +
(
Mi(qi)J̇Oi(qi) + Ci(qi, q̇i)JOi(qi)

)
vO

+ gi(qi) + di(qi, q̇i, t) = Yi(qi, q̇i, vO, v̇O)ϑi + δi(qi, q̇i, t)d̄i,

∀i ∈ N , where ϑi ∈ Rℓ, ℓ ∈ N, are vectors of unknown but

constant dynamic parameters of the agents, appearing in the

terms Mi, Ci, gi, and Yi : S × Rni+12 → R6×ℓ are known

regressor matrices, independent of ϑi, i ∈ N . Without loss of

generality, we assume here that ℓ is the same for all agents.

Similarly, the dynamical terms of the left hand side of (6b)

can be written as

MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) + dO(xO, ẋO, t)

= YO(xO, ẋO, vO, v̇O)ϑO + δO(xO, ẋO, t)d̄O,

where ϑO ∈ RℓO , ℓO ∈ N is a vector of unknown but constant

dynamic parameters of the object, appearing in the terms

MO, CO, gO, and YO : M×R18 → R6×ℓO is a known regressor

matrix, independent of ϑO. It is worth noting that the choice

for ℓ and ℓO is not unique. In view of the aforementioned

expressions, the left-hand side of (11) can be written as:

M̃(x)v̇O + C̃(x)vO + g̃(x) + d̃(x, t) = YO(xO, ẋO, vO, v̇O)ϑO

+ δO(xO, ẋO, t)d̄O + [G(q)]⊤
(
Ỹ (q, q̇, vO, v̇O)ϑ+ δ̃(q, q̇, t)d̄

)
,

(14)

where Ỹ (q, q̇, vO, v̇O) := diag{[Yi(qi, q̇i, vO, v̇O)]i∈N } ∈
R

6N×Nl, ϑ := [ϑ⊤1 , . . . , ϑ
⊤
N ]⊤ ∈ R

Nℓ, d̄ := [d̄⊤1 , . . . , d̄
⊤
N ]⊤ ∈

RNµ, and δ̃(q, q̇, t) := diag{[δi(qi, q̇i, t)]i∈N } ∈ R6N×Nµ.

Let us now introduce the states ϑ̂O ∈ RℓO and ϑ̂i ∈ Rℓ

which represent the estimates of ϑO and ϑi, respectively,

by agent i ∈ N , and the corresponding stack vector ϑ̂ :=
[ϑ̂⊤1 , . . . , ϑ̂

⊤
N ]⊤ ∈ RNℓ, for which the associated errors are

eϑO :=ϑO − ϑ̂O ∈ R
ℓO (15a)

eϑ :=
[
e⊤ϑ1

, . . . , e⊤ϑN
]⊤

:= ϑ− ϑ̂ ∈ R
Nℓ. (15b)

In the same vein, we introduce the states d̂O ∈ RµO and

d̂i ∈ Rµ that correspond to the estimates of d̄O and d̄i,
respectively, by agent i ∈ N , and the corresponding stack

vector d̂ := [d̂1, . . . , d̂N ]⊤ ∈ RNµ, for which we also

formulate the associated errors as

edO :=d̄O − d̂O ∈ R
µO (16a)

ed :=
[
e⊤d1

, . . . , e⊤dN
]⊤

:= d̄− d̂ ∈ R
Nµ. (16b)

Next, we design the reference velocity

vf := vd −Kfe =

[
ṗd − kpep
ωd + kζeǫ

]
(17)

where vd := [ṗ⊤d , ω
⊤
d ]⊤, e := [e⊤p ,−e⊤ǫ ]⊤ ∈ R6, and Kf :=

diag{kpI3, kζI3}, with kp, kζ positive control gains. We also

introduce the respective velocity error ev as

evf := vO − vf , (18)

and design the adaptive control law ui in (11), for each agent

i ∈ N , as:

ui = Yi

(
qi, q̇i, vf , v̇f

)
ϑ̂i + δi(qi, q̇i, t)d̂i + JMi(q)

[
− e

YO

(
xO, ẋO, vf , v̇f )ϑ̂O + δO(xO, ẋO, t)d̂O −Kvevf

]
, (19)

where Kv is a diagonal positive definite gain matrix, and JMi :
Rn → R6×6 is the matrix [40]

JMi(q) :=

[
m⋆

i [m
⋆
O
]−1I3 m⋆

i [J
⋆
O
(q)]−1S(pO/Ei(qi))

03×3 J⋆
i [J

⋆
O
(q)]−1

]
(20)

for some positive coefficients m⋆
i ∈ R>0 and positive definite

matrices J⋆
i ∈ R3×3, ∀i ∈ N , satisfying

m⋆
O
=

∑

i∈N

m⋆
i ,

∑

i∈N

pO/Ei(qi)m
⋆
i = 03

J⋆
O
(q) =

∑

i∈N

J⋆
i −

∑

i∈N

m⋆
i [S(pO/Ei(qi))]

2.

In addition, we design the following adaptation laws:

˙̂
θi = −γi

[
Yi

(
qi, q̇i, vf , v̇f

)]⊤
JOi(qi)evf (21a)

˙̂
θO = −γO

[
YO

(
xO, ẋO, vf , v̇f

)]⊤
evf (21b)

˙̂
di = −βi[δi(qi, q̇i, t)]⊤JOi(qi)evf (21c)

˙̂
dO = −βO[δO(xO, ẋO, t)]⊤evf , (21d)

with arbitrary bounded initial conditions, where

βi, βO, γi, γO ∈ R>0 are positive gains, ∀i ∈ N . The

control and adaptation laws can be written in vector form

u = Ỹ (q, q̇, vO, v̇O)ϑ̂+ δ̃(q, q̇, t)d̂+G+
M (q)

[
− e

YO

(
xO, ẋO, vf , v̇f )ϑ̂O + δO(xO, ẋO, t)d̂O −Kvevf

]
(22a)

˙̂
ϑ = −Γ[Ỹ (q, q̇, vf , v̇f )]

⊤G(q)evf (22b)

˙̂
d = −B[δ̃(q, q̇, t)]⊤G(q)evf (22c)

˙̂
θO = −γO

[
YO

(
xO, ẋO, vf , v̇f

)]⊤
evf (22d)

˙̂
dO = −βO[δO(xO, ẋO, t)]⊤evf , (22e)

where G+
M (q) := [J⊤

M1
(q), . . . , J⊤

MN
(q)]⊤ ∈ R6N×6, B :=

diag{[βi]i∈N }, and Γ := diag{[γi]i∈N }. The matrix G+
M (q)

was introduced in [40], where it was proved that it yields a

load distribution that is free of internal forces. The parameters

m⋆
O
,m⋆

i are used to distribute the object’s needed effort (the

term that right multiplies G+
M (q) in (22a)) to the agents.

Remark 1 (Decentralized manner (adaptive controller)).

Notice from (19) and (21) that the overall control protocol

is decentralized in the sense that the agents calculate their

own control signals without communicating with each other.

In particular, the control gains and the desired trajectory

can be transmitted off-line to the agents, which can compute
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the object’s pose and velocity, and hence the signals e,
vf , evf from the inverse kinematics. For the computation of

JMi(q), each agent needs feedback from all qi to compute

S(pO/Ei(qi), ∀i ∈ N . However, by exploiting the rigidity of

the grasps, it holds that pO/Ei(qi) = RO(qi)p
O
O/Ei

. Therefore,

since all agents can compute RO, the computation of JMi(q)
reduces to knowledge of the offsets pOEi/O, which can also be

transmitted off-line to the agents. Moreover, by also transmit-

ting off-line to the agents the initial conditions θ̂O, d̂O , and

via the adaptation laws (22d), (22e), each agent has access

to the adaptation signals θ̂O(t), d̂O(t), ∀t ∈ R≥0. Finally,

the structure of the functions δi ,δO, Yi, YO, as well as the

constants m⋆
i , J⋆

i can be also known by the agents a priori.

The following theorem summarizes the main results of this

subsection.

Theorem 2. Consider N robotic agents rigidly grasping an

object with coupled dynamics described by (11) and unknown

dynamic parameters. Then, under Assumptions 1-4, by apply-

ing the control protocol (19) with the adaptation laws (21),

the object pose converges asymptotically to the desired pose

trajectory. Moreover, all closed loop signals are bounded.

Proof: Consider the nonnegative function

V := 1
2e

⊤
p ep + 2(1− eϕ) +

1
2e

⊤
vf
M̃(x)evf +

1
2e

⊤
ϑΓ

−1eϑ+

+ 1
2γO

e⊤ϑOeϑO + 1
2e

⊤
d B

−1ed +
1

2βO
e⊤dOedO , (23)

By taking the derivative of V and using (18), (17), (14), and

Lemma 1, we obtain

V̇ = −e⊤Kfe+ e⊤vf

[
[G(q)]⊤

(
u− Ỹ (q, q̇, vf , v̇f )ϑ−

δ̃(q, q̇, t)d̄
)
+ e− YO

(
xO, ẋO, v̇f , v̇f

)
ϑO − δO(xO, ẋO, t)d̄O

− e⊤ϑ Γ
−1 ˙̂ϑ− 1

γO
e⊤ϑO

˙̂
ϑO − e⊤d B

−1 ˙̂
d− 1

βO
e⊤dO

˙̂
dO,

and after substituting the adaptive control and adaptation laws

(22) and using the fact that [G(q)]⊤G+
M = I6,

V̇ = −e⊤Kfe− e⊤vfKvevf−
e⊤vf

[
[G(q)]⊤

(
Ỹ (q, q̇, vf , v̇f )eϑ + δ̃(q, q̇, t)ed

)
+

YO(xO, ẋO, vf , v̇f )eϑO + δO(xO, ẋO, t)edO

]
+

e⊤ϑ [Ỹ (q, q̇, vf , v̇f )]
⊤G(q)evf + e⊤d [δ̃(q, q̇, t)]

⊤evf+

e⊤ϑO [YO(xO, ẋO, vf , v̇f )]
⊤evf + e⊤dO [δO(xO, ẋO, t)]

⊤evf ,

= −kp‖ep‖2 − kζ‖eǫ‖2 − e⊤vfKvevf , (24)

which is non-positive. Note, however, that V̇ is not negative

definite, and we need to invoke invariance-like properties

to conclude the asymptotic stability of ep, eǫ, evf . Since the

closed-loop system is non-autonomous (this can be verified

by inspecting (13), the derivative of (18) and (22)), LaSalle’s

invariance principle is not applicable, and we thus employ

Barbalat’s lemma [51, Lemma 8.1]. From (24) we conclude

the boundedness of V and of χ, which implies the bounded-

ness of the dynamic terms M̃(x), C̃(x), g̃(x). Moreover, by

invoking the boundedness of pd(t), vd(t), ωd(t), v̇d(t), ω̇d(t),
we conclude the boundedness of vf , vO, vi, ϑ̂O, ϑ̂, d̂, d̂O. By

differentiating (13), we also conclude the boundedness of v̇f
and therefore, the boundedness of the control and adaptation

laws (19) and (21). Thus, we can conclude the boundedness

of the second derivative V̈ and by invoking Corollary 8.1 of

[51], the uniform continuity of V̇ . Therefore, according to

Barbalat’s lemma, we deduce that limt→∞ V̇ (t) = 0 and,

consequently, that limt→∞ ep(t) = 03, limt→∞ evf (t) =
06, and limt→∞ ‖eǫ(t)‖2 = 0, which, given that eζ is a

unit quaternion, leads to the configuration (ep, evf , eϕ, eǫ) =
(03, 06,±1, 03).

Remark 2 (Unwinding). Note that the two configurations

where eϕ = 1 and eϕ = −1 represent the same orientation.

The closed loop dynamics of eϕ, as given in (13b), can be

written, in view of (17), as ėϕ = kζ
1
2‖eǫ‖2 + 1

2 [0
⊤
3 , e

⊤
ǫ ]evf .

Since the first term is always positive, we conclude that

the equilibrium point (ep, evf , eϕ, eǫ) = (03, 06,−1, 03) is

unstable. Therefore, there might be trajectories close to the

configuration eϕ = −1 that will move away and approach

eϕ = 1, i.e., a full rotation will be performed to reach the

desired orientation (of course, if the system starts at the

equilibrium (ep, evf , eϕ, eǫ) = (03, 06,−1, 03), it will stay

there, which also corresponds to the desired orientation behav-

ior). This is the so-called unwinding phenomenon [53]. Note,

however, that the desired equilibrium point (ep, evf , eϕ, eǫ) =
(03, 06, 1, 03) is eventually attractive, meaning that for each

δε > 0, there exist finite a time instant T ≥ 0 such that

1− eϕ(t) < δε, ∀t > T ≥ 0. A similar behavior is observed if

we stabilize the point eϕ = −1 instead of eϕ = 1, by setting

e := [e⊤p , e
⊤
ǫ ]

⊤ in (17) and considering the term 2(1 + eϕ)
instead of 2(1− eϕ) in the function (23).

In order to avoid the unwinding phenomenon, instead of the

error e = [e⊤p ,−e⊤ǫ ]⊤, we can choose e = [e⊤p ,−eϕe⊤ǫ ]⊤ (see

our preliminary result [45]). Then by replacing the term 1−eϕ
with 1−e2ϕ in (23) and using (22), we conclude by proceeding

with a similar analysis that (ep, ‖eǫ‖eϕ, evf ) → (03, 0, 06),
which implies that the system is asymptotically driven to

either the configuration (ep, evf , eϕ, eǫ) = (03, 06,±1, 03),
which is the desired one, or a configuration (ep, evf , eϕ, eǫ) =
(03, 06, 0, ẽǫ), where ẽǫ ∈ S2 is a unit vector. The latter

represents a set of invariant undesired equilibrium points. The

closed loop dynamics are ėϕ = 1
2eϕ‖eǫ‖2 + 1

2 [0
⊤
3 , e

⊤
ǫ ]ev,

and ˙‖eǫ‖2 = −e2ϕ‖eǫ‖2 − eϕ[0
⊤
3 , e

⊤
ǫ ]ev. We can conclude

from the term [0⊤3 , e
⊤
ǫ ]ev that there exist trajectories that can

bring the system close to the undesired equilibrium, rendering

thus the point (ep, evf , eϕ, eǫ) = (03, 06,±1, 03) only locally

asymptotically stable. It has been proved that eϕ = ±1 cannot

be globally stabilized with a purely continuous controller

[53]. Discontinuous control laws have also been proposed

(e.g., [54]), whose combination with adaptation techniques

constitutes part of our future research directions. Another

possible direction is tracking on SO(3) (see e.g., [55], [56]).

Remark 3 (Robustness (adaptive controller)). Notice also

that the control protocol compensates the uncertain dynamic

parameters and external disturbances through the adaptation

laws (21), although the errors (15), (16) do not converge to

zero, but remain bounded. Finally, the control gains kp, kζ ,Kv
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can be tuned appropriately so that the proposed control inputs

do not reach motor saturations in real scenarios.

B. Prescribed Performance Control

In this section, we adopt the concepts and techniques of

prescribed performance control, recently proposed in [44],

in order to achieve predefined transient and steady state

response for the derived error, as well as ensure that θO(t) ∈
(−π

2 ,
π
2 ), ∀t ∈ R≥0. As stated in Section II-C, prescribed

performance characterizes the behavior where a signal evolves

strictly within a predefined region that is bounded by abso-

lutely decaying functions of time, called performance func-

tions. This signal is represented by the object’s pose error

es :=
[
esx , esy , esz , esφ , esθ , esψ

]⊤
:= xO − xd (25)

Firstly, we relax Assumption 4:

Assumption 5 (Uncertainties/Disturbance bound). The

functions dO(xO, ẋO, t) and dO(qi, q̇i, t) are continuous in

(xO, ẋO) and (qi, q̇i), respectively, and bounded in t by un-

known positive constants d̄O and d̄i, respectively, ∀i ∈ N .

The mathematical expressions of prescribed performance

are given by the following inequalities:

− ρsk(t) < esk(t) < ρsk(t), ∀k ∈ K, (26)

where K := {x, y, z, φ, θ, ψ} and ρk : R≥0 → R>0, with

ρsk(t) := (ρsk,0 − ρsk,∞) exp(−lskt)+ ρsk,∞, ∀k ∈ K, (27)

are designer-specified, smooth, bounded and decreasing pos-

itive functions of time with lsk , ρsk,∞, k ∈ K, positive pa-

rameters incorporating the desired transient and steady state

performance respectively. The terms ρsk,∞ can be set arbitrar-

ily small, achieving thus practical convergence of the errors to

zero. Next, we propose a state feedback control protocol that

does not incorporate any information on the agents’ or the

object’s dynamics or the external disturbances and guarantees

(26) for all t ∈ R≥0. Given the errors (25):

Step I-a. Select the functions ρsk as in (27) with

(i) ρsθ,0 = ρsθ (0) = θ∗, ρsk,0 = ρsk(0) > |esk(0)|, ∀k ∈
K\{θ},

(ii) lsk ∈ R>0, ∀k ∈ K,

(iii) ρsk,∞ ∈ (0, ρsk,0), ∀k ∈ K,

where θ∗ is a positive constant satisfying θ∗ + θ̄ < π
2 and θ̄

is the desired trajectory bound (see statement of Problem 1).

Step I-b. Introduce the normalized errors

ξs :=
[
ξsx , . . . , ξsψ

]⊤
:= ρ−1

s es, (28)

where ρs := diag{[ρsk ]k∈K} ∈ R
6×6, as well as the trans-

formed state functions εs, and signals rs : (−1, 1)6 → R6×6,

with

εs :=
[
εsx , . . . , εsψ

]⊤
:=

[
ln
(

1+ξsx
1−ξsx

)
, . . . , ln

(
1+ξsψ
1−ξsψ

)]⊤

(29)

rs(ξs) := diag{[rsk(ξsk)]k∈K} := diag
{[∂εvk
∂ξsk

]
k∈K

}

= diag
{[ 2

1− ξ2sk

]
k∈K

}
, (30)

and design the reference velocity vector:

vr := −gsJO
(
ηd + ρsηξsη

)−1

ρ−1
s rs(ξs)εs, (31)

where ρsη := diag{ρsφ , ρsθ , ρsψ}, ξsη := [ξsφ , ξsη , ξsφ ]
⊤, and

we have further used the relation ξs = ρ−1
s (xO − xd) from

(25) and (28).

Step II-a. Define the velocity error vector

ev :=
[
evx , . . . , evψ

]⊤
:= vO − vr, (32)

and select the corresponding positive performance functions

ρvk : R≥0 → R>0 with ρvk(t) := (ρvk,0−ρvk,∞) exp(−lvkt)+
ρvk,∞, such that ρvk,0 = ‖ev(0)‖ + α, lvk > 0 and ρvk,∞ ∈
(0, ρvk,0), ∀k ∈ K, where α is an arbitrary positive constant.

Step II-b. Define the normalized velocity error

ξv :=
[
ξvx , . . . , ξvψ

]⊤
:= ρ−1

v ev, (33)

where ρv := diag{[ρvk ]k∈K}, as well as the transformed states

εv and signals rv : (−1, 1)6 → R
6×6, with

εv :=
[
εvx , . . . , εvψ

]⊤
:=

[
ln
(

1+ξvx
1−ξvx

)
, . . . , ln

(
1+ξvψ
1−ξvψ

)]⊤

rv(ξv) := diag{[rvk(ξvk)]k∈K} := diag
{[∂εvk
∂ξvk

]
k∈K

}

= diag
{[ 2

1− ξ2vk

]
k∈K

}
, (34)

and design the decentralized feedback control protocol for

each agent i ∈ N as

ui := −gvJMi(q)ρ
−1
v rv(ξv)εv, (35)

where gv is a positive constant gain and JMi as defined in

(20). The control laws (35) can be written in vector form u :=
[u⊤1 , . . . , u

⊤
N ]⊤, with:

u = −gvG+
M (q)ρ−1

v rv(ξv)εv. (36)

Remark 4 (Decentralized manner and robustness (PPC)).

Similarly to (22), notice from (35) that each agent i ∈ N can

calculate its own control signal, without communicating with

the rest of the team, rendering thus the overall control scheme

decentralized. The terms lk, ρk,0, ρk,∞, α, lvk , and ρvk,∞, k ∈
K needed for the calculation of the performance functions can

be transmitted off-line to the agents. Moreover, the Prescribed

Performance Control protocol is also robust to uncertainties of

model uncertainties and external disturbances. In particular,

note that the control laws do not even require the structure of

the terms M̃, C̃, g̃, d̃, but only the positive definiteness of M̃ ,

as will be observed in the subsequent proof of Theorem 3. It is

worth noting that, in the case that one or more agent failed to

participate in the task, then the remaining agents would need

to appropriately update their control protocols (e.g., update

JMi ) to compensate for the failure.

Remark 5 (Internal forces). Internal force regulation can be

also guaranteed by including in the control laws (22a) and

(36) a term of the form (I6N − G+
M (q)G(q)]⊤)f̂int,d, where

f̂int,d ∈ R6N represents desired internal forces (e.g. to avoid

grasp sliding) that can be transmitted off-line to the agents.
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The main results of this subsection are summarized in the

following theorem.

Theorem 3. Consider N agents rigidly grasping an object

with unknown coupled dynamics (11). Then, under Assump-

tions 1-3, 5, the decentralized control protocol (28)-(35)

guarantees that −ρsk(t) < esk(t) < ρsk(t), ∀k ∈ K, t ∈ R≥0

from all initial conditions satisfying |θ(0)− θd(0)| < θ∗ (from

Step I-a (i)), with all closed loop signals being bounded.

Proof: The proof consists of two main parts. Firstly, we

prove that there exists a maximal solution (ξs(t), ξv(t)) ∈
(−1, 1)12 for t ∈ [0, τmax), where τmax > 0. Secondly, we

prove that (ξs(t), ξv(t)) is contained in a compact subset of

(−1, 1)12 and consequently, that τmax = ∞.

Part A: Consider the combined state σ := [q, ξs, ξv] ∈ S×R12.

Differentiation of σ yields, in view of (9), (28) and (33)

σ̇ =




J̃(q)G(q)vO
ρ−1
s (ẋO − ẋd − ρ̇sξs)
ρ−1
v (v̇O − v̇r − ρ̇vξv),


 , (37)

where J̃(q) := diag{[Ji(qi)⊤(Ji(qi)Ji(qi)⊤)−1]i∈N } ∈
R6N×n is well defined due to Assumption 3. Then,

by employing (6), (25), (28), and (31)-(36) as well as

[G(q)]⊤G+
M = I6, we can express the right-hand side of

(37) as a function of σ and t, i.e., σ̇ = fcl(σ, t) :=
[fcl,q(σ, t)

⊤, fcl,s(σ, t)
⊤, fcl,v(σ, t)

⊤]⊤. The analytic expres-

sions for fcl,q(σ, t), fcl,s(σ, t), fcl,v(σ, t) can be found in Ap-

pendix A. Consider now the open and nonempty set Ω := S×
(−1, 1)12. The choice of the parameters ρsk,0 and ρvk,0, k ∈ K
in Step I-a and Step II-a, respectively, along with the fact

that the initial conditions satisfy |θO(0) − θd(0)| < θ∗ imply

that |esk(0)| < ρsk(0), |evk(0)| < ρvk(0), ∀k ∈ K and hence

[ξs(0)
⊤, ξv(0)

⊤]⊤ ∈ (−1, 1)12. Moreover, it can be verified

that fcl : Ω × R≥0 → Rn+12 is locally Lipschitz in σ over

the set Ω and continuous and locally integrable in t for each

fixed σ ∈ Ω. Therefore, the hypotheses of Theorem 1 stated in

Subsection II-D hold and the existence of a maximal solution

σ : [0, τmax) → Ω, for τmax > 0, is ensured. We thus conclude

ξsk(t), ξvk(t) ∈ (−1, 1) (38)

∀k ∈ K, t ∈ [0, τmax), which also implies that ‖ξs(t)‖ ≤
√
6,

and ‖ξv(t)‖ ≤
√
6, ∀t ∈ [0, τmax). In the following, we show

the boundedness of all closed loop signals and τmax = ∞.

Part B: Note first from (38), that |θO(t) − θd(t)| < ρθ(t) ≤
ρθ(0) = θ∗, which, since θd(t) ∈ [−θ̄, θ̄], ∀t ∈ R≥0, implies

that |θO(t)| ≤ θ̃ := θ̄ + θ∗ < π
2 , ∀t ∈ [0, τmax). Therefore, by

employing (7), one obtains that, ∀t ∈ [0, τmax),

‖JO(ηO(t))‖ ≤ J̄O :=

√
| sin(θ̃)|+ 1

1− sin2(θ̃)
<∞. (39)

Consider now the positive definite function Vs =
1
2‖εs‖2. Dif-

ferentiating Vs along the solutions of the closed loop system

yields V̇s = ε⊤s rs(ξs)ρ
−1
s ξ̇s, which, in view of (37), (33), (31)

and the fact that ẋO = JO(ηO)vO = JO(ηO)(vr+ev), becomes

V̇s = −gs‖ρ
−1

s
rs(ξs)εs‖

2 − ε
⊤

s
rs(ξs)ρ

−1

s

(

ẋd + ρ̇sξs − JO(ηO)ev
)

≤ gs‖ρ
−1

s
rs(ξs)εs‖

2 + ‖ρ−1

s
rs(ξs)εs‖

(

‖ẋd‖+ ‖JO(ηO)ρvξv‖+

‖ρ̇sξs‖
)

. (40)

In view of (39), (38), and the structure of ρsk , ρvk , k ∈ K, as
well as the fact that vO(0) = 0 and the boundedness of ẋd,
the last inequality becomes

V̇s ≤− gs‖ρ
−1

s
rs(ξs)εs‖

2 + ‖ρ−1

s
rs(ξs)εs‖B̄s, (41)

∀t ∈ [0, τmax), where B̄s is a positive constant independent of

τmax. Therefore, V̇s is negative when ‖ρ−1
s rs(ξs)εs‖ > B̄s

gs
,

which, by employing (30), the decreasing property of ρsk , k ∈
K as well as (38), is satisfied when ‖εs‖ > maxk∈K{ρsk,0}B̄s

2gs
.

Hence, we conclude that

‖εs(t)‖ ≤ ε̄s := max

{
‖εs(0)‖,

max
k∈K

{ρsk,0}B̄s

2gs

}
, (42)

∀t ∈ [0, τmax). Furthermore, since |εsk | ≤ ‖εs‖, ∀k ∈ K,
taking the inverse logarithm function from (29), we obtain

−1 <
exp(−ε̄s)− 1

exp(−ε̄s) + 1
=: −ξ̄s ≤ ξsk(t) ≤ ξ̄s :=

exp(ε̄s)− 1

exp(ε̄s) + 1
< 1,

(43)

∀t ∈ [0, τmax). Hence, recalling (30) and (31), we obtain the

boundedness of vr(t), ∀t ∈ [0, τmax), and in view of vo =
vr + ev, (32), (38), (9) and (10), the boundedness of vo(t)
and vi(t), ∀t ∈ [0, τmax). From (43), (6a), and (25) we also

conclude the boundedness of xO(t), ẋO(t), ∀t ∈ [0, τmax).
The coupled kinematics (8) and Assumption 3 imply also the

boundedness of pEi(t), qi(t), and q̇i(t), ∀i ∈ N , [0, τmax). In a

similar vein, by differentiating the reference velocity (31) and

using (29), (30), and (42), we also conclude the boundedness

of v̇r(t), ∀t ∈ [0, τmax).
Applying the aforementioned line of proof, we consider the

positive definite function Vv = 1
2‖εv‖2. By differentiating Vv

we obtain V̇v = ε⊤v rv(ξv)ρ
−1
v ξ̇v , which, in view of (37), (32),

(11), becomes

V̇v = −gvε⊤v rv(ξv)ρ−1
v M̃(x)ρ−1

v rv(ξv)εv

+ ε⊤v rv(ξv)ρ
−1
v

(
− ρ̇vξv − M̃(x)

[
C̃(x)[ρvξv+

vr] + g̃(x) + d̃(x, t)
]
− v̇r

)
. (44)

Invoking Assumption 5 and the boundedness of qi(t), q̇i(t),
xO(t), ẋO(t), ∀t ∈ [0, τmax), we conclude the boundedness

of dO(xO(t), ẋO(t), t) and di(qi(t), q̇i(t), t), ∀t ∈ [0, τmax).
Hence, from (10) and (11), we also obtain the boundedness

of d̃(x(t)). In addition, the continuity of M̃(x), C̃(x), g̃(x)
implies their boundedness ∀t ∈ [0, τmax).

Thus, by combining the aforementioned discussion with the

boundedness of v̇r, the positive definitiveness of M̃(x), and
(38), we obtain from (44)

V̇v ≤ −gvm‖ρ−1

v
rv(ξv)εv‖

2 + ‖ρ−1

v
rv(ξv)εv‖B̄v , (45)

∀t ∈ [0, τmax), where B̄v is a positive and finite constant,

independent of τmax.
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Fig. 2: Simulation results for the control scheme of Section

IV-A; (a): The position errors ep(t); (b): The quaternion errors

eϕ(t), ‖eε(t)‖; (c) The velocity errors evf (t), ∀t ∈ [0, 40]. A

zoomed version of the steady state response has been included

in all plots.

By proceeding similarly as with V̇s, we conclude that

‖εv(t)‖ ≤ ε̄v := max

{
‖εv(0)‖,

max
k∈K

{ρvk,0}B̄v

2gvm

}
, (46)

∀t ∈ [0, τmax), from which we obtain

−1 <
exp(−ε̄v)− 1

exp(−ε̄v) + 1
=: −ξ̄v ≤ ξvk(t) ≤ ξ̄v :=

exp(ε̄v)− 1

exp(ε̄v) + 1
< 1,

(47)

∀t ∈ [0, τmax). What remains to be shown is that τmax = ∞.

We can conclude from the aforementioned analysis, Assump-

tion 3, and (43), (47) that the solution σ(t) remains in a

compact subset Ω′ of Ω, ∀t ∈ [0, τmax), namely σ(t) ∈ Ω′,

∀t ∈ [0, τmax). Hence, assuming τmax <∞ and since Ω′ ⊂ Ω,

Proposition 1 in Subsection II-D dictates the existence of a

time instant t′ ∈ [0, τmax) such that σ(t′) /∈ Ω′, which is a

contradiction. Therefore, τmax = ∞. Thus, all closed loop sig-

nals remain bounded and moreover σ(t) ∈ Ω′ ⊂ Ω, ∀t ∈ R≥0.

Finally, by multiplying (43) by ρk(t), k ∈ K, we obtain

− ρsk(t) < −ξ̄sρsk(t) ≤ esk(t) ≤ ξ̄sρsk(t) < ρsk(t), (48)

∀t ∈ R≥0, which leads to the conclusion of the proof.
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Fig. 3: The adaptation error norms ‖eϑi(t)‖, i ∈ N , ‖eϑO(t)‖
(a), ‖edi(t)‖, i ∈ N , ‖edO(t)‖ (b), of the control scheme of

Section IV-A ∀t ∈ [0, 40].

Remark 6 (Prescribed Performance). From the aforemen-

tioned proof it can be deduced that the Prescribed Perfor-

mance Control scheme achieves its goal without resorting

to the need of rendering the ultimate bounds ε̄s, ε̄v of the

modulated pose and velocity errors εs(t), εv(t) arbitrarily

small by adopting extreme values of the control gains gs and

gv (see (42) and (46)). More specifically, notice that (43) and

(47) hold no matter how large the finite bounds ε̄s, ε̄v are.

In the same spirit, large uncertainties involved in the coupled

model (11) can be compensated, as they affect only the size

of εv through B̄v , but leave unaltered the achieved stability

properties. Hence, the actual performance given in (48), which

is solely determined by the designed-specified performance

functions ρsk(t), ρvk(t), k ∈ K, becomes isolated against

model uncertainties, thus extending greatly the robustness of

the proposed control scheme.

Remark 7 (Control Input Bounds). The aforementioned

analysis of the Prescribed Performance Control methodology

reveals the derivation of bounds for the velocity vi and control

input ui of each agent. In contrast to our previous work [46],

we derive in Appendix A explicit bounds v̄i and ūi for vi
and ui (see (55), (56)), respectively, which depend on the

control gains, the bounds of the dynamic terms, the desired

trajectory, and the performance functions. Therefore, given

desired bounds for the agents’ velocity v̄i,b and input ūi,b
(derived from bounds on the joint velocities and torques q̇i, τi,
respectively) and that the upper bounds of the dynamic terms

are known, we can tune appropriately the control gain gs, gv
as well as the parameters ρsk,0, ρvk,0, ρsk,∞, ρvk,∞, lsk , lvk in

order to achieve v̄i ≤ v̄i,b, ūi ≤ ūi,b, ∀i ∈ N . It is also worth

noting that the selection of the control gains gs, gv affects

the evolution of the errors es, ev inside the corresponding

performance envelopes.
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Fig. 4: The agents’ joint torques τi(t), i ∈ N , (in (a)-

(d), respectively) of the control scheme of Section IV-A

∀t ∈ [0, 40], and the motor saturation (with black), which has

not been plotted in (a), (b), (d) for better visualization.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we provide simulation and experimental re-

sults for the two developed control schemes. More specifically,

Section V-A presents computer simulation results and Section

V-B presents experimental results for both control algorithms.

A. Simulation Results

The tested scenario consists of four UR5
robotic manipulators rigidly grasping a rectangular

object. The object’s initial pose is xO(0) =
[−0.225,−0.612, 0161,−π, π3 , 0]⊤ ([m], [rad]) with respect

to a chosen inertial frame and the desired trajectory

is set as pd(t) = [−0.225 + 0.1 sin(0.5t),−0.612 +
0.2 cos(0.5t), 0.25 + 0.05 sin(0.5t)]⊤ [m], ηd(t) =
[−π+0.25 cos(0.5t), π3 +Aθ sin(0.25t), 0.25 cos(0.5t)]

⊤ rad,

where Aθ takes different values for the two control

schemes. In particular, we set Aθ = π
6 for the adaptive

quaternion-feedback control scheme, meaning that the

desired pitch angle reaches the configuration of π
2 .

This would be singular for the Prescribed Performance

Control scheme, for which we set Aθ = π
9 . In view of

Assumption 4, we set di = (‖qi‖ sin(ωdit+ φdi) + q̇i)d̄i and

dO = (‖ẋO‖ sin(ωdO t + φdO) + vO)d̄O , where the constants

ωdi , φdi , ωdO , ωdO are randomly chosen in the interval (0, 1),
∀i ∈ N . Regarding the force distribution matrix (20), we set

m⋆
i = 1, ∀i ∈ N , and J⋆

1 = 0.6I3, J⋆
2 = 0.4I3, J⋆

3 = 0.75I3,

J⋆
4 = 0.25I3 to demonstrate a potential difference in the

agents’ power capabilities. In addition, we set an artificial

saturation limit for the joint motors as τ̄ = 150 Nm.

For the adaptive quaternion-feedback control scheme of

Section IV-A, we set the control gains appearing in (19)

and (21) as kp = diag{[5, 5, 2]}, kζ = 3I3, Kv = 400I6,

γi = γO = βi = βO = 1, ∀i ∈ N . The simulation results

are depicted in Figs. 2-4 for t ∈ [0, 40] seconds. More

specifically, Fig. 2 shows the evolution of the pose and

velocity errors ep(t), eζ(t), evf (t), Fig. 3 depicts the norms

of the adaptation errors eϑi(t), eϑO (t), edi(t), edO(t), and

Fig. 4 shows the resulting joint torques τi(t), ∀i ∈ {1, . . . , 4}.

Note that ep(t), eζ(t) and evf (t) converge to the desired

values and the adaptation errors are bounded, as predicted

by the theoretical analysis. For the Prescribed Performance

Control scheme of Section IV-B, we set the performance

functions as ρsk(t) = (|esk(0)| + 0.09) exp(−0.5t) + 0.01,

ρvk(t) = (|evk(0)| + 0.95) exp(−0.5t) + 0.05, ∀k ∈ K, and

the control gains of (31), (35) as gs = 0.005, gv = 10,

respectively, by following Appendix A and considering

known dynamic bounds. The simulation results are depicted

in Figs. 5-7, for t ∈ [0, 40] seconds. In particular, Fig. 5

depicts the evolution of the pose errors es(t) (in blue), along

with the respective performance functions ρs(t) (in red), Fig.

6 depicts the evolution of the velocity errors ev(t), along

with the respective performance functions ρv(t), and Fig. 7

shows the resulting joint torques τi(t), ∀i ∈ {1, . . . , 4}.

One can conclude from the aforementioned figures that the

simulation results verify the theoretical findings, since the

errors es(t), ev(t) stay confined in the performance function

funnels. Moreover, the joint torques in both control schemes

respect the saturation values we set. For comparison purposes,

we also simulate the same system by using the Prescribed

Performance Control methodology of [46], without taking

into account any input constraints, since the input constraint

analysis of Appendix A is not performed in [46]. In order

to achieve good performance in terms of overshoot, rise, and

settling time, we set the control gains as gs = 1, gv = 200.

The resulting pose errors are depicted in Fig. 5 for t ∈ [0, 40]
seconds (with green) along with the performance functions

(with red), and the resulting torques are depicted in Fig. 8 for

t ∈ [0, 0.001] seconds. This small time interval is sufficient to

observe the high-value initial peaks of the torque inputs that

do not satisfy the desired constraint of τ̄ = 150 Nm, which

can be attributed to the lack of gain calibration. Nevertheless,

note also the better performance of the pose errors, in terms of

overshoot, rise and settling time, as pictured in Fig. 5. Finally,

note that any Prescribed Performance Control methodology

would fail to solve Problem 1 with θ(0) = π
2 or θd(t) =

π
2 for

some t ∈ R≥0, in contrast to the adaptive quaternion-feedback

control scheme of Section IV-A. The torque illustration for the
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Fig. 5: Simulation results for the controller of Section IV-B, and of [46]; Top: The position errors esx(t), esy (t), esz(t) (with

blue and green, respectively) along with the respective performance functions (with red); Bottom: The orientation errors esφ(t),
esθ (t), esψ (t) (with blue and green, respectively) along with the respective performance functions (with red), ∀t ∈ [0, 40].
Zoomed versions of the transient and steady state response have been included for all plots.
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Fig. 6: The velocity errors ev(t) along with the respective

performance functions (with red) for the controller of Section

IV-B, ∀t ∈ [0, 40].

remaining time as well as the velocity error convergence are

omitted due to space constraints. The simulations were carried

out in the MATLAB R2017a environment on a i7-5600 laptop

computer at 2.6Hz, with 8gB of RAM.

B. Experimental Results

The tested scenario for the experimental setup con-

sists of two WidowX Robot Arms rigidly grasping

a wooden cuboid object of initial pose xO(0) =
[0.3, 0, 0.15, 0, 0, 0]⊤ ([m], [rad]), which has to track a pla-

nar time trajectory pd(t) = [0.3 + 0.05 sin(2πt35 ), 0.15 −
0.05 cos(2πt35 )]⊤ [m], ηd(t) = π

20 sin(
5πt
35 ) [rad]. For that

purpose, we employ the three rotational -with respect to the

y axis - joints of the arms. The lower joint consists of a

MX-64 Dynamixel Actuator, whereas each of the two upper

joints consists of a MX-28 Dynamixel Actuator from the MX

Series. Both actuators provide feedback of the joint angle

and rate qi, q̇i, ∀i ∈ {1, 2}. The micro-controller used for

the actuators of each arm is the ArbotiX-M Robocontroller,

which is serially connected to an i-7 desktop computer with 4
cores and 16GB RAM. All the computations for the real-time

experiments are performed at a frequency of 120 [Hz]. Finally,

we consider that the MX-64 motor can exert a maximum

torque of 3 [Nm], and the MX-28 motors can exert a maximum

torque of 1.25 [Nm], values that are slightly more conservative

than the actual limits. The load distribution coefficients are

set as m⋆
1 = m⋆

2 = 1, and J⋆
1 = 0.75I3, J⋆

2 = 0.25I3.

For the adaptive quaternion-feedback control scheme, we set

δO(xO, ẋO, t) = 06×µO , δi(qi, q̇i, t) = 06×µ, ∀i ∈ N ,

which essentially means that we do not model any external

disturbances. We also set the control gains appearing in (19)

and (21) as kp = 50, kζ = 80, Kv = diag{3.5, 0.5, 0.5}.

The experimental results are depicted in Fig. 9-11 for t ∈
[0, 70] seconds. More specifically, Fig. 9 pictures the pose

and velocity errors ep(t), eζ(t), evf (t), Fig. 10 depicts the

norms of the adaptation errors eϑi(t), eϑO(t), and Fig. 11

shows the joint torques τ1(t), τ2(t) of the agents. Although

external disturbances and modeling uncertainties are not taken

into account in the system model, they are indeed present

during the experiment run time and one can observe that the

errors converge to the desired values and the adaptation errors

remain bounded, verifying the theoretical findings. For the

Prescribed Performance Control scheme, we set the perfor-

mance functions as ρsx(t) = ρsz(t) = 0.03 exp(−0.2t) +
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Fig. 7: The agents’ joint torques τi(t), i ∈ N , (in (a)-

(d), respectively) of the control scheme of Section IV-B

∀t ∈ [0, 40].
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Fig. 8: The agents’ joint torques τi(t), i ∈ N , (in (a)-(d),

respectively) of the control scheme of [46] ∀t ∈ [0, 0.001].

0.02 [m], ρsθ (t) = 0.2 exp(−0.2t) + 0.2 [rad], ρvx(t) =
5 exp(−0.2t) + 5 [m/s], ρvz (t) = 5 exp(−0.2t) + 10 [m/s],

and ρvθ (t) = 4 exp(−0.2t) + 3 [m/s], and the control gains

of (31) and (35) as gs = 0.05 and gv = 10, respectively, by

following Appendix A. The experimental results are depicted

in Fig. 12-13 for t ∈ [0, 70] seconds. In particular, Fig. 12

shows the pose and velocity errors es(t), ev(t) along with

the respective performance functions, and Fig. 13 depicts the

joint torques τ1(t), τ2(t) of the agents. We can conclude that

the experimental results verify the theoretical analysis, since

the errors evolve strictly within the prespecified performance

bounds. Note also that in both control schemes the joint

torques respect the saturation limits. A video illustrating the

results can be found on https://youtu.be/jJWeI5ZvQPY.

C. Discussion

In view of the aforementioned results, we mention some

worth-noting differences between the two control schemes.

Firstly, note that the PPC methodology allows for exponential

convergence of the errors to the set defined by the values

ρsk,∞, ρvk,∞, achieving predefined transient and steady-state

performance, without the need to resort to tuning of the

control gains. The adaptive quaternion-feedback methodology,

however, can only guarantee that the errors converge to zero

as t → ∞. This is verified by the simulation results, where

the error trajectories ep(t), eζ(t) and ev(t) show an oscillatory

behavior. Improvement of such performance (in terms of

overshoot, rise, and settling time) would require appropriate

gain tuning. Secondly, note that, as shown in the simulations

section, the quaternion-feedback methodology allows for tra-

jectories where the pitch angle of the object (θO) can be

±90 degrees, in contrast to the PPC methodology, where

that configuration is ill-posed, since the matrix JO(ηO) is not

defined. Finally, the adaptive quaternion-feedback methodol-

ogy can be considered less robust to modeling uncertainties

in real-time scenarios, since it accounts only for parametric

uncertaintes (the unknown terms θi, θO, di, dO), assuming a

known structure of the dynamic terms. The PPC methodology,

however, does not require any information of the structure

or the parameters of the dynamic model (note that the only

requirements are the positive definiteness of the coupled inertia

matrix, the locally Lipschitz and continuity properties of the

dynamic terms and the boundedness - with respect to time - of

the disturbances di, dO). In that sense, one would expect the

PPC methodology to perform better in real-time experiments,

where unmodeled dynamics are involved. The fact, however,

that PPC is a control scheme that does not contain any

information of the model structure makes it more difficult

to tune (in terms of gain tuning) in order to achieve robot

velocities and torques that respect specific bounds, especially

when the bounds of the dynamic terms are unknown. This has

been noticed during both simulations and experiments.

VI. CONCLUSION AND FUTURE WORK

We presented two novel decentralized control protocols for

the cooperative manipulation of a single object by N robotics

agents. Firstly, we developed a quaternion-based approach

that avoids representation singularities with adaptation laws

to compensate for dynamic uncertainties. Secondly, we devel-

oped a robust control law that guarantees prescribed perfor-

mance for the transient and steady state of the object. Both

methodologies were validated via realistic simulations and

experimental results. Future efforts will be devoted towards



14

0 20 40 60
-0.02

0

0.02

(a)

0 20 40 60

0

0.5

1

0 70
0.9995

1

0 70
-0.02

0
0.02

(b)

0 20 40 60
-3

-1

0

1

3

(c)

Fig. 9: Experimental results for the control scheme of Section

IV-A; (a): The position errors ep(t); (b): The quaternion errors

eϕ(t), eε(t); (c) The velocity errors evf (t), ∀t ∈ [0, 70].
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Fig. 10: The norms of the adaptation signals eϑi(t), ∀i ∈
{1, 2} (left) and eϑO(t), (right) ∀t ∈ [0, 70] of the experiment

of the controller in Section IV-A.

applying the proposed techniques to cases with non rigid

grasping points and uncertain object geometric characteristics.

APPENDIX A

In the following, we derive explicit expressions for the terms

fcl,q, fcl,s, fcl,v of (37), as well as bounds for the dynamics

terms of the model and the velocity and control inputs vi, ui,
respectively, i ∈ N .

Note first from (25), (28), (32), and (33), that the states

xO, vO can be expressed as

xO = xd(t) + ρs(t)ξs, (49a)

vO = ρv(t)ξv + vr(ξs, t), (49b)
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Fig. 11: The agents’ joint torques of the experiment of the

controller in Section IV-A, for t ∈ [0, 70], with their respective

limits (with black).

where, with a slight abuse of notation, we right vr as a function

of ξs and t. Then from (37) and (31) we obtain:

fcl,q(σ, t) = J̃(q)G(q)
(
ρv(t)ξv + vr(ξs, t)

)
(50)

Regarding fcl,s, we obtain from (37) by using (6a) and (49):

fcl,s(σ, t) =ρ(t)
−1

[
JO

(
ηd(t) + ρsη(t)ξsη

)
ρv(t)ξv − ρ̇s(t)ξs

− gsρ(t)
−1rs(ξs)εs(ξs)− ẋd(t)

]
, (51)

where we also express εs, from (29), as a function of ξs.

Next, we differentiate vr from (31) and use (49), (28), (30),

to obtain:

v̇r = −gsJO
(
ηd(t) + ρsη(t)ξs

)−1[
ρs(t)

−1ṙs(ξs)εs

+ ρs(t)
−1rs(ξs)

2fcl,s(σ, t) − ρs(t)
−2ρ̇s(t)rs(ξs)εs

]

− gs
∂

∂t

[
JO(ηO)

−1
]
ρs(t)

−1rs(ξs)εs(ξs), (52)

where

ṙs(ξs) = diag
{[ 2ξsk

(1− ξsk)
2

]
k∈K

}∑

k∈K

Ēkfcl,s(σ, t)ēk, (53)

with Ēk ∈ R6×6 being the matrix with 1 in the element (k, k)
and zeros everywhere else, and ēk ∈ R6 being the vector with

1 in the element k and zeros everywhere else. Note from (52),

(49), and the fact that ẋO = JO(ηd(t) + ρsη (t)ξsη )vO that v̇r
can be expressed as a function of σ and t. Hence, in view of

(11), (36), and [G(q)]⊤G+
M = I6, one obtains from (37)

ξ̇v =ρv(t)
−1

(
− ρ̇v(t)ξv − M̃(x(σ, t))

[
C̃(x(σ, t))[ρv(t)ξv+

vr(ξs, t)] + g̃(x(σ, t)) + d̃(x(σ, t), t)−
gvρv(t)

−1rv(ξv)εv(ξv)
]
− v̇r(σ, t)

)
=: fcl,v(σ, t) (54)

and where, by using (49) and (50), we have written x (that

was first defined in (11)) as a function of σ and t, i.e.,

x(σ, t) =




q
q̇
xO
ẋO


 =




q
fcl,q(σ, t)

xd(t) + ρs(t)ξs

JO

(
ηd(t) + ρη(t)ξsη

)
[ρv(t)ξv + vr(ξs, t)]


 .
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We proceed by deriving expressions for the bounds of the

agent velocities and control inputs vi, ui, i ∈ N . By inspecting

(40) and (41) we can conclude that B̄s :=
√
6J̄O(‖vr(0)‖ +

α) + ¯̇xd +
√
6max

k∈K
{lk(ρsk,0 − ρsk,∞)} where ¯̇xd is the

bound of ẋd(t). Moreover, in view of (30), (43), one obtains

‖rs(ξs(t))‖ ≤ r̄s := 2
1−ξ̄2s

= (exp(ε̄s)+1)2

2 exp(ε̄s)
. Therefore, we

obtain from (31)

‖vr(t)‖ ≤ v̄r := gs
√
2

ε̄s(exp(ε̄s) + 1)2

2min
k∈K

{ρsk,∞} exp(ε̄s)
.

From vO = vr + ρv(t)ξv we also conclude

‖vO(t)‖ ≤ v̄O := gs
√
2

ε̄s(exp(ε̄s) + 1)2

2min
k∈K

{ρk,∞} exp(ε̄s)
+
√
6max

k∈K
{ρvk,0},

which, through (9) and (10), leads to

‖vi(t)‖ ≤ v̄i := (‖pEiO/Ei‖+ 1)v̄O, ∀i ∈ N . (55)

By considering the derivative of the reference velocity (52),

as well as (29), (51), (53), and (55) we can obtain a bound

‖v̇r(t)‖ ≤ ¯̇vr, which is not written explicitly for presentation

clarity. From (43), (6a), and (25) we also obtain ‖xO(t)‖ ≤
x̄O := x̄d +

√
6ξ̄s maxk∈K{ρsk,0}, and ‖ẋO(t)‖ ≤ J̄Ov̄O.

Next, by using (8) and the fact that the rotation matrix

REi
(qi) is an orthogonal matrix, we obtain ‖xEi(t)‖ :=

‖[p⊤Ei(qi(t), η⊤Ei(qi(t))]⊤‖ ≤ ‖xO(t)‖ + ‖[(pEiEi/O)⊤, η⊤Ei/O]⊤‖
and hence, in view of the inverse kinematics of the agents [43],

we conclude the boundedness of q(t) as ‖q(t)‖ ≤ q̄, where q̄ is

a positive constant. From Assumption 3 and the forward differ-

ential agent kinematics, we can also conclude that there exists

a positive constant J̄ such that ‖q̇(t)‖ ≤ J̄‖v‖ ≤ J̄
∑

i∈N v̄i,
where v̄i was defined in (55). Therefore, we conclude that

‖x(t)‖ ≤ x̄ := q̄ + J̄
∑

i∈N v̄i + x̄O + J̄Ov̄O . Assumption

5 and the boundedness of x imply that ‖di(qi, q̇i, t)‖ ≤ d′i,
‖dO(xO, ẋO, t)‖ ≤ d′

O
for positive and finite constants d′

O
and

d′i, respectively, ∀i ∈ N . Hence, from (10) and (11), we obtain

‖d̃(x(t))‖ ≤ d := d′
O
+

∑
i∈N {‖pEiO/Ei‖ + 1}d′i. Similarly,

the continuity of C̃(x), g̃(x) along with the boundedness of x
implies the existence of positive and finite constants c̄, ḡ such

that ‖C̃(x(t))‖ ≤ c̄, ‖g̃(x(t))‖ ≤ ḡ. Therefore, we can obtain

from (44) and (45), after some algebraic manipulations, that

B̄v :=
√
6max

k∈K
{lvk(ρvk,0 − ρvk,∞)}+ ¯̇vr + m̄

(
ḡ + d+

c̄(v̄r +
√
6(‖vr(0)‖+ α))

)
.

Moreover, by combining (34) and (47), one obtains

‖rv(ξv(t))‖ ≤ r̄v := 2
1−ξ̄2vk

= (exp(ε̄v)+1)2

2 exp(ε̄v)
. Finally, it can be

also shown, from the fact that pO/Ei = RO(qi)p
O
O/Ei

, ∀i ∈ N ,

that the norm ‖JMi(q)‖, as defined in (20), is independent of

q. Hence, we can also conclude the boundedness of the control

inputs (35)

‖ui(t)‖ ≤ ūi :=

gv‖JMi(q)‖max
k∈K

{ 1

ρvk,∞

}
r̄v ε̄v, ∀t ∈ [0, τmax). (56)

By considering (23), (24), (17) (22a), we can also derive the

respective upper bounds for the controller of Section IV-A.
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