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Generalized PID synchronization
of higher-order nonlinear systems

with a recursive Lyapunov approach
Davide Liuzza, Dimos V. Dimarogonas and Karl H. Johansson

Abstract—This paper investigates the problem of synchroniza-
tion for nonlinear systems. Following a Lyapunov approach,
we firstly study global synchronization of nonlinear systems
in canonical control form with both distributed proportional-
derivative and proportional-integral-derivative control actions of
any order. To do so, we develop a constructive methodology
and generate in an iterative way inequality constraints on
the coupling matrices which guarantee the solvability of the
problem or, in a dual form, provide the nonlinear weights on
the coupling links between the agents such that the network
synchronizes. The same methodology allows to include a possible
distributed integral action of any order to enhance the rejection
of heterogeneous disturbances.The considered approach does not
require any dynamic cancellation, thus preserving the original
nonlinear dynamics of the agents. The results are then extended
to linear and nonlinear systems admitting a canonical control
transformation. Numerical simulations validate the theoretical
results.

Index Terms—Higher-order synchronization, networked non-
linear systems, distributed PID control, networked control of
companion forms.

I. INTRODUCTION

SYNCHONIZATION of networked systems has been
widely studied in the last decade by different research

communities [1]–[3].
In the control system community, starting from the con-

sensus problem for single integrator nodes, the problem of
synchronization has been gradually and extensively extended
to linear systems, first with assumptions on the eigenvalues of
the dynamical matrix or input matrix [4], [5] and later under
the mild assumption on the controllability and detectability
alone of the linear systems [6], [7]. So, for the class of
linear systems, general results are currently available [8].
Also research on synchronization of nonlinear systems has
generated many results. However, due to the intrinsic difficulty,
synchronization of nonlinear systems is still under active
investigation.

Nowadays, various methodologies aim at studying synchro-
nization for wide classes of nonlinear systems. Approaches
include Lyapunov methods [9], [10], contraction analysis [11],
[12] and passivity and incremental dissipativity [13]–[15]
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Other authors focus on synchronization of agents whose
model appears in canonical control form, also called com-
panion form [16]. This class of results is known as higher-
order synchronization and explicitly exploits the structure of
the dynamical model.

Specifically, Lyapunov methods are considered, among oth-
ers, in [9], [10], [17]–[22]. These papers offer a huge spectrum
of approaches for the synchronization problem. Without going
to much into details, these works explore the possibility to
leverage on: bounded Jacobian assumption, linear systems
with additional Lipschitz nonlinearity and the existence of
the solution of suitable LMIs, hypothesis on inequalities con-
straints for the nonlinear dynamics, external reference pinner
nodes.

Specifically, consensus among second-order integrators and
higher-order integrators has been addressed [23]–[32], follow-
ing different approaches, such as studying the determinant of
the overall networked linear system or via ensuring that the
polynomial obtained considering the eigenvalue problem on
the companion dynamical systems’ matrix and the coupling
feedback are Hurwitz. One of the motivations behind these
studies is related to the fact that several dynamical systems,
e.g. mechanical systems, are naturally described in canonical
control form and, in particular, higher-order integrators are a
more realistic model of mobile robotic vehicles than the simple
integrators.

The papers reviewed above strongly rely on tools for
linear systems or on the specific structure of companion form
of higher-order integrators and their extension to nonlinear
systems appears to be a non-trivial task.

Lyapunov methods for second-order integrators are consid-
ered in [27] and [28], in which a Lyapunov function specific
for the second-order case is adopted. A specific second-order
integrator Lyapunov approach is also considered in [29], where
the presence of an external pinner is also required, while in
[30] the specific second-order consensus is considered when
bounded control actions are required. The case of higher-order
systems with nonlinear dynamics is instead studied in [32]. In
that paper, the specific cases of first-order and second-order
nonlinear systems are considered and, for these two cases, two
suitable Lyapunov functions are introduced to prove conver-
gence. The extension to higher-order nonlinear dynamics is
not addressed in this work. In general, although these papers
allow to consider nonlinear dynamics via a Lyapunov function,
the results appear to be specific to the order and the problem
considered and, therefore, not straightforward to scale to any
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arbitrary system’s order.
In [33], synchronization of second-order nonlinear dynamics

is addressed via a nonlinear compensation through a neural
network and the presence of an external reference. This
approach is further extended in [34]–[36] for higher-order
nonlinear systems. Although such results provide a suitable
methodology for addressing the higher-order nonlinear syn-
chronization, the methodology is not applicable to the free
synchronization problem where the aim is to preserve the
original nonlinear dynamics of the agents while studying an
emerging common behaviour without permanently forcing the
overall system.

Motivated by the need for providing a general framework for
the free synchronization problem, in this paper we study the
higher-order free synchronization for nonlinear systems of any
degree considering local state feedback. Referring to the pre-
vious literature on this problem, we compare our results with
the strategies in [23]–[32]. In our case, nonlinear dynamics
are allowed and therefore a Lyapunov approach is developed.
However, differently from what done in [23]–[32], we do not
focus our investigation on a specific system’s order but instead
derive results for general degree higher-order systems. Also,
compared to [34]–[36], no dynamic cancellation (i.e. reduction
to a higher-order consensus) is needed, thus preserving the free
system motion.

More specifically, we address the problem via finding a
Lyapunov function whose structure is based on the system’s
order considered. Therefore, called n the order of the non-
linear agents, a Lyapunov function is derived via a suitable
algorithm that generates, up to iteration n, a set of appropriate
matrices. These matrices, blocked together in a specific way
depending on the order n, will constitute the core of the
Lyapunov function expression, which in turn will prove free
synchronization. A key novelty of the approach followed in
this paper, with respect to the literature, is that the conducted
analysis is constructive, providing in an iterative way inequal-
ity constraints on the coupling matrices which guarantee the
solvability of the problem or, in a dual form, providing the
nonlinear weights on the coupling links between the agents
such that the network synchronizes. The given procedure relies
on the iterative computation of the solution of a system of three
second-order inequalities that for this reason are, contrary to
other approaches in the literature (see for example [31] for the
case of networked integrators), computable in an easier way.

Also, we believe that the analysis/synthesis method via a
constructive Lyapunov function represents a relevant theoret-
ical achievement due to its generality and scalability. Fur-
thermore, the approach naturally encompasses the possibility
to have distributed integral control actions of any order, i.e.,
distributed PIhDn−1 controllers, with h ≥ 0 being the degree
of the integral action, without any additional hypothesis. Such
integral action can be used to attenuate possible distributed
and heterogeneous disturbances acting on the interconnected
plants. As shown in [37], an integral action significantly
enhances the performances of the closed loop system.

We note here that generalized PIhDn−1 structures have
already been introduced in the literature. Specifically, in
[38], [39] controllers with an analogous structure to the one

proposed in this paper have been adopted for the flocking
problem of a team of mobile robots following a polyno-
mial reference trajectory. Such mobile agents are modelled
with single [39] and higher-order [38] integrators and PIn

and PI lm−mDm−1 containment controllers are, respectively,
designed. To prove convergence, the adopted methodology
exploits a pole-placement technique for the individual linear
system and then solves a Lyapunov equation on the overall
linear systems. Also, the proposed method can be adopted
to the leader-follower control problem as particular case. In
[38], a discrete time version of the proposed strategies is also
developed. Despite the analogy of the controllers’ structure,
however, these works differ from the results presented here
in the control goal, the agents’ model and the analytical
techniques adopted.

As a further contribution of our paper, the approach studied
for higher-order nonlinear systems is extended to the relevant
class of interconnected nonlinear systems admitting a canoni-
cal control transformation, resulting in a distributed nonlinear
control action which guarantees the synchronization of the
network. Classes of problem studied in the literature, such
as second-order and higher-order consensus can be seen as
special cases of such general framework. The particular case
of linear systems is also addressed as a corollary of such
general framework, thus resulting in the sufficient condition
of controllability of the linear systems, as already showed in
a different way in [6]. However, it is worth noticing that also
for the case of linear systems, the approach presented in the
paper naturally allows to explicitly consider integral control
actions of any order for possible disturbances rejections.

The paper is organized in the following way. A mathe-
matical background and the problem statement can be found
in Section II and Section III, respectively. In Section IV
the aforementioned iterative algorithms are presented. The
synchronization of systems in companion form is proved in
Section V both for PDn−1 and PIhDn−1 local control laws,
while an extension to controllable systems is addressed in
Section VI. Numerical examples are illustrated in Section VII,
while concluding remarks and future work are given in Section
VIII.

II. MATHEMATICAL BACKGROUND

A. Matrix Analysis
Here we report some concepts of matrix analysis that will

be useful in the rest of the paper [40].
Let us consider a generic square matrix A ∈ Rn×n. For

any index k ∈ {1, . . . , n}, the k × k top left submatrix
obtained from A, so considering the entries that lie in the
first k rows and columns of A, is called a leading principal
submatrix and its determinant is called leading principal
minor. In analogous way, the k× k bottom right submatrix is
called trailing principal submatrix and its determinant trailing
principal minor.

Two matrices A,B ∈ Rn×n are said to be commutative if
AB = BA. Furthermore, they are said to be simultaneously
diagonalizable if there exists a nonsingular matrix S ∈ Rn×n
such that S−1AS and S−1BS are both diagonal. The follow-
ing result hold.
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Lemma 1. Let A,B ∈ Rn×n be simultaneously diagonaliz-
able. Then they are commutative.

Let A ∈ Rn×n be any symmetric matrix, i.e. A = AT .
Then the eigenvalues of A are real and the eigenvectors
constitutes an orthonormal basis for A. We denote with eig(A)
the set containing the eigenvalues of A and with λmin(A) =
minλi∈eig(A) λi and with λmax(A) = maxλi∈eig(A) λi the
minimum and maximum eigenvalue of A, respectively. For
a symmetric matrix the following results hold.

Lemma 2. (Rayleigh)
Let A ∈ Rn×n be a symmetric matrix. Then, for all y ∈ Rn
it holds λminy

T y ≤ yTAy ≤ λmaxy
T y.

Lemma 3. (Sylvester’s criterion)
Let A ∈ Rn×n be a symmetric matrix. Then, A is positively
defined iff every leading (respectively, trailing) principal minor
of A is positive (including the determinant of A).

B. Lie algebra and weak-Lipschitz functions

Here we give some useful definitions and basic concepts on
differential geometry (for more details see also [16], [41]) and
the definition of weak-Lipschitz functions that will be useful
in the rest of the paper.

Definition 1. A function T (x) : Rn 7→ Rn defined in a region
Ω ⊆ Rn is said to be a diffeomorphism if it is smooth and
invertible, with inverse function T−1(x) smooth.

Given a smooth scalar function h(x) : Rn 7→ R, its
gradient will be denoted by the row vector ∂

∂xh(x) =[
∂
∂x1

h(x), . . . , ∂
∂xn

h(x)
]
. In the case of vector function f(x) :

Rn 7→ Rn, with the same notation ∂
∂xf(x) we denote the

Jacobian matrix of f(x). The following definitions can be now
given.

Definition 2. Let us consider a smooth scalar function h(x) :
Rn 7→ R and a smooth vector field f(x) : Rn 7→ Rn, the Lie
derivative of h with respect to f is the scalar function defined
as Lfh(x) := ∂

∂xh(x)f(x).

Multiple Lie derivative can be easily written by recursively
extending the notation as Lkfh(x) = Lf

(
Lk−1
f h

)
, for k =

1, 2, . . . , and with L0
fh(x) = h.

Definition 3. Let us consider two smooth vector fields
f(x), g(x) : Rn 7→ Rn, the Lie bracket of f and g is the
vector field defined as adfg(x) = ∂

∂xg f −
∂
∂xf g.

Analogously to what done for the Lie derivative, multiple
Lie bracket can be defined as adkfg = adf

(
adk−1
f g

)
, for

k = 1, 2, . . . , and with ad0
fg = g.

Definition 4. A set of linearly independent vector fields
{f1(x), . . . , fm(x)} is said to be involutive if and only if, for
all i, j, there exist scalar functions αijk(x) : Rn 7→ R such
that adfifj(x) =

∑m
k=1 aijk(x)fk(x).

Definition 5. A function f(t, x) : R+ × Rn 7→ Rm is said to
be globally Lipschitz with respect to x if ∀x, y ∈ Rn, ∀t ≥ 0

there exists a constant w > 0 s.t. ‖f(t, x)−f(t, y)‖ ≤ w‖x−
y‖.

Definition 6. A function f(t, x) : R+ × Rn 7→ R is said
to be globally weak-Lipschitz with respect to x if ∀x, y ∈
Rn, ∀t ≥ 0,∀i ∈ {1, . . . , n} there exists a constant w > 0 s.t.
(xi−yi)[f(t, x)−f(t, y)] ≤ w‖x−y‖2, with xi and yi being
the i-th element of vector x and y respectively.

The following lemma points out a relation between Lips-
chitz and weak-Lipschitz functions.

Lemma 4. A Lipschitz function f(t, x) = R+ × Rn 7→ R,
with Lipschitz constant w, is also weak-Lipschitz with the same
constant w.

Proof. Let us introduce the function Fi(t, x) ∈ Rn whose i-th
entry is f(t, x), while the other are null. It is immediate to
observe that ‖Fi(t, x) − Fi(t, y)‖ = ‖f(t, x) − f(t, y)‖. So,
the lemma is proved considering, for all i ∈ {1, . . . , n}, the
following relation

(xi − yi)[f(t, x)− f(t, y)] = (x− y)T [Fi(t, x)− Fi(t, y)]

≤ w‖x− y‖2.

Remark 1. In this paper we will assume that the function
f(t, x(i)) of the dynamical model given later in (1) is weak-
Lipschitz. However, as also reported in [42], in presence of
synchronization in a compact invariant set, this condition can
be replaced by the assumption of locally Lipschitz f(t, x(i)).
Indeed, each locally Lipschitz function can be extended outside
a compact set by appropriate extension theorems.

III. PROBLEM FORMULATION

The aim of this paper is to study free synchronization for
multi-agent systems whose dynamics can be expressed in the
canonical control form.

More in detail, a dynamical agent ẋ(i) = X(t, u(i), x(i)),
with x(i) ∈ Rn, u(i) ∈ R, t ∈ [0,+∞) is said to be in
canonical control form or companion form [16] when it is
in the following form

ẋ
(i)
1 = x

(i)
2

...
ẋ(i)
n = f(t, x(i)) + g(t, x(i))u(i),

(1)

with x(i) =
[
x

(i)
1 , . . . , x

(i)
n

]T
and with x(i)(0) = x

(i)
0 . In

this paper we will consider the case of1 g(t, x(i)(t)) 6= 0,
∀t ≥ 0, and so the control input can be rewritten as u(i) =
1/g(t, x(i)(t))ũ(i), with ũ(i) ∈ R.

The problem of free synchronization of a multi-agent system
is formally defined in what follows.

Definition 7. A multi-agent system of identical agents ẋ(i) =
X(t, u(i), x(i)), with i = 1, . . . , N , is free synchronizable, if

1Notice that when a nonlinear system can be transformed in companion
form, this condition is always guaranteed by the transformation procedure
itself [16].



IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS 4

for all the agents there exists a distributed control law ui =
ui(t, xi, xj) with j ∈ Ni such that

lim
t→∞

‖x(i)(t)− x(j)(t)‖ = 0 ∀i, j = 1, . . . , N, (2a)

lim
t→∞

‖u(i)(t)‖ = 0 ∀i = 1, . . . , N. (2b)

The goal of this paper is to study the free synchronization
of a multi-agent system with agents’ dynamics expressed
in the companion form (1) or that can be transformed in
such canonical form. We will give conditions under which
the problem of finding a distributed u(i) for each agent
able to guarantee conditions (2a)-(2b) is solvable. Further-
more, our proofs will be based on a constructive method, so
a proportional-derivative (PDn−1) and proportional-integral-
derivative (PIhDn−1) control law able to synchronize the
agents will be explicitly given. Specifically, in Section V the
problem of synchronization of systems in canonical control
form will be addressed, while in Section VI the results will
be extended to the relevant case of systems admitting a
canonical transformation. Defining the average state trajectory
as x̄(t) := [x̄T1 (t), . . . , x̄Tn (t)]T ∈ Rn, with each x̄k ∈ R
given by x̄k(t) = 1

N

∑N
j=1 x

(j)
k (t) we can define the stack

error trajectory as e :=
[
eT1 , . . . , e

T
n

]T ∈ RnN , with ek :=[
e

(1)
k , . . . , e

(N)
k

]T
= xk− x̄k1N , with 1N vector of N unitary

entries. It is easy to see that condition (2a) can be equivalently
stated in the alternative way limt→∞ ‖e(t)‖ = 0.

IV. SYNCHRONIZATION COUPLINGS CONSTRAINTS

In this section we identify, via an iterative procedure, a
class of feedback gain matrices that suffices to achieve free
synchronization for systems in companion form. Specifically,
instead of using a closed form for identifying the conditions
on the feedback gains which guarantee the synchronization,
we will define it via such a procedure. The advantage is that,
in this way, PIhDn−1 controllers can be defined in a general
way and the results can be proven considering any arbitrary
degree.

When the case of a specific communication topology have
to be considered, a second iterative procedure is also presented
which further imposes on the feedback gains the topology
constraint. As we already said, our main purpose is to inves-
tigate the solvability of the higher-order free synchronization
problem. However, since the methodology is constructive, the
derived conditions can also be used to either check if a given
weighted topology allows synchronization or to synthesize
distributed gains able to enforce synchronization.

We start giving the following definition.

Definition 8. A symmetric matrix L ∈ RN×N is said to be an
LN matrix if L1N = 0N and for its eigenvalues λ1, . . . , λN
it holds that 0 = λ1 < λ2 ≤ · · · ≤ λN , where 1N and
0N are vectors of N unitary and null entries respectively.
Furthermore, we denote with LN -class, the set of all LN
matrices.

Notice that the N × N Laplacian matrices [43] belong to
the LN -class. However, the LN -class is more generic since
we do not require the off diagonal elements of the matrix to

be non positive and, furthermore, no specific structure of the
matrices is a priori assumed.

Given n,N ∈ N such that n,N ≥ 2, let us consider the
matrices {Ln−k}k∈K ∈ LN -class, with K = {0, . . . , n − 1}
and pair-wise simultaneously diagonalizable. The orthonormal
basis of the Ln−k matrices is denoted as

{
v(1), v(2), . . . v(N)

}
,

with v(1) = ν and ν = 1/N · 1N as stated in Section III.
For each matrix Ln−k, we denote with λ

(i)
n−k the eigenvalue

corresponding to the eigenvector v(i), for all i ∈ {2, . . . , N},
while λ(1)

n−k = 0 by Definition 8. The algorithmic criteria we
are going to give aim at identifying a class of synchroniz-
ing distributed feedback assigning spectral properties to the
matrices {Ln−k}k∈K and thus constraining their selection. In
particular, for each eigenvalue λ

(i)
n−k associated with eigen-

vector v(i), with i ∈ I = {2, . . . , N}, we consider inequality
constraints via an iterative procedure.

First, let us consider the initialization λ(i)
0 = 0; 0 < λ

(i)
n−1 <

λ
(i)2

n ; α(i)
n−1 = min eig{A(i)

n−1}; β
(i)
n−1 = λ

(i)2

n −λ(i)
n−1; γ(i)

n−1 =
1, with

A
(i)
n−1 =

[
2λ

(i)
n−1λ

(i)
n λ

(i)
n−1

λ
(i)
n−1 λ

(i)
n

]
.

It is easy to see that the coefficients α(i)
n−1, β

(i)
n−1, γ

(i)
n−1 are

strictly positive. Furthermore, for k = 2, . . . , n − 1, we
define the iterative terms α(i)

n−k = min eig{A(i)
n−k}; β

(i)
n−k =

min eig{B(i)
n−k}; γ

(i)
n−k = γ

(i)
n−k+1 + 2λ

(i)
n−k+2, with

A
(i)
n−k =

[
2λ

(i)
n−kλ

(i)
n−k+1 γ

(i)
n−kλ

(i)
n−k

γ
(i)
n−kλ

(i)
n−k α

(i)
n−k+1

]
,

B
(i)
n−k =

[
λ

(i)2

n−k+1 − 2λ
(i)
n−kλ

(i)
n−k+2 − 1

2
γ

(i)
n−k+1λ

(i)
n−k

− 1
2
γ

(i)
n−k+1λ

(i)
n−k β

(i)
n−k+1

]
.

For convenience we also define B(i)
0 and β(i)

0 by iterating the
above B(i)

n−k and β(i)
n−k up to step k = n.

Taking into account the above definitions, Algorithm 1
considers for each eigenvector v(i), with i ∈ I, a particular
choice on the corresponding eigenvalues λ(i)

n−k, with i ∈ I
and k ∈ K, in order to generate spectral constraints on the
matrices {Ln−k}k∈K. In particular, each Ln−k is computed
as Ln−k = UDn−kU

T , with matrices U = [ν|v(2)| . . . |v(n)]

and Dn−k = diag{0, λ(2)
n−k, . . . , λ

(N)
n−k}.

Notice that, the inequalities (3a)-(3c) are always feasible,
since the right hand side of (3b) is striclty positive and the
second order equation associated with (3c) has one strictly
negative and one strictly positive root. Furthermore, notice also
that matrices {Ln−k}k∈K ∈ LN -class and, as said before,
in general they are not Laplacian matrices of any graph
G. The collection of pair-wise simultaneously diagonalizable
matrices obtained imposing the iterative constraints (3a)-(3c)
is formalized in the following definition.

Definition 9. Given two integers N,n ∈ N, with n,N ≥ 2,
the collection of matrices {Ln−k}k∈K ∈ LN -class, with
K = {0, . . . , n − 1}, is said to be a (N,n)-collection if
the matrices are pair-wise simultaneously diagonalizable and
satify the iterative spectrum constraints (3a)-(3c) of Algorithm
1.
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Algorithm 1 Spectral constraints assignment
1: for all i=2, . . . , N do
2: for k=2,. . . , n-1 do
3: Compute α

(i)
n−k+1

4: Compute γ
(i)
n−k

5: Choose a λ(i)
n−k satisfying the following inequalities

λ
(i)
n−k>0, (3a)

λ
(i)
n−k<

2λ
(i)
n−k+1

α
(i)
n−k+1

γ
(i)2

n−k

, (3b)

γ
(i)2

n−k+1λ
(i)2

n−k+8λ
(i)
n−k+2β

(i)
n−k+1λ

(i)
n−k−4λ

(i)2

n−k+1β
(i)
n−k+1<0. (3c)

6: Define B
(i)
n−k

7: Compute β
(i)
n−k

8: end for
9: end for

10: for k=0,. . . , n-1 do
11: Set Dn−k←diag{0,λ(2)

n−k,...,λ
(N)
n−k}

12: Set Ln−k←UDn−kUT
13: end for

Notice that, since inequalities (3a)-(3c) are always feasible,
such collection is never empty.

When a specific interconnection topology G needs to be
taken into account, the more restrictive (G, n)-collection can
be considered, as it is clear from the following definition.

Definition 10. Given a connected graph G of N nodes and
an integer n ∈ N, with n,N ≥ 2, the collection of matrices
{Ln−k}k∈K ∈ LN -class, with K = {0, . . . , n − 1}, is said
to be a (G, n)-collection if they are a (N,n)-collection and
{Ln−k}k∈K are weighted Laplacian matrices of the graph G.

For the existence of a (G, n)-collection associated to a given
connected graph G, the following lemma can be given.

Lemma 5. Given a connected graph G of N nodes and
an integer n ∈ N, with n,N ≥ 2, there always exists an
associated (G, n)-collection.

Proof. The existence of a (G, n)-collection can be proved in
a constructive way via Algorithm 2.

Roughly speaking, the procedure described in Algorithm 2
allows to obtain {Ln−k}k∈K which are weighted Laplacian for
any arbitrary connected graph G. Their expression is Ln−k =
ln−kL, where L = L(G) and ln−k is a positive gain defined
by the recursive formula ln−k = ρ̄n−kln−k+1, with ln = 1.
Furthermore, the fact that such matrices are also a (N,n)-
collection can be trivially showed by noticing that the spectral
constraints (3a)-(3c) are satisfied.

Remark 2. It is worth noticing that Algorithm 1 has been
introduced specifically to define a (N,n)-collection (and so
also the special case of (G, n)-collection). The spectral con-
straints assigned in such an iterative way to the matrices
in the collection will be shown to be sufficient for the net-
work synchronization. Notice also that in several papers in
the literature, sufficient conditions on the spectrum of the

Algorithm 2 Spectral constraints assignment for constrained
topologies

1: Choose any L(G) which is a compatible weighted Lapla-
cian of any desired connected graph G .

2: Set Ln←L
3: Set {λ(1)

n ,λ(2)
n ,...,λ(N)

n }←eig{Ln}

4: for i=2, . . . , N do
5: Set s(i)n−1←λ

(i)2

n

6: Set ρ(i)n−1←
s
(i)
n−1

λ
(i)
n

7: end for
8: Choose 0<ρ̄n−1<mini=2,...,N ρ

(i)
n−1

9: Set Ln−1←ρ̄n−1Ln

10: for k=2,. . . , n-1 do
11: Set {λ(1)

n−k+1,λ
(2)
n−k+1,...,λ

(N)
n−k+1}←eig{Ln−k+1}

12: for i=2, . . . , N do
13: Compute β

(i)
n−k+1

14: Compute α
(i)
n−k+1

15: Compute γ
(i)
n−k

16: Set s(i)n−k←min{r(i)n−k,1,r
(i)
n−k,2}, with

r
(i)
n−k,1=

2λ
(i)
n−k+1

α
(i)
n−k+1

γ
(i)2

n−k

,

r
(i)
n−k,2=sup

r∈R

{
γ
(i)2

n−k+1r
2+8λ

(i)
n−k+2β

(i)
n−k+1r−4λ

(i)2

n−k+1β
(i)
n−k+1<0

}
.

17: Set ρ(i)n−k←
s
(i)
n−k

λ
(i)
n−k+1

18: end for
19: Choose 0<ρ̄n−k<mini=2,...,N ρ

(i)
n−k

20: Set Ln−k←ρ̄n−kLn−k+1

21: end for

Laplacian matrix of the graph are given in order to prove
synchronization, and the same happens in the current paper.
However, due to the fact that any possible system degree is
here considered, the conditions are given through an iterative
procedure rather than using a closed expression.

It is also worth noticing that the fact that a (G, n)-
collection) is never empty for any connected graph G will
ensure the solvability of the higher-order free synchronization
problem with local controllers.

V. SYNCHRONIZATION OF SYSTEMS IN COMPANION FORM

In this section we give the main results of the paper, i.e.,
proving that local controllers are able to synchronize a network
of nonlinear systems in companion form, as stated in Section
III. Specifically, here we propose both a pure proportional and
an integral-proportional controller. It is worth noticing that, in
our approach, the analytic expression of the Lyapunov function
that allows to prove the results is parametrized by the system
order n. Indeed, its expression will be obtained by means of
the (N,n)-collection generated with Algorithm1 for any given
system order.

A. Synchronization with PDn−1 controllers

The following theorem gives conditions on the existence of
a solution for the free synchronization problem of dynamical
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systems in companion form.

Theorem 1. Let us consider N dynamical agents in compan-
ion form (1) and suppose that f(t, x(i)) is weak-Lipschitz with
constant w. Let us consider a (N,n)-collection {L1, . . . , Ln}
(or, more specifically, a (G, n)-collection associated with a
connected graph G). Then, the free synchronization prob-
lem stated in Section III is solvable with the following
proportional-derivative controllers

ũ(i)(t) = l

n∑
k=1

N∑
j=1

lkij(x
(j)
k (t)− x(i)

k (t)), i = 1, . . . , N

with lkij being the elements of the matrices Lk = [lkij ], with
k = 1, . . . , n, and l > 1 being a scalar gain satisfying

l >
1

β̃
(wλ̄max + β̃ − β̄), (4)

where in the above expression β̄, λ̄max and β̃ are posi-
tive scalars defined respectively as β̄ = mini=2,...,N β

(i)
0 ,

λ̄max = max eig{L̄}, with L̄ =
∑n
k=1 Lk, and β̃ =

mini=2,...,N

{
β̄, λ

(i)2

n

}
.

Proof. The proof of the above result is obtained by construct-
ing a suitable Lyapunov function for the synchronization error
trajectory able to exploit the specific canonical structure. To do
so, we will divide the proof in two steps. In the first one we
will define appropriate matrices upon which we will derive
a candidate Lyapunov function. In the second part we will
define the stack error system and we will prove the stability
by means of such an obtained function.
Part 1: Definition of appropriate matrices. Let us denote
for convenience Ln+1 = 1/2 · IN , L0 = ON , and let us
consider the positions λ(i)

n+1 = 1/2 and λ
(i)
0 = 0. We define

the matrices {Mn−k}k∈K, with Mn−k ∈ R(k+1)N×(k+1)N , in
the following recursive way

Mn−k =

[
Mϕ,n−k Mψ,n−k
MT
ψ,n−k Mn−k+1

]
, (5)

with Mϕ,n−k = 2Ln−kLn−k+1 and Mψ,n−k =
[2Ln−kLn−k+2, . . . , 2Ln−kLn, 2Ln−kLn+1], and where as
terminal condition of the recursion we define Mn = Ln.
It is easy to notice from the above definition that matrices
{Mn−k}k∈K are (k+ 1)× (k+ 1) symmetric block matrices.

Analogously, we consider the {M (i)
n−k}(i,k)∈I×K matrices,

with M
(i)
n−k ∈ R(k+1)×(k+1) and with I = {2, . . . , N},

recursively defined as

M
(i)
n−k =

[
M

(i)
ϕ,n−k M

(i)
ψ,n−k

MT (i)
ψ,n−k M

(i)
n−k+1

]
, (6)

with M
(i)
ϕ,n−k = 2λ

(i)
n−kλ

(i)
n−k+1, M

(i)
ψ,n−k =[

2λ
(i)
n−kλ

(i)
n−k+2, . . . , 2λ

(i)
n−kλ

(i)
n , 2λ

(i)
n−kλ

(i)
n+1

]
, and with

M
(i)
n = λ

(i)
n .

Together with matrices {Mn−k}k∈K and
{M (i)

n−k}(i,k)∈I×K, we also define the symmetric matrices
{Hn−k}k∈K, with Hn−k ∈ R(k+1)N×(k+1)N and
{H(i)

n−k}(i,k)∈I×K, with H(i)
n−k ∈ R(k+1)×(k+1). Specifically,

Hn−k =

[
Hϕ,n−k Hψ,n−k
HT
ψ,n−k Hn−k+1

]
, (7)

with Hϕ,n−k = L2
n−k − 2Ln−k−1Ln−k+1, Hψ,n−k =

[−Ln−k−1Ln−k+2, . . . ,−Ln−k−1Ln,−Ln−k−1Ln+1], and
with Hn = L2

n − Ln−1, while H(i)
n−k is defined as

H
(i)
n−k =

[
H

(i)
ϕ,n−k H

(i)
ψ,n−k

HT (i)
ψ,n−k H

(i)
n−k+1

]
, (8)

with H
(i)
ϕ,n−k = λ

(i)2

n−k − 2λ
(i)
n−k−1, H

(i)
ψ,n−k =[

−λ(i)
n−k−1λ

(i)
n−k+2, . . . ,−λ

(i)
n−k−1λ

(i)
n ,−λ(i)

n−k−1λ
(i)
n+1

]
,

and with H(i)
n = λ

(i)2

n − λ(i)
n−1.

From the above definitions it is immediate to see that
yTM1y = 0 and yTH1y = 0, for all y ∈ ∆. We are now
going to prove that, for all y ∈ ∆⊥ − {0}, i.e. for all the
vector orthogonal to the synchronization manifold, we have
yTM1y > 0 and yTH1y > 0. This fact will be a key aspect
later, where we will derive a Lyapunov function for the system.

First, let us consider the set of vectors

S∆⊥ =
{
ε1 ⊗ v(2), . . . , ε1 ⊗ v(N), ε2 ⊗ v(2), . . . , ε2 ⊗ v(N),

. . . , εn ⊗ v(2), . . . , εn ⊗ v(N)
}
,

with εi ∈ Rn being the vector with a unitary entry in the i-th
position and all the other entries null.

It is easy to see that S∆⊥ ⊂ RnN is a set of orthogonal
unitary vectors and that ∆⊥ = span{S∆⊥}. Hence, any
vector y ∈ ∆⊥ can be expressed as a liner combination of
the vectors in S∆⊥ or, more compactly, it can be expressed
as y =

∑N
i=2 y

(i), where y(i) = c(i) ⊗ v(i) and where
c(i) = (c

(i)
1 , . . . , c

(i)
n )T ∈ Rn is a vector of coefficients.

Now, due to the orthogonality of v(i) and v(j), we have that,
for all i 6= j, y(j)TM1y

(i) = 0 and y(j)TH1y
(i) = 0, while

remembering definitions (6) and (8) we have y(i)TM1y
(i) =

c(i)
T
M

(i)
1 c(i) and y(i)TH1y

(i) = c(i)
T
H

(i)
1 c(i). So,

yTM1y =

N∑
i=2

c(i)
T
M

(i)
1 c(i), (9)

and

yTH1y =

N∑
i=2

c(i)
T
H

(i)
1 c(i). (10)

Now, guaranteeing that c(i)
T
M

(i)
1 c(i) > 0 and

c(i)
T
H

(i)
1 c(i) > 0, for all c(i) ∈ Rn − {0} and for all i ∈ I,

implies the strict positivity of (9) and (10), respectively. For
this reason, the rest of this first part of the proof is devoted
to showing the positive definiteness of matrices M

(i)
1 and

H
(i)
1 . Specifically, we first focus on proving the positivity of

M
(i)
1 via an induction argument which exploits the recursive

structure of the matrix itself. First of all, we can see that the
trailing principal submatrix

M
(i)
n−1 =

[
2λ

(i)
n−1λ

(i)
n λ

(i)
n−1

λ
(i)
n−1 λ

(i)
n

]
,

is positively defined. Indeed, the Sylvester’s criterion can be
applied since λ(i)

n > 0 and its determinant is positive due to
the choice λ(i)

n−1 < λ
(i)2

n (initialization of Algorithm 1). So,
trivially we have that α(i)

n−1 > 0 and, since M (i)
n−1 = A

(i)
n−1,

the relation zTM
(i)
n−1z ≥ zTA

(i)
n−1z ≥ α

(i)
n−1z

T z holds for
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all z ∈ R2. Furthermore, γn−1 > 0 trivially holds. For the
induction argument, we suppose that the same relation holds
for a generic M (i)

n−k+1, with k ≥ 2, namely

zTM
(i)
n−k+1z ≥ z

TA
(i)
n−k+1z ≥ α

(i)
n−k+1z

T z, ∀z ∈ Rk, (11)

with α
(i)
n−k+1 > 0. We also suppose that γ(i)

n−k > 0. With
such an assumption, we study the quadratic form z̄TkMn−kz̄k,
for all the vectors z̄k ∈ Rk+1 − {0}, and where we have
defined z̄k = (z1, . . . , zk+1)T . For convenience, we introduce
the subvector z̄k−1 of the last k elements of z̄k, and so, in
block form, we have z̄k = [z1|z̄Tk−1]T . We obtain

z̄TkMn−kz̄k =2λ
(i)
n−kλ

(i)
n−k+1z

2
1 +

k∑
j=2

4λ
(i)
n−kλ

(i)
n−k+jz1zj+

2λ
(i)
n−kz1zk+1 + z̄Tk−1M

(i)
n−k+1z̄k−1.

Considering now z1zh = minj=2,...,k+1 z1zj , and remember-
ing inequality (11), we obtain

z̄TkMn−kz̄k ≥2λ
(i)
n−kλ

(i)
n−k+1z

2
1+

2

[
1 +

k∑
j=2

2λ
(i)
n−k+j

]
λ

(i)
n−kz1zh + α

(i)
n−k+1z

2
h

=2λ
(i)
n−kλ

(i)
n−k+1z

2
1 + 2γ

(i)
n−kλ

(i)
n−kz1zh+

α
(i)
n−k+1z

2
h.

Now, considering the definition of A(i)
n−k, it is immediate

to notice that the quadratic expression above can be written
as [zi, zh]A

(i)
n−k[zi, zh]T . So, its positivity is guaranteed if

and only if the matrix A
(i)
n−k is positively defined. Since

α
(i)
n−k+1 > 0, and since condition (3b) in Algorithm 1 imposes

the positivity of the determinant of A(i)
n−k, applying again the

Sylvester’s criterion we conclude that A(i)
n−k > 0. Iterating the

reasoning for all k = 2, . . . , n− 1 we obtain M (i)
1 > 0.

An analogous reasoning can be adopted to prove positive
definiteness of H(i)

1 . Indeed, it is immediate to see that the
trailing principal submatrix H

(i)
n ∈ R1×1 is positive since

H
(i)
n = β

(i)
n−1 = λ

(i)2

n − λ(i)
n−1 > 0, again for the initial choice

0 < λ
(i)
n−1 < λ

(i)2

n . Obviously, the relation

zTH(i)
n z ≥ β(i)

n−1z
T z

holds for all z ∈ R. As done for M (i)
n−k, also for proving the

positive definiteness of H(i)
n−k an induction argument will be

used. To do so, we suppose

zTH
(i)
n−k+1z ≥ βn−kz

T z, ∀z ∈ Rk, (12)

with βn−k > 0. Furthermore, from the iterative reasoning
applied for proving that M (i)

1 > 0, we implicitly obtained that
γ

(i)
n−k > 0 for all k = 1, . . . , n − 1, since λ(i)

n−k > 0 for all
k = 1, . . . , n − 1. Defining z̄k as before, we can write the
quadratic form z̄TkH

(i)
n−kz̄k, for all z̄k ∈ Rk+1 − {0}, as

z̄TkH
(i)
n−kz̄k =

[
λ

(i)2

n−k − 2λ
(i)
n−k−1λ

(i)
n−k+1

]
z2

1−
k∑
j=2

2λ
(i)
n−k−1λn−k+jz1zj−

λ
(i)
n−k−1z1zk+1 + z̄Tk−1H

(i)
n−k+1z̄k−1.

Considering z1zh = maxj=2,...,k+1 z1zj , and taking into
account (12), we obtain the following inequality

z̄TkH
(i)
n−kz̄k ≥

[
λ

(i)2

n−k − 2λ
(i)
n−k−1λ

(i)
n−k+1

]
z2

1−[
1 +

k∑
j=2

2λ
(i)
n−k+j

]
λ

(i)
n−k−1z1zh + β

(i)
n−kz

2
h

=
[
λ

(i)2

n−k − 2λ
(i)
n−k−1λ

(i)
n−k+1

]
z2

1−

γ
(i)
n−kz1zh + β

(i)
n−kz

2
h.

Observing that the above quadratic form can be obtained from
[zi, zh]B

(i)
n−k−1[zi, zh]T , since β

(i)
n−k > 0 for the Sylvester’s

criterion the positive definiteness of Bn−k−1 is guaranteed
by the positivity of its determinant. The latter condition is
given by (3c) of Algorithm 1 evaluated at k + 1. Repeating
the reasoning for k = 1, . . . , n we obtain zTH(i)

1 z ≥ β(i)
0 zT z,

with β(i)
0 > 0, which guarantees positive definiteness of H(i)

1 .
It is also possible to further analyze the quadratic form (10),
as this will turn useful later in Step 2 of the proof. For all
y ∈ ∆⊥ − {0} we have,

yTH1y =

N∑
i=2

c(i)
T
H

(i)
1 c(i) ≥

N∑
i=2

β
(i)
0 c(i)

T
c(i)

≥ β̄
N∑
i=2

c(i)
T
c(i) ≥ β̄yT y, (13)

where β̄ = mini=2,...,N β
(i)
0 is a positive scalar and where

we considered y(i)T y(i) =
[
c(i)

T ⊗ v(i)T
] [
c(i) ⊗ v(i)

]
=

c(i)
T
c(i), and where y(i)T y(j) = 0, for i 6= j.

Part 2: Lyapunov stability analysis. For convenience we
consider the error stack system of the form

ė1 = e2

...
ėn = F (t, x)− f̄(t, x) · 1N + ũ(t),

(14)

where f̄(t, x) = 1/N
∑N
j=1 f(t, x(j)) and with ũ(t) =

−l
∑n
k=1 Lkek(t), where Lk, with k = 1, . . . , n, are given in

the theorem statement. Remembering the definition of matrix
M1 in (5) with k = n− 1, we can also rewrite it in the block
form

M1 =

[
Mϑ Mς

MT
ς Ln

]
,

with Mϑ ∈ R(n−1)N×(n−1)N leading principal submatrix. For
the error system (14) we can finally consider the quadratic
candidate Lyapunov function2 V (e, n) = 1/2eT

∼
M e, where

∼
M ∈ RnN×nN is defined from M1 by considering as leading
principal submatrix lMϑ, while all the other submatrices are
the same as in M1, i.e.,

∼
M =

[
lMϑ Mς

MT
ς Ln

]
, (15)

It easy to see that such quadratic form is a valid candidate Lya-
punov function for proving synchronization since yT

∼
M y = 0

for all y ∈ ∆, while yT
∼
M y > 0 for all y ∈ ∆⊥ − {0}.

2The explicit dependence on n of the Lyapunov function points out that the
matrix M1, from which

∼
M ∈ RnN×nN is derived, has a specific structure

depending on the system order n considered.
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The first property follows immediately from the definition,
while the latter can be shown partitioning the generic y as
y = [yTϑ , y

T
ς ]T and considering yT

∼
M y = yTM1y + (l −

1)yTϑMϑyϑ. The positivity is so proved remembering that M1

is positive definite on ∆⊥ − {0}, as showed in Part 1, while
Mϑ is its leading principal minor and is, therefore, positive.
Considering the time derivative of V (e, n) we obtain

V̇ (e, n) = eT
∼
M ė = eT

∼
M Φ(t, x) + eT

∼
M Ξ(e), (16)

with Φ(t, x) =
[
0TN , . . . , 0

T
N , F

T (t, x)− f̄(t, x) · 1TN
]T

and

Ξ(e) =
[
eT2 , . . . , e

T
n ,− (

∑n
k=1 Lkek(t))

T
]T

. We now analyze
separately the two terms in (16). For the first one we have

eT
∼
M Φ(t, x) =

n∑
k=1

eTk Lk
[
F (t, x)− f̄(t, x) · 1N

]
=

n∑
k=1

1

2

N∑
i=1

N∑
j=1

lkij
[
e

(i)
k − e

(j)
k

] [
f(t, x(i))− f(t, x(j))

]
=

n∑
k=1

1

2

N∑
i=1

N∑
j=1

lkij
[
x

(i)
k − x

(j)
k

] [
f(t, x(i))− f(t, x(j))

]
,

from which, using the weak-Lipschitz property

eT
∼
M Φ(t, x) ≤

n∑
k=1

1

2

N∑
i=1

N∑
j=1

(17)

lkijw
[
x(i) − x(j)

]T [
x(i) − x(j)

]
=

n∑
k=1

w

n∑
h=1

1

2

N∑
i=1

N∑
j=1

lkij
[
e

(i)
h − e

(j)
h

]2
=

n∑
k=1

w

n∑
h=1

eThLkeh =

n∑
k=1

weT (In ⊗ Lk)e

=weT
(
In ⊗

n∑
k=1

Lk

)
e = weT

(
In ⊗ L̄

)
e. (18)

For the analysis of the second term in (16), we first write
matrix H1 in a block form analogous to M1, namely

H1 =

[
Hϑ Hς
HT
ς L2

n − Ln−1

]
.

From the above matrix we define
∼
H ∈ RnN×nN as

∼
H =

[
lHϑ Hς
HT
ς lL2

n − Ln−1

]
.

Now, performing suitable algebraic manipulations, we can
show that

eT
∼
M Ξ(e) = −eT

∼
H e. (19)

To do so, we take advantage of the recursive structure of the
matrices M1 and H1, respectively obtained nesting (5) and (7)
up to index k = n−1. Remembering that Ln+1 = 1/2·IN and
L0 = ON , we have that

∼
M =

∼
M1, with

∼
M1 defined nesting

up to k = n− 1 the following

∼
Mn−k =

[ ∼
Mϕ,n−k

∼
Mψ,n−k

∼
M

T

ψ,n−k
∼
Mn−k+1

]
,

with
∼
Mϕ,n−k = 2lLn−kLn−k+1 and

∼
Mψ,n−k =

[2lLn−kLn−k+2, . . . , 2lLn−kLn, Ln−k], and where as termi-
nal condition of the recursion we define

∼
Mn = Ln.

Analogously, we have
∼
H =

∼
H1, with

∼
H1 defined nesting

up to k = n− 1 the following

∼
Hn−k =

[ ∼
Hϕ,n−k

∼
Hψ,n−k

∼
H
T

ψ,n−k
∼
Hn−k+1

]
,

with
∼
Hϕ,n−k = lL2

n−k − 2lLn−k−1Ln−k+1,
∼
Hψ,n−k =[

−lLn−k−1Ln−k+2, . . . ,−lLn−k−1Ln,− 1
2Ln−k−1

]
, and

with
∼
Hn = lL2

n − Ln−1.
Relation (19) can be proved focusing on a generic trail

principal submatrix
∼
Hn−k of

∼
H1. In particular, we restrict our

attention on the first row and column of submatrix
∼
Hn−k. The

associated terms will be involved in the bilinear terms eTi ηijej
with i = n−k and j = n−k, . . . , n and with i = n−k, . . . , n
and j = n−k, where with ηij we have here denoted the i, j-th
entry of matrix

∼
H1, i.e.

∼
H1 = [ηij ].

From the definition of matrix
∼
H1, it is easy to see that

the terms in eT
∼
H1Ξ(e) corresponding to the bilinear terms

eTi ηijej considered, are given by

−
∑

i=n−k,j=n−k,...,n
i=n−k,...,n,j=n−k

eTi ηijej = 2leTn−kLn−k−1Ln−k+1e
T
n−k+

n∑
j=n−k+1

2leTn−kLn−kLjej−

n∑
j=n−k

leTn−kLn−kLjej−

n∑
j=n−k+1

leTi LiLn−ken−k+

n−1∑
i=n−k+1

2leTi Ln−k−1Li+1en−k+

eTnLn−k−1en−k,

from which we obtain

−
∑

i=n−k,j=n−k,...,n
i=n−k,...,n,j=n−k

eTi ηijej = 2eTn−kLn−k−1Ln−k+1e
T
n−k−

eTn−kL
2
n−ken−k+

1

2

n−1∑
i=n−k+1

[
eTi Ln−k−1Li+1en−k+

eTn−kLn−k−1Li+1ei
]

+

1

2
eTnLn−k−1en−k+

1

2
eTn−kLn−k−1en.

Repeating the same reasoning for all k ∈ {0, . . . , n−1} we
finally have (19). Writing e = [eTϑ , e

T
ς ]T we have eT

∼
H e =

eTH1e+(l−1)eTϑHϑeϑ+(l−1)eTς L
2
neς and so, remembering

(13), the following inequality holds

eT
∼
H e ≥ β̄eT e+ (l − 1)β̃eT e, ∀e ∈ ∆⊥ − {0}. (20)
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Combining (18) and (20), from (16) the following inequality
holds

V̇ (e, n) ≤ weT
(
In ⊗ L̄

)
e− β̄eT e− (l − 1)β̃eT e

≤ wλ̄maxe
T e− β̄eT e− (l − 1)β̃eT e.

Imposing wλ̄max−β̄−(l−1)β̃ < 0 condition (4) is obtained
which guarantees, together with l > 1, a negative quadratic
upper bound for V̇ (e, n) and so the synchronization of the
agents to the same trajectory.

Remark 3. It is worth noticing that the relevant case of
consensus of double [30], [32] and higher-order [31] inte-
grators is included in the previous study as a particular case
when f(t, x(i)) = 0, and can be studied following exactly the
same way of constructing the quadratic Lyapunov function
V (e, 2) = 1/2eT

∼
M e, with

∼
M given in (15). Specifically, for

the consensus of double integrators, the matrix
∼
M can be

easily showed to be given by[
2lL1L2 L1

L1 L2

]
.

Notice also that, in our study, we directly consider in
Algorithm 1 and in Algorithm 2 at least a second-order degree,
i.e., n ≥ 2, for the interconnected agents. In principle, a first
order case could still be studied observing that the n×n block
matrix M1, and so also matrix

∼
M , grows in size accordingly

to the degree n of the agents from the bottom-right corner Ln,
thus resulting in the specific recursive structure we highlighted.
The case of n = 1 would so result in the bottom-right corner
only, thus having

∼
M = lL, which gives a well known Lyapunov

function for studying the classical problem of consensus for
single integrators [44]. Also, when considering the higher-
order consensus problem and a (G, n)-collection is chosen,
the controller shows an analogous structure to the one in
[31]. However, in that paper, a different criterion based on
the Kharitonov’ s theorem is provided in order to select the
feedback coefficients ln−k.

Furthermore, together with the case of consensus of inte-
grators, the relevant case of synchronization of linear systems
can be also addressed with our framework, as will be shown
later in Corollary 1.

B. Synchronization with PIhDn−1 controllers

The analysis conducted in Section V-A, where a state
proportional control action is used to achieve free synchro-
nization, is now extended to the case where an integral control
action of any arbitrary degree h ≥ 1, with h ∈ N is also
considered.

More in detail, considering a generic integrable function
η(·) : R 7→ Rn, we define its integral of degree h ∈ N with
the following notation∫ t,(h)

0

η(τ)dτ :=

∫ t

0

∫ τ,(h−1)

0

η(τ ′)dτ ′dτ if h > 1,

while in case h = 1, we simply have∫ t,(1)

0

η(τ)dτ :=

∫ t

0

η(τ)dτ.

We now give the following theorem.

Theorem 2. Let us consider N dynamical agents in compan-
ion form and suppose that f(t, x(i)) is weak-Lipschitz with
constant w. Then, the free synchronization problem is solvable
with a PIhDn−1 controller of arbitrary degree h ≥ 1 of the
form

ũ(i)(t) =l

n∑
k=1

N∑
j=1

lPD,kij(x
(j)
k (t)− x(i)

k (t))+

l

h∑
m=1

N∑
j=1

lI,mij

∫ t,(m)

0

(x
(j)
1 (τ)− x(i)

1 (τ))dτ,

with i = 1, . . . , N . Furthermore, the gain l and the matrices
LPD,k = [lPD,kij ], with k = 1, . . . , n, and LI,m = [lI,mij ],
with m = 1, . . . , h, can be selected analogously to Theorem
1 considering the following position

LI,h−ϑ+1 = Lϑ, ϑ = 1, . . . , h (21)
LPD,ϑ−h = Lϑ, ϑ = h+ 1, . . . , h+ n, (22)

with {L1, . . . , Lh+n} being a (N,h + n)-collection (or a
(G, h+ n)-collection with G any connected graph).

Proof. The proof of Theorem 2 is given in the Appendix in
[45].

Remark 4. The previous result extends Theorem 1 allowing an
additional integral control action of any degree. The benefits
of integral control actions in polynomial-type disturbance
rejection are well known in the literature. Therefore, such
additional degree of freedom can be usefully exploited for this
aim, as shown in the numerical examples section.

VI. SYNCHRONIZATION UNDER CANONICAL
TRANSFORMATION

The results stated in Section V can be extended to the
relevant class of dynamical systems admitting a canonical con-
trol transformation. Roughly speaking, for general nonlinear
systems, it suffices to find a nonlinear state transformation
z(t) = T (x(t)) and apply the PIhDn−1 control law of
Theorem 2 to such transformed state. The computation of this
nonlinear transformation under suitable involutivity condition
of the nonlinear vector field is a well known result in nonlinear
control and can be found in [16]. Also, when the special case
of linear systems is considered, the canonical control trans-
formation can be found in [46] and represents a fundamental
result in control theory.

In this section, we first analyse the general case of nonlinear
systems, and later the case of linear systems as a separate
result. Notice that for the sake of simplicity in the notation,
we will consider only time-independent systems. However,
analogous results hold for the case of time-dependent systems.

Theorem 3. Let us consider a connected graph G and a multi-
agent system of nonlinear dynamical agents of the form

ẋ(i) = f(x(i)) + g(x(i))u(i), i = 1, . . . , N, (23)

with x(i) ∈ Rn and u(i) ∈ R. Suppose that, for all x(i) ∈ Rn,
the following conditions hold:
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(i) The vectors
{
g, adfg, . . . , adn−1

f g
}

are linearly inde-
pendent;

(ii) The set
{
g, adfg, . . . , adn−2

f g
}

is involutive;

(iii) The function Lnf
(
T−1(ξ)

)
, with ξ ∈ Rn, is weak-

Lipschitz with constant w,
where T (·) : Rn 7→ Rn is a suitable diffeomorphism. Then,
the free synchronization problem for the multi-agent system is
solvable with distributed PIhDn−1 controllers, with h ≥ 0,
of the form3

u(i)(t) =
1

LgLn−1
f (x(i))

l

n∑
k=1

N∑
j=1

lPD,kij

[
Tk

(
x(j)(t)

)
−

Tk

(
x(i)(t)

)]
+

l

h∑
m=1

N∑
j=1

lI,mij

∫ t,(m)

0

[
T1

(
x(j)(τ)

)
−

T1

(
x(i)(τ)

)]
dτ,

for all i = 1, . . . , N , and with the gains l, lPD,kij , lI,mij
selected according to Theorem 2 and with Tk(·) being the
k-th element of T (·).

Proof. The proof of Theorem 3 is given in the Appendix in
[45].

Corollary 1. Let us consider a connected graph G and a multi-
agent system of linear dynamical agents of the form ẋ(i) =
Ax(i) + bu(i), with x(i) ∈ Rn and u(i) ∈ R. If the pair (A, b)
is controllable, then there exists a full rank matrix T such that
the free synchronization problem for the multi-agent system is
solvable with distributed PIhDn−1 controllers of the form

u(i)(t) =l

n∑
k=1

N∑
j=1

lPD,kij

[
Tkx

(j)(t)− Tkx(i)(t)
]

+

l

h∑
m=1

N∑
j=1

lI,mij

∫ t,(m)

0

[
T1x

(j)(τ)− T1x
(i)(τ)

]
dτ,

with the gains l, lPD,kij , lI,mij selected according to Theorem
2 and with Tk being the k-th row of matrix T .

Proof. The proof of Corollary 1 is given in the Appendix in
[45].

Remark 5. Notice that, from the above result the control-
lability hypothesis suffices to guarantee the synchronizability
of the agents, as already showed in a different way in [6].
However, it is worth noticing that the approach presented here
naturally allows to explicitly consider integral control actions
for possible disturbances rejections.

VII. NUMERICAL EXAMPLE

In this section we show the effectiveness of our results
on two numerical examples. Specifically, synchronization of
nonlinear and linear oscillators with possible disturbances will
be achieved via the coupling selection illustrated in Section IV.

3With a slight abuse of notation with h = 0 we mean here a pure
proportional action.
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Figure 1. Time evolution of the state components x(i)
1 for the network of Van

der Pol oscillators: (a) uncoupled case; (b) coupled case; (c) synchronization
error e.

A. Synchronization of Van der Pol oscillators

We consider a network of ten identical Van der Pol oscilla-
tors whose model is given by the following relation

ẋ
(i)
1 = x

(i)
2

ẋ
(i)
2 = −x(i)

1 + µ(1− |x(i)
1 |)x

(i)
2 + u(i).

(24)

For our example, we choose the parameter µ = 2.5 and initial
conditions randomly assigned in the interval [0, 5] both for
x

(i)
1 and x(i)

2 , for all the systems in the network. We validate
Theorem 1 via creating a connected random graph G which
set the distributed control for the ten systems and a (G, 2)-
collection over such graph (notice that, in this case n = 2).

Figure 1(a) shows the first state component of the networked
systems when no coupling is considered, while the effect of the
coupling of the assigned (G, 2)-collection allows the network
to synchronize over a common manifold (Figure 1(b)). The
synchronization error is depicted in Figure VII-A.
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Figure 2. Time evolution of the state components x
(i)
1 for the network of

linear oscillators with PD controllers and no disturbances: (a) uncoupled
case; (b) coupled case.

B. Synchronization of linear oscillators

We now consider the synchronization of ten interconnected
linear oscillators

ẋ(i) =

(
4 5
−5 −4

)
x(i) +

(
1
1

)
u(i),

using a PD and a PID controller according to Corollary 1.
Specifically, as done for the previous numerical example, we
validate a distribute PD controller via generating a connected
random graph G for the overall system and a related (G, 2)-
collection. It is easy to see that the system considered is
controllable and so, we use the distributed controller given in
Corollary 1, where the transformation matrix T can be shown
to be

T =

(
0.0556 −0.0556

0.5 0.5

)
.

From Figure 2 it is possible to see the time evolution of
the first state component both for the case of uncoupled
(Figure 2(a)) and coupled (Figure 2(b)) network, starting from
randomly distributed initial conditions in the interval [−10, 10]
for both the state components.

In order to validate the effectiveness of the distributed
integral action, we add a step disturbance on a system in
the network. In Figure 3(a) the first state component is again
showed. It is possible to see that synchronization is no longer
achieved. The residual global synchronization error reaches a
constant value in the limit when t → +∞, which is equal to
e∞ = 5.8 as depicted in Figure 3(b).
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Figure 3. Time evolution of the network of linear oscillators with PD

controllers and heterogeneous disturbances: (a) state components x
(i)
1 ; (b)

global synchronization error e.

In order to reject the disturbance, we then consider a
distributed PID controller, coupling the network via a (G, 3)-
collection (notice that we have now n = 2 and h = 1). As
clearly emerges from Figure 4(a), the integral control action
is able to reject constant heterogeneous disturbances, thus
leading the network to synchronization. In Figures 5(a)-5(b)
the same evolution is given, zooming for a time span of ten
seconds at the beginning and at the end of the simulation
horizon, respectively. As can be witnessed, and differently
from what happens in Figure 3(a), all the nodes converge to
the same oscillatory orbit.

Figure 4(b) shows the asymptotic convergence to zero of
the global synchronization error associated with such PID
scheme, in comparison with the case in Figure 3(b) where no
integral action is considered.

VIII. DISCUSSION AND FUTURE WORK

In this paper we addressed the problem of higher-order
free synchronization for nonlinear systems. Via an iterative
procedure, we proved the existence of a class of feedback
matrices, able to guarantee distributed state synchronization
over any connected graph topology. The framework is re-
lated to any system order and easily embeds a possible
distributed integral action of any order. The case of higher-
order consensus is naturally embedded in our results as a
particular case. Furthermore, the methodology can also be
extended to those linear and nonlinear systems admitting a
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Figure 4. Time evolution of the network of linear oscillators with PID

controllers and heterogeneous disturbances: (a) state components x
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global synchronization error e.
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Figure 5. Time evolution of the network of linear oscillators with PID

controllers and heterogeneous disturbances. Zoom of state components x
(i)
1 :

(a) beginning of the simulation horizon; (b) end of the simulation horizon.

(local) canonical transformation. In particular, for the specific
case of linear systems, the synchronization with distributed
PIhDn−1 controllers is guaranteed under the mild hypothesis
of controllability of the agent’s dynamics.

The presence of a distributed integral control action allows
to attenuate possible distributed heterogeneous disturbances af-
fecting the agents and, as shown in the numerical simulations,
greatly improves the convergence performances.

Future work will address in detail the analysis of robust
synchronization of agents with parameters’ mismatch and
subjected to heterogeneous noises/disturbances as well as the
case of directed/pinned network.

A future direction of investigation is to recast the method-
ology adopted in this paper to the discrete time case. At the
current stage, such extension is not trivial since the whole
analysis (definitions of matrices M1 and H1, Algorithm 1
and Algorithm 2) is conducted for the continuous time case.
Therefore, the discrete time case requires further studies.
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