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Event-based vehicle coordination using nonlinear
unidirectional controllers

Steffen Linsenmayer, Dimos V. Dimarogonas, and Frank Allgöwer

Abstract—This article presents a framework to control vehicle
platoons with event-based communication and nonlinear con-
trollers. The overall goal is to achieve a platoon that moves in a
desired formation with a desired velocity and the convergence to
this formation should be exponential while Zeno behavior has to
be excluded. The set of admissible controllers for this problem
is specified by the properties that they need to guarantee. These
properties will be of a form such that they can be checked locally
by every vehicle itself and heterogeneous controllers as well as
heterogeneous possibly nonlinear dynamics of the vehicles in the
platoon are allowed. The framework is shown to work with
several communication networks and the set of networks will
be characterized. Modifications that are necessary to cope with
additive disturbances are described and a simulation example
that shows the benefits of being able to use the framework in
different networks is given.

Index Terms—Decentralized control, nonlinear control system,
event-triggered control, cooperative control.

I. INTRODUCTION

INCREASING road safety and capacity are often seen as
two contradictory goals in traffic systems. A concept that is

devoted to achieve both goals at the same time is platooning.
This already motivates why improvements in control and
communication for platoons of vehicles is of major interest.
Since it becomes more and more standard to connect vehicles
with a communication network one goal is to use this com-
munication for control purposes while keeping the network
load moderate. In this article the main tool to reduce the
network load is event-based communication instead of periodic
time-triggered communication. The design of a class of event-
triggering rules, that trigger the communication such that
desired properties, in our case exponential convergence, are
guaranteed is the control objective. We allow the platooning
controllers to be nonlinear satisfying certain assumptions.
The control and communication framework strongly depends
on the communication network that describes which vehicle
sends its information to other vehicles. Therefore the other
main focus will be on deducing the class of communication
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networks that can be tackled within these event-triggering rules
and controllers.

The topic of platooning control has a large history in
research: In [1] the design of longitudinal vehicle controllers
for platooning was considered. An early research direction
that came up with platooning investigations was the analysis
of string stability for platoons with countably infinite number
of vehicles as in [2]. An overview about many investigations
and extensions for two widely used control architectures is
given in [3]. One of the outcomes of that article is that it
indicates to use nonlinear controllers when only information
from the predecessor is known for a vehicle. This combination
of nonlinear controller and state information from the front
neighbor is one that can be tackled with our approach as
well. In general many investigations on what influence the
communication network has on the performance of the platoon
have been made, for example in [4], [5]. Those works show
the potential benefit of our approach, since the work at hand is
not devoted to a specific network. In [5], additional state infor-
mation through wireless communication is used in a stochastic
approach to deduce stochastic guarantees. Recently researchers
investigated the effect of communication constraints on the
platoon. For example in [6] a modeling framework and string
stability analysis is presented that accounts for communication
delays and constraints. In contrast to the just mentioned
references, the focus of the article at hand is on the sampling
strategy. Whereas in [5] time-triggered sampling is used and
in [6] general uncertain transmission intervals are covered, the
paper at hand studies the use of event-based sampling.

The use of event-triggered controllers initially started with
the work in [7] and experienced increasing relevance through
[8]. In this work an event-triggering rule is presented that
guarantees asymptotic stability of a nonlinear system and
exclusion of Zeno behavior (see [9]), i.e., the occurrence of
infinitely many events in finite time, under the condition that
a controller with certain properties exists. The specification
of the controllers used by an assumption that they have to
fulfill is a similar approach which we use here. The general
concept was enhanced to perform event-triggered control for
distributed systems in [10] and [11]. A new approach, pointing
out the benefits of event-based communication, in multi-agent
systems was given in [12]. In this work each agent transmits
its state information to neighbors only when the difference of
its current state and the last transmitted one crosses a time-
dependent threshold. The concept of time-dependent triggering
functions gives the possibility that one vehicle decides solely
on its own absolute measurements when to trigger the next
event, whereas for state dependent event-triggering rules the
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agent has to know at least some continuous relative measure
to neighboring agents. In the proposed setup every vehicle
uses its own continuous state information to decide when to
send information. This preserves the possibility of immediately
reacting, which is a benefit when comparing to self-triggered
control, a concept that does not employ continuous measure-
ments but always computes the next transmission instant a
priori.

Due to the benefits just described the work in [12] emerged
the usage of event-based communication for example in
leader-following pinning control [13] and in platooning control
[14]. In that paper, firstly a linear event-triggered symmetric
bidirectional controller is analyzed. An analysis of the non-
linear predecessor-following controller is given as well. The
result states an event-triggering rule, that guarantees bound-
edness of the state error. Furthermore there is a statement,
that guarantees convergence of the state error if the trigger
error converges. However, in [14] there is no tool to derive
an event-triggering rule that has this convergence property
while Zeno behavior can be excluded. This gap is closed in
[15] where an event-triggering rule is derived that provides a
similarity to the linear case in [14] since the condition says
that the event-triggering rule must have a slower decrease
than the system dynamics. The work in [15] tackled vehicles
with double-integrator dynamics and a nonlinear predecessor-
following controller.

The goal of the work at hand, that builds on preliminary
results presented in [15], is to show that the tools developed
there are not restricted to this specific configuration. The
dynamics of the vehicles are now allowed to contain nonlinear
effects that are possibly heterogeneous, i.e., the vehicles in
a platoon do not need to have the same system dynamics.
As a second extension there is no special controller that is
designed and analyzed but we present a general assumption
that all controllers need to fulfill such that this framework
can be applied. The third generalization is that we do not
restrict the communication network to predecessor information
only but work out a general class of communication networks
for which this approach can be used. The fact that this latter
extension is not only a theoretical completion but provides
the possibility to apply controllers that perform better while
reducing the network load is illustrated in the simulation result
that is given. Furthermore some comments on robustness and
necessary modifications of the framework are given here as
well that were not made previously. To sum these points
up, this article provides a general framework for event-based
coordination of heterogeneous vehicles with a typical class
of nonlinear vehicle dynamics using possibly heterogeneous,
nonlinear controllers and various communication topologies
and contains the work in [15] as a special case.

The quantification on how fast the system decreases is done
using the concept of input-to-state exponential stability, being
defined in the next section together with some general graph
theoretic concepts. This is followed by a precise statement of
the problem that is tackled. In Section IV the set of controllers
and communication architectures that can be used in the
framework are defined and the analysis of convergence and
Zeno exclusion can be found in Section V. Before presenting

a simulation example in Section VII some comments on
robustness and how the framework needs to be modified in this
case are given in Section VI. The paper ends with a conclusion
given in Section VIII.

II. PRELIMINARIES

In this section we will introduce some concepts and general
notation for the remainder of the paper. The concept that will
be used to describe the communication capabilities along the
platoon are directed graphs, often called digraphs. A digraph
G = (V,E) consists of a set of vertices V and a set of edges
E. The elements of E are ordered pairs of vertices (vi, vj)
where vi is the head and vj is the tail of the edge. Using the
edge set E we can define the neighbor set of an agent i as the
set of all vehicles of which vehicle i can receive information
from, i.e., Ni = {j|(vj , vi) ∈ E}. If the digraph contains no
cycles and there exists a root vertex vr ∈ V such that there
exists a path from vr to every vi ∈ V \{vr} the graph is called
a rooted out-branching. This definition can be found together
with other results on graph theory in [16].

We will furthermore use the notion that functions belong
to class K, respectively K∞ or KL. A function γ : [0,∞)→
[0,∞) belongs to class K if it is continuous, strictly increasing
and γ(0) = 0. If γ(r)→∞ for r →∞ the function γ is said
to belong to class K∞. A function β : [0,∞) × [0,∞) →
[0,∞) is said to be of class KL, when β(·, s) belongs to
class K for every fixed s and β(r, ·) is decreasing to zero for
every fixed r, see [17]. Throughout the paper ‖ · ‖ denotes the
Euclidean vector norm.

One last definition that is given in this section is that of
input-to-state exponential stability (ISES), introduced in [18]
and playing a central role in this paper.

Definition 1: A system ẋ(t) = f(t, x(t), u(t)) is ISES, if
there exist k ≥ 1, λ > 0 and γ ∈ K∞ such that the solution
of the system x(t) := x(t, x(t0), u(·)) with initial condition
x(t0) at t0 satisfies for all t ≥ t0

‖x(t)‖ ≤ max

{
ke−λ(t−t0)‖x(t0)‖, γ

(
sup

t0≤ν≤t
‖u(ν)‖

)}
.

The difference between ISES and ISS is the restriction of the
class KL function appearing in the definition of ISS to be an
exponentially decreasing function in the case of ISES.

III. PROBLEM SETUP

In this paper the control of a 1-D platoon consisting of N
vehicles is investigated. The platoon is assumed to be equipped
with the possibility to communicate information from certain
vehicles to specified other vehicles. Thus, when introducing
the set of vehicles

P = {1, 2, . . . , N} (1)

we can model the platoon together with the possible commu-
nication links as a digraph

G = (P,E) (2)

where E is the edge set as introduced in the foregoing section.
From this graph the neighbor sets of all vehicles can be
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deduced. Throughout the paper we assume that there is one
additional communication link, that is a link from a fictitious
reference trajectory, called vehicle 0, to the first vehicle in the
platoon, i.e.,

0 ∈ N1 and 0 /∈ Ni,∀i 6= 1.

The trajectory of this fictitious lead vehicle 0 is given as a
reference with constant velocity,

p0(t) = v0t+ p0,0, ∀t ≥ 0 (3)

where p0,0, v0 ∈ R and in general pi(t) ∈ R represents the
position of vehicle i at time t. The control goal is now that
every vehicle in the platoon moves with the desired velocity v0
and that the spacing in between two following vehicles equals
the constant desired gap ∆. This can be summarized using the
desired trajectory p∗i as

ṗ∗i (t) = v0, ∀i ∈ P ;

p∗i (t)− p∗j (t) =(j − i)∆, ∀i, j ∈ P ∪ {0} . (4)

From (4) it can be seen that the desired distance to the
preceding vehicle is identical for all vehicles. In [14] and [15]
these distances were not assumed to be equal. Since both sce-
narios can be covered with the same concepts we investigate
the scenario described in (4) to simplify the notation. The
dynamics of the vehicles of the platoon are given as

p̈i(t) = ui(t)− hi(ṗi(t)) i ∈ P,∀t ≥ 0 (5)

where ui(t) represents the control input and hi represents
driving resistances that depend on the current velocity of
the vehicle, e.g. due to air drag. Thus, the study at hand
does not cover general nonlinear systems but a common
model for nonlinear vehicle dynamics. The right hand side
is assumed to be smooth enough to guarantee existence and
uniqueness of the solution. This results in possibly nonlinear
and heterogeneous system dynamics.

In our approach the communication along the edges in
E is assumed to be event-based. This means that vehicle i
communicates its state information along all the edges in E
that start at vertex i only at the discrete time instances tik with
k ∈ N0. These time instances are determined through a certain
event-triggering rule that will be specified later. Due to that
fact, information from neighboring vehicles is not available
in a continuous fashion and thus every agent needs to run an
estimator in between these instances. This estimation, based
on the last transmitted state information is specified as[

pj,est(t)
ṗj,est(t)

]
= fest

(
pj(t

j
k), ṗj(t

j
k)
)
, ∀t ∈ [tjk, t

j
k+1), (6)

where the elements of the sequence (tj)k∈N0
are the instants

when state information from vehicle j is sent to its neighboring
vehicles, fest is a function describing the estimator that is run
to estimate the position, pj,est(t), and velocity, ṗj,est(t), of
vehicle j. Possible choices for fest will be given later. Using
this estimation we can now give the structure of the event-
triggering rule that runs locally at every vehicle to decide when
new state information has to be sent out. Those events are

determined as soon as the inequality, dependent on positive
real numbers ci and αi,∥∥∥∥[pi,est(t)− pi(t)ṗi,est(t)− ṗi(t)

]∥∥∥∥ :=

∥∥∥∥[ ei(t)ed,i(t)

]∥∥∥∥ ≤ σi(ci, αi, t), (7)

where σj is an event-triggering function that will be defined
later, is violated. We call

[
ei(t) ed,i(t)

]>
the transmitted

error for agent i. Since it is no hard assumption that the
reference information is known to vehicle 0 in a continuous
fashion, due to the fact that it is no real state measurement
but can be provided from a pure simulation we will assume
[e0(t), ed,0(t)]> = [0, 0]>.

To consider the event-based communication we are re-
stricted to apply controllers that only employ the estimated
information from vehicles that are in their neighbor set since
they only have access to the state information at the discrete
time instances. Thus the controllers that will be derived are of
the form

ui(t) = f̃ctrl,i (pi(t), ṗi(t), pj,est(t), ṗj,est(t), i− j,∆) , (8)

for all j ∈ Ni, t ≥ 0 where f̃ctrl,i is assumed to be smooth
enough to guarantee existence and uniqueness of solutions
of (5) for all i ∈ P and we assume that the index of the
neighboring agents j is known. The goal of the paper is
to design σi(ci, αi, t), fest and f̃ctrl,i such that the desired
constant spacing and constant velocity is achieved and the
triggering instances of every vehicle have no finite accumula-
tion points, i.e., Zeno behavior is excluded. For one specific
communication architecture and homogeneous vehicles with
double integrator dynamics this problem is solved in [15].
Here we want to deal with more general communication
architectures and possibly nonlinear and heterogeneous system
dynamics.

IV. ADMISSIBLE CONTROLLER AND COMMUNICATION
ARCHITECTURE

In this section we want to derive a set of event-triggered
controllers and communication architectures that are suitable
to achieve the control goals and will be analyzed in the
subsequent section.

A. Admissible Controller

The class of controllers will be derived in an emulation
based fashion, meaning that we first pose a controller that em-
ploys continuous information from neighboring vehicles and
then substitute this continuous information by the estimation
that we have available in our scenario. The controller that is
employing continuous information is given as

uc,i(t) = fctrl,i

∑
j∈Ni

pi(t)− pj(t)− (j − i)∆,

∑
j∈Ni

ṗi(t)− ṗj(t), ṗi(t)

 , ∀t ≥ 0. (9)

This controller formulation differs from the general controller
from (8) by taking neighbor information into account in a
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relative fashion, i.e., as a difference to the own state. Thus,
(9) is a special case of (8) and this is due to that we are
interested in a constant spacing and synchronized velocity.
As indicated earlier to cope with the event-triggered com-
munication neighboring information can only be used in its
estimated version. Thus pj(t) and ṗj(t) need to be replaced
by pj,est(t) = pj(t) + ej(t) and ṗj,est(t) = ṗj(t) + ed,j(t),
i.e., for all t ≥ 0

ui(t) = fctrl,i

∑
j∈Ni

pi(t)− pj,est(t)− (j − i)∆,

∑
j∈Ni

ṗi(t)− ṗj,est(t), ṗi(t)


= fctrl,i

∑
j∈Ni

pi(t)− pj(t)− ej(t)− (j − i)∆,

∑
j∈Ni

ṗi(t)− ṗj(t)− ed,j(t), ṗi(t)

 . (10)

To analyze the convergence to the desired formation we
introduce the state error of vehicle i, xi(t) = [p̃i(t), ˙̃pi(t)]

>

with

p̃i(t) = pi(t)− p∗i (t) = pi(t)− (p0(t)− i∆)

˙̃pi(t) = ṗi(t)− ṗ∗i = ṗi(t)− v0. (11)

Thus the control goal is to drive the state error xi to zero for
every vehicle i. This can also be denoted as driving the state
error of the platoon x(t) := [x>1 (t), . . . , x>N (t)]> to zero. With
this notation we know ¨̃pi(t) = p̈i(t) and the event-triggered
closed-loop system composed of (5) and (10) can be written
as

¨̃pi(t) = − hi( ˙̃pi (t) + v0)

+ fctrl,i

∑
j∈Ni

p̃i(t)− p̃j(t)− ej(t),

∑
j∈Ni

˙̃pi(t)− ˙̃pj(t)− ed,j(t), ˙̃pi(t) + v0


(12)

where we applied the auxiliary computation:

pi(t)− pj(t) = p̃i(t) + p∗i (t)− p̃j(t)− p∗j (t)
= p̃i(t)− p̃j(t) + p0 − i∆− p0 + j∆ = p̃i − p̃j + (j − i)∆

In the following an assumption that is assumed to hold
throughout the paper is introduced. It is a locally verifiable
condition on the controller fctrl,i in the sense that all quantities
and functions that are necessary to check the assumption,
i.e., the local vehicle dynamics, the local controller, and the
neighbor set, are available at the individual agents.

Assumption 1: Assume that

fctrl,i

∑
j∈Ni

p̃i(t)− p̃j(t)− ej(t),

∑
j∈Ni

˙̃pi(t)− ˙̃pj(t)− ed,j(t), ˙̃pi(t) + v0


=frel,i

∑
j∈Ni

p̃i(t)− p̃j(t)− ej(t),

∑
j∈Ni

˙̃pi(t)− ˙̃pj(t)− ed,j(t)

+ fabs,i
(

˙̃pi(t) + v0
)

(13)

where frel,i is globally Lipschitz in both arguments with
Lipschitz constants L1, L2 and the condition

‖fabs,i
(

˙̃pi(t) + v0
)
− hi

(
˙̃pi(t) + v0

)
‖ ≤ L3‖ ˙̃pi(t)‖

is fulfilled. Furthermore assume that fctrl,i renders the system
(12) ISES with respect to the input

wi(t) =
[∑

j∈Ni p̃j(t) + ej(t)
∑
j∈Ni

˙̃pj(t) + ed,j(t)
]>

,

i.e.,

‖xi(t)‖ ≤ max

{
kie
−λi(t−t0)‖xi(t0)‖, γi( sup

t0≤ν≤t
‖wi(ν)‖)

}
with ki > 1, λi > 0 and the ISES gain being bounded by a
linear function, i.e., γi(r) = cγ,ir.

Remark 1: Arguably, Assumption 1 is a somewhat restrictive
assumption. Nevertheless, in Section VII a controller will be
presented that satisfies the assumption. Furthermore compared
to other ISS stabilizing assumptions, with an ISES stabilizing
assumption it is more likely to be able to compute the
convergence rate that is used in the design of the triggering
rule.

B. Communication architecture

Next, the communication architecture, used to control the
platoon will be defined. We will give a remark on what makes
this class special and why it fits in this framework. Further-
more some well known architectures that fulfill Assumption 2
will be provided.

Assumption 2: Assume that the communication graph G =
(P,E) is a rooted out-branching where the first node is the
root, i.e., vr = 1.
It is known that every graph that is a rooted out-branching
induces a topological ordering. This means one can order the
vertices of the graph such that for all edges (vi, vj) ∈ E
it holds that i < j, where the interpretation is that the
information flow is unidirectional. We will throughout the
paper assume that this topological ordering coincides with
the physical ordering in the platoon. This assumption on the
ordering is only introduced to simplify the notation. The more
general case could be covered with the same methods.
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0 1 2 3 4

0 1 2 3 4

Fig. 1. Three different communication architectures that satisfy Assumption 2.

Due to the definition in [16] given in Section II one of
the key properties of a rooted out-branching is that it does
not contain (directed) cycles. This is the main reason why
we choose to investigate communication architectures that
are a rooted out-branching. If we had allowed for directed
cycles we would have had to impose strong conditions on the
ISES gain in Assumption 1 to be able to draw conclusions
on the convergence of the whole platoon to the desired
formation. This is due to the fact that we would have had
to use small-gain theorems as in [19] and [20]. Additionally,
for the probably most common communication architecture
that contains cycles, the so called symmetric bidirectional
architecture, the study in [3] suggests to use linear controllers.
This is then the special case that is already covered by [14].

Examples for possible communication architectures are
given in Fig. 1. The architecture on the left describes the
classical predecessor-following communication (PF) whereas
the one in the middle shows a situation where information
from the predecessor and first vehicle is available (FPF). Both
scenarios are investigated in [4] to analyze the disturbance
propagation along the string. With these two architectures
being the most common ones that satisfy Assumption 2 one
can think also of a communication as depicted on the right
where one also uses the benefits of communication by not
only using nearest neighbor interaction but still keeps the
communication radius quite small.

V. CONVERGENCE AND ZENO EXCLUSION

By introducing Assumption 1 in the previous section it is
quite clear that ISES systems play an important role in our
approach. From standard ISS systems it is known that they
have the property that converging input signals generate a con-
verging state [21]. With the same approach it is straightforward
to show that for ISES systems with γ being linear, i.e., the
system class used in this work, an exponentially converging
input signal generates an exponentially converging state. The
next result, initially presented in [15], further specifies this
behavior by showing that an exponentially converging input
signal with rate α generates an exponentially converging state
with the same rate.

Proposition 1: Consider a nonlinear system with state x and
input u that is ISES with γ(r) = cγ(r) being a linear function,
i.e.,

‖x(t)‖ ≤ max

{
ke−λ(t−t0)‖x(t0)‖, cγ sup

t0≤ν≤t
‖u(ν)‖

}
. (14)

Assume the input satisfies

‖u(t)‖ ≤ ce−αt, t ≥ 0

0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
0

2

4

6
ce−αt

y(t)

re−αt

Fig. 2. Figure to express the idea of the proof

with 0 < α < λ, c > 0. Then it holds that

‖x(t)‖ ≤ re−αt, t ≥ 0

with

r = max {kcγceατ , k‖x(0)‖}

where

τ = max

{
1

λ
ln
k‖x(0)‖
cγc

,
ln k

λ− α

}
.

Proof: Define first the function y : R → R with y(0) =
‖x(0)‖ and

y(t) = max
{
ky(mτ)e−λ(t−mτ), cγce

−αmτ
}

(15)

for all t ∈ (mτ, (m + 1)τ ] with m ∈ N0. To illustrate why
we introduce y(t) Fig. 2 shows the bound on the norm of
u(t) in magenta. Furthermore the dotted black line starting
at t = 0 represents the bound we derive by using (14) with
t0 = 0. If we reuse the bound (14) after τ > 0 we derive the
bound represented by the second dotted black line. Therefore
iterative use of the bound (14) leads to the blue line. Notice,
that the blue line is exactly the function y(t). Thus we know
‖x(t)‖ ≤ y(t) for all t ≥ 0. It remains to explain the red line.
This line represents an upper bound on y(t), and therefore
also on ‖x(t)‖ which is stated as an exponentially decreasing
function re−αt. Therefore to prove the proposition we need
to show that under the given assumptions on α and r it holds
that y(t) ≤ re−αt for all t ≥ 0.

For the proof of the existence of such an upper bound the
choice of τ is crucial. Therefore we start with computing a
lower bound on τ1 such that y(τ1) = cγc, i.e.,

k‖x(0)‖e−λτ1≤ cγc

⇔ τ1 ≥ 1

λ
ln
k‖x(0)‖
cγc

(16)

where we assumed t0 = 0 without loss of generality. The next
step is to compute a value for τ2 := t2 − t1 = t2 − τ1 that
guarantees y(t2) = cγce

−αt1 under the assumption y(t1) =
cγc, i.e.,

k y(t1)︸ ︷︷ ︸
cγc

e−λτ2= cγce
−αt1

⇔ τ2 =
ln k + αt1

λ
. (17)

If this procedure is iterated we deduce the condition

τ1 ≥
1

λ
ln
k‖x(0)‖
cγc

τi+1 =
ln k + ατi

λ
, ∀i ∈ N. (18)
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In the next step of the proof we compute one global τ that
guarantees the demanded bounds from above, i.e., y(ti) =
cγce

−αti−1 instead of different τi. To compute such a τ
we analyze the conditions from (18). We will demand the
sequence of τi to be nonincreasing and show that this can be
stated as a condition on τ1, i.e.,

τi+1 ≤ τi

⇔ ln k + ατi
λ

≤ ln k + ατi−1
λ

. (19)

Thus, the condition

τ2 =
ln k + ατ1

λ
≤ τ1

⇔ τ1 ≥ ln k

λ− α
(20)

guarantees the monotonicity. As a consequence of (16) and
(20) we choose

τ = max

{
1

λ
ln
k‖x(0)‖
cγc

,
ln k

λ− α

}
(21)

to conclude y(mτ) = cγce
−(m−1)ατ = cγce

ατe−αmτ

and therefore y(mτ+) ≤ kcγce
ατe−αmτ with y(mτ+) =

limt→mτ,t>mτ y(t). Up to now this bound holds only for
m ≥ 1. In the case of m = 0 we have the condition
y(0+) ≤ k‖x(0)‖. Thus with

r = max {kcγceατ , k‖x(0)‖} (22)

and α < λ we conclude

‖x(t)‖ ≤ re−αt. (23)

The next result will focus on the convergence of the whole
platoon. It will give an indication on how the inputs of
the interconnection, that is the transmitted errors, should be
bounded such that the local controller due to Assumption 1
and the communication architecture due to Assumption 2 are
sufficient to guarantee exponential convergence of the platoon
to the desired formation.

Corollary 2: Let Assumptions 1 and 2 hold. Assume fur-
thermore that ∥∥∥∥[ ei(t)ed,i(t)

]∥∥∥∥ ≤ cie−αit, t ≥ 0

with αi < λi and αi ≥ αj for i < j. Then the state error of
the whole platoon converges to zero with rate αN , i.e., there
exists r > 0 such that

‖x(t)‖ ≤ re−αN t, t ≥ 0.

Proof: We know by definition that p̃0 = ˙̃p0 = 0
since the fictitious vehicle defines the reference trajectory.
Furthermore we assumed e0 = ed,0 = 0. By Assumption 2
we know that vehicle 1 is the root of the platoon without
the reference vehicle and therefore vehicle 0 is the only
neighboring node of vehicle 0. From these observations we
see that the (disturbance) input to vehicle 1, i.e. w1(t) in the
notation of Assumption 1, equals 0 for all times. Thus we can

conclude immediately from this assumption and Proposition 1
above that there exists r1 > 0 such that

‖x1(t)‖ ≤ r1e−λ1t.

By Assumption 2 and the one on the topological ordering
one concludes that the only neighbor of vehicle 2 can be
vehicle 1 and thus the disturbance input to vehicle 2 can be
formulated as w2(t) = [p̃1(t) + e1(t), ˙̃p1(t) + ed,1(t)]>. Thus
its norm can be bounded by

‖w2(t)‖ ≤
∥∥∥∥[ ‖p̃1(t)‖+ ‖e1(t)‖
‖ ˙̃p1(t)‖+ ‖ed,1(t)‖

]∥∥∥∥≤ ∥∥∥∥[c1e−α1t + r1e−λ1t

c1e−α1t + r1e−λ1t

]∥∥∥∥
=
√

2
(
c1e−α1t + r1e−λ1t

)
. (24)

Using the conditions α1 < λ1 and α2 ≤ α1 one can conclude
existence of r̃2 > 0 such that ‖w2(t)‖ ≤ r̃2e−α2t. Using this
knowledge together with the fact that Assumption 1 holds one
can use Proposition 1 to show existence of r2 > 0 such that

‖x2(t)‖ ≤ r2e−α2t.

With the same arguments as above one can derive, for all
i ∈ P ,

‖wi(t)‖ =

∥∥∥∥[ ∑j∈Ni p̃j(t) + ej(t)∑
j∈Ni

˙̃pj(t) + ed,j(t)

]∥∥∥∥
≤
√

2
∑
j∈Ni

cje
−αjt + rje

−λjt (25)

where wi(t) is the disturbance input to vehicle i. Thus, with
the condition that αj ≥ αi for all j ∈ Ni due to the conditions
in this corollary and the topological ordering we can conclude
existence of r̃i > 0 such that

‖wi(t)‖ ≤ r̃ie−αit

and therefore with Proposition 1 and the fact that αi < λi we
know that ri > 0 exists such that

‖xi(t)‖ ≤ rie−αit

for all i ∈ P . Thus we can finally conclude existence of r > 0
such that ‖x(t)‖ ≤ re−αN t for t ≥ 0.

Remark 2: The assumption that the topological and the
physical ordering coincide is used in this result. If this was
not the case one would need an auxiliary function o : P → P
that maps the index of the vehicle, according to the physical
ordering, to the value in the topological ordering. The condi-
tion in the previous result needs to be modified to αi ≥ αj
for o(i) < o(j) in this case.

The preceding corollary emphasizes that the transmitted
error should be bounded such that

‖gi(t)‖ :=

∥∥∥∥[ ei(t)ed,i(t)

]∥∥∥∥ ≤ cie−αit, t ≥ 0

to guarantee exponential convergence to the desired formation.
This clearly indicates to use the event-triggering rule

σi(ci, αi, t) = cie
−αit, t ≥ 0. (26)

In the main theorem below we will show that with this event-
triggering rule not only exponential convergence of the forma-
tion but also exclusion of Zeno behavior will be guaranteed
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under the assumptions made and another assumption on the
estimators that are used to generate pi,est and ṗi,est. The
assumption will be the following one.

Assumption 3: Assume the estimator is designed such that[
pi,est(t

i
k)

ṗi,est(t
i
k)

]
=

[
pi(t

i
k)

ṗi(t
i
k)

]
(27)

and the norm of the estimated acceleration exponentially
converges to zero with the same rate as the event-triggering
rule, i.e., there exists li > 0 for all i ∈ P such that

‖p̈i,est(t)‖ ≤ lie−αit. (28)

One example for an estimator that fulfills Assumption 3 is
given by pi,est(t) = pi(t

i
k) + (t − tik)ṗi(t

i
k), i.e., every agent

runs a double-integrator simulation to estimate the state based
on the last transmitted state information.

With the event-triggering rule just defined, the assumption
on the estimator and the preceding corollary, we are now able
to state the main theorem.

Theorem 3: Let Assumptions 1, 2 and 3 hold. Assume
furthermore that the event-triggering rule is based on σi as
in (26) with ci > 0, αi < λi and αi ≥ αj for i < j. Then the
state error of the whole platoon converges to zero with rate
αN , i.e., there exists r > 0 such that

‖x(t)‖ ≤ re−αN t, t ≥ 0

and the inter-event intervals are uniformly lower bounded, i.e.,
Zeno behavior is excluded.

Proof: The proof of the convergence result is essentially
given by Corollary 2 and the design of the event-triggering
rule (26). Thus it remains to show the Zeno exclusion. We
analyze the norm of the derivative of the transmitted error
gi(t) := [ei(t), ed,i(t)]

> in between two arbitrary triggering
instances tik and tik+1. We can compute with the definition of
the transmitted error that

‖ġi(t)‖=
∥∥∥∥[ ėi(t)ėd,i(t)

]∥∥∥∥ =

∥∥∥∥[ṗi,est(t)− ṗi(t)p̈i,est(t)− p̈i(t)

]∥∥∥∥
=

∥∥∥∥[ ed,i(t)
p̈i,est(t)− p̈i(t)

]∥∥∥∥
≤ σi(t) + ‖p̈i,est(t)‖+ ‖p̈i(t)‖ (29)

where we can make use of Assumption 1 and 3 to conclude

‖ġi(t)‖ ≤ cie−αit + lie
−αit + L3‖ ˙̃pi(t)‖

+L1

|Ni|‖p̃i(t)‖+ ‖
∑
j∈Ni

p̃j(t) + ej(t)‖


+L2

|Ni|‖p̃i(t)‖+ ‖
∑
j∈Ni

˙̃pj(t) + ed,j(t)‖


≤ (ci + li + 2 max{L1, L2}r̃i

+ (L3 + L1|Ni|+ L2|Ni|) ri) e−αit (30)

where |Ni| denotes the number of neighboring agents of i and
we used the computation and notation of Corollary 2 in the

last inequality. From the previous calculation we thus know
that there exists c̃i > 0 such that

‖ġi(t)‖ ≤ c̃ie−αit, ∀t ∈ (tik, t
i
k+1)

and therefore

‖gi(t)‖ ≤ c̃ie−αit
i
k(t− tik), ∀t ∈ [tik, t

i
k+1).

The condition for the next triggering instance is ‖gi(tik+1)‖ =

cie
−αitik+1 , i.e., the next triggering is defined by the equality

c̃ie
−αitik(tik+1 − tik) = cie

−αitik+1

c̃i(t
i
k+1 − tik) = cie

−αi(tik+1−t
i
k) (31)

and thus the uniform lower bound on the inter-event intervals,
independent of k, can be computed by the intersection of the
linear function c̃i(t

i
k+1 − tik) starting at 0 and the exponen-

tially decreasing function cie−αi(t
i
k+1−t

i
k) starting at ci > 0. It

can be deduced that this uniform lower bound is greater than
0 and therefore Zeno behavior is excluded.
Note that Zeno exclusion is understood in the sense that no
vehicle initiates infinitely many transmissions in finite time.
This does not prevent the possibility of two transmissions from
different vehicles at the same time. Such problems need to be
accounted for by certain network protocols and are relevant
issues for further research.

VI. DISCUSSION ON ROBUSTNESS

In Section VII, it will be shown that one approach to cover
the nonlinearity in the system dynamics, as quite usual with
vehicle dynamics, is a feedback linearizing approach. Since
such an approach is sensitive to model mismatches this section
presents some brief comments on how the approach needs to
be modified if we allow for bounded disturbances to act on
each vehicle’s dynamics in a way that is represented by the
extended model

ẋi =

[
0 1
0 0

]
xi +

[
0
−1

]
hi +

[
0
1

]
ui +Ddi (32)

with ui = fctrl,i as in (13) and hi(ṗi) as in the previous case.
We assume that D ∈ R2×1 and di ∈ [di,min, di,max]. One pos-
sible interpretation of such disturbances is that a controller was
designed to cancel out the nonlinearity hi completely but due
to model mismatches this induces a disturbing force acting on
the system. Thus a disturbance would act on the acceleration
of the vehicle resulting in a possibly non-vanishing disturbance
di that enters the system via D =

[
0 1

]>
.

To be able to deal with such a scenario one needs to
strengthen Assumption 1 such that a robust control design
is guaranteed. This can be done by enforcing the controller
fctrl,i to be designed such that all the conditions given in
Assumption 1 are fulfilled and furthermore the closed loop of
each individual vehicle is ISES with the additional disturbance
input di, i.e.,

‖xi(t)‖ ≤ max

{
kie
−λi(t−t0)‖xi(t0)‖, γi

(
sup

t0≤ν≤t
‖wi(ν)‖

)
,

γd,i

(
sup

t0≤νd≤t
‖di(νd)‖

)}
(33)
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with ki > 1, λi > 0 and γi/d,i being a linear function, i.e.,
γi/d,i(r) = cγ,i/d,ir.

A weaker result than Proposition 1 guarantees that bounded
inputs generate bounded states for ISS and therefore also ISES
systems. Thus with the very same methods as in the proof of
Corollary 2 one can show that with such a robust controller
and bounded disturbances the state error, i.e., the deviation of
the desired formation and velocity is bounded for the whole
platoon.

Observe that to achieve this boundedness one needs to guar-
antee that the transmitted error is bounded as well, whereas
convergence to zero is not necessary. This motivates to modify
the event-triggering rule here as it has been done in [12] and
[14] to

σi(ci,o, ci, αi, t) = ci,o + cie
−αit. (34)

with ci ≥ 0 and ci,o > 0. With this event-triggering rule
one can now proceed in a similar way as in the proof
of Theorem 3 to exclude Zeno behavior, i.e., one analyzes
‖ġi‖. Using the bounded disturbances, transmitted errors and
resulting bounded states it is straightforward to show that also
the norm of this derivative is uniformly bounded. Using the
same computations as before one arrives at the result that a
uniform lower bound on the inter-event intervals is given by
the intersection of a linear function with finite slope starting at
0 and the constant ci,o. A similar computation has been done
in [14] for the case of non-vanishing transmitted errors only.

Thus, the main conclusion of the above discussion is that
when considering disturbances acting on the vehicles the
control design needs to be robust and the bound on the
transmitted error has to be upper bounded by a positive offset.
This is translated here to the assumption that the closed-
loop system is ISES to the additional disturbance input and
the event-triggering rule was complemented with a positive
constant. This section provided short comments on robustness
issues and sketches necessary modifications to the general
approach. To perform a thorough robust analysis the topic of
string stability is of great interest. We will comment on that
aspect in the concluding section.

VII. SIMULATION EXAMPLE

A. Simulation scenario

We investigate a setup containing N = 10 vehicles with
dynamics as in (5) with hi(·) = 0.95i arctan(·) as an example.
Two different communication architectures are considered, one
being PF and the other one FPF, i.e., the left and middle
architecture depicted in Fig. 1. In the PF case the controller
is chosen as

ui,PF (t) = −f(pi(t)− pi−1,est(t) + ∆)

−g(ṗi(t)− ṗi−1,est(t)) + hi(ṗi(t))

= −f(p̃i(t)− p̃i−1(t)− ei−1(t))

−g( ˙̃pi(t)− ˙̃pi−1(t)− ed,i−1(t)) + hi( ˙̃pi(t) + v0)

(35)

for all i ∈ P \ {1}. The chosen nonlinear functions f
and g shown in Fig. 3, are odd, globally Lipschitz, sector

−10 −5 0 5 10
−4

−2
0

2

4

z

g(z)

f(z)

Fig. 3. Nonlinear functions f(z), g(z) in the Simulation example

nonlinearities and the appearance of hi in (35) indicates a
feedback linearization approach. We will comment on the
controller for i = 1 later. With the controller just introduced
we can derive the closed loop equation of each vehicle when
using the PF communication architecture as

¨̃pi(t) = −f(p̃i(t)− wi,1(t))− g( ˙̃pi(t)− wi,2(t)) (36)

with

wi(t) =

[ ∑
j∈Ni p̃j(t) + ej(t)∑
j∈Ni

˙̃pj(t) + ed,j(t)

]
=:

[
wi,1(t)
wi,2(t)

]
.

In [15] it was shown that this closed loop equation satisfies
Assumption 1 and by simulations the value for λi = 0.05 was
verified.

The controller using the FPF communication architecture
follows the same approach, i.e.,

ui,FPF (t)

= −f
(
pi(t)−

1

2
(pi−1,est(t) + p1,est + (i− 1)∆ + ∆)

)
−g
(
ṗi(t)−

1

2
(ṗi−1,est(t) + ṗ1,est(t))

)
+ hi (ṗi(t))

= −f
(
p̃i(t)−

1

2
(p̃i−1(t) + ei−1(t) + p̃1(t) + e1(t))

)
−g
(

˙̃pi(t)−
1

2

(
˙̃pi−1(t) + ed,i−1(t) + ˙̃p1(t) + ed,1(t)

))
+hi

(
˙̃pi(t) + v0

)
(37)

for all i ∈ P \ {1} with the same nonlinear functions f and
g, shown in Fig. 3. Thus, the closed loop equation for each
vehicle with FPF architecture can be written as

¨̃pi(t) = −f(p̃i(t)−
1

2
wi,1(t))− g( ˙̃pi(t)−

1

2
wi,2(t)) (38)

with wi(t) as before. Therefore Assumption 1 is fulfilled with
the FPF controller as well. The only difference is the factor 1

2
in the ISES gain cγ,i but for this gain it is only important that
it is a linear function which is the case for both controllers.

The controller for the first vehicle is chosen to be the same
in both scenarios and uses the information from the fictitious
reference vehicle, i.e.,

u1,FPF = u1,PF = −f(p1(t)− p0(t) + ∆)

−g(ṗ1(t)− ṗ0(t))− h1(ṗ1(t)) (39)

and we can therefore also conclude λ1 = 0.05.
As an estimator every agent runs the double-integrator

estimator introduced in Section V and the event-triggering rule
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Fig. 4. Norm of the state error and inter-execution times with PF architecture
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Fig. 5. Norm of the state error and inter-execution times with heterogeneous
event-triggering rule (PF)

has the structure as in (26) with ci = 1 and αi = 0.045 except
for one modification that appears later. It can be seen that with
the bounds on λi from the different controllers the assumptions
of Theorem 3 are fulfilled.

B. Simulation results

The simulation results in this section are, as mentioned
earlier, for a platoon of N = 10 vehicles. The vehicles start
from velocity 0 and with nonzero spacing errors. The desired
velocity is v0 = 1. In Fig. 4 simulation results are shown for
the case that the PF controller is used. In the upper subplot
the norm of the state error is shown. From Theorem 3 it is
guaranteed that this norm converges to zero and the result
indicates that this holds true. In the lower subplot every time
instance when a vehicle sends information to its following
vehicle is marked. When having a closer look on these time
instances one can see, that for vehicles that are quite far
behind the inter-event times are quite dense in the beginning.
One possibility to tackle this behavior is to use heterogeneous
event-triggering rules where the value of αi decreases along
the platoon according to αi = 0.045 · 0.85i−1. This idea was
already introduced in [15] and still fulfills all assumptions of
Theorem 3. In Fig. 5 it can be seen that the inter-event times
of the vehicles that are at the end of the platoon are now not
as dense anymore in the beginning. The price to pay for this
benefit is a transient behavior that is a little bit worse than
with the original event-triggering rule. This indicates that the
design of the event-triggering rule induces a trade-off between
performance and communication.
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Fig. 6. Norm of the state error and inter-execution times with FPF architecture
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Fig. 7. Position of all vehicles over time with PF architecture

In Fig. 6 the results using the FPF architecture are given.
One can see that this architecture helps to break up the trade-
off that was described before. The results indicate that on the
one hand the performance is immensely improved while on the
other hand the inter-event times are much larger as well. This
clearly shows that the extension towards other communication
architectures presented in this work is a large advantage.
The superiority of the FPF controller over the PF controller
becomes even more clear when investigating Fig. 7 and Fig. 8.
In these results one gets a feeling for the meaning of the state
error in the platooning scenario. The two figures both show
the positions of all vehicles, including the fictitious leader,
over time. One can see that with the PF architecture in this
simulation collisions between the last vehicles would occur
whereas using the FPF architecture no collisions between the
vehicles occur. Note that the possibility of collisions is not due
to the event-based sampling concept but due to the fact that
the controllers do not run mechanisms for collision avoidance.
Thus a worse performance, i.e. a larger deviation from the
desired distance, is related to a higher possibility for collisions.
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Fig. 8. Position of all vehicles over time with FPF architecture
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VIII. CONCLUSION

In this article we presented a framework for decentralized
control of platoons of vehicles using event-based communica-
tion. The approach presented is general in the sense that the
vehicle dynamics are not restricted to have double-integrator
dynamics, and in fact can be nonlinear and heterogeneous.
The same holds for the controllers that are applied. The
class of controllers that can be used is specified by an
assumption that needs to be fulfilled by every controller and
that can be checked locally. The other key part of the paper
was the characterization of the communication architecture.
It was deduced that communication architectures that can
be represented as a rooted out-branching can be controlled
with the same techniques and event-triggering rules as in
the special case of [15]. This is an important extension as
already indicated in the simulation results. In particular when
looking to future developments this is important since a natural
question arising from the paper is if it is possible to guarantee
string stability and for that reason it is important to be able to
deal with more complex communication architectures. Another
point that remains open is how to tackle network induced
imperfections such as communication delays and constraints
that can lead to lost packets as well as more complex reference
profiles. These points are important issues for further research.
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