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Abstract—This paper addresses a formation problem for a
network of autonomous agents with second-order dynamics and
bounded disturbances. Coordination is achieved by having the
agents asynchronously upload (download) data to (from) a shared
repository, rather than directly exchanging data with other
agents. Well-posedness of the closed-loop system is demonstrated
by showing that there exists a lower bound for the time
interval between two consecutive agent accesses to the repository.
Numerical simulations corroborate the theoretical results.

I. INTRODUCTION

Coordination of networked multi-agent systems is the sub-
ject of a large body of research work, because such systems
constitute a suitable model for a large number of phenomena
in robotics, biology, physics, and social sciences [1]–[3].

In most realistic scenarios, the agents in a multi-agent
system have limited communication capabilities. This hap-
pens, for example, when they communicate over a wireless
medium, which is a shared resource with limited throughput
capacity. In some cases, inter-agent communication is com-
pletely or almost completely interdicted. This challenge arises,
for example, in the coordination of a fleet of autonomous
underwater vehicles (AUVs) [4]. Because of their severely
limited communication, sensing, and localization capabilities,
underwater vehicles are virtually isolated systems. Underwa-
ter communication and positioning may be implemented by
means of battery-powered acoustic modems, but such devices
are expensive, limited in range, and power-hungry. Inertial
sensors for underwater positioning are prohibitively expensive
in most practical scenarios. Moreover, GPS is not available
underwater, and a vehicle needs to surface whenever it needs
to get a position fix [5].

When such limitations arise, coordination strategies that
rely on continuous information exchanges among the agents
cannot be implemented. To address this challenge, the idea
of triggered control [6], [7] has been tailored to multi-agent
systems. Triggered control was introduced to limit the amount
of communication within the parts of a feedback control
system (plant, sensors, actuators). In the context of multi-agent
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systems, triggered control is used to limit the communication
among different agents. Various flavors of triggered control
have been applied to multi-agent systems: namely, with event-
triggered control, inter-agent communication is triggered when
a given state condition is satisfied [8]; with self-triggered con-
trol, the agents schedule when to exchange data in a recursive
fashion, so that there is no need to monitor a condition between
consecutive communication instances [9]. However, even these
triggered control schemes require that the agents exchange
information, and, therefore, are not well-suited for those sce-
narios where direct inter-agent communication is interdicted.
The use of a shared information repository in multi-agent
control is subject to recent, but growing, research attention. In
[10], the authors employ asynchronous communication with a
base station to address a multi-agent coverage control problem.
In [11], the authors present a cloud-supported approach to
multi-agent optimization.

In this paper, we present a multi-agent control scheme where
inter-agent communication is completely replaced by the use
of a shared information repository hosted on a cloud. Differ-
ently than in traditional event-triggered coordination schemes,
here each agent schedules its own cloud accesses indepen-
dently, and does not need to be alert for information broadcast
by other agents. When an agent accesses the repository, it
uploads some data packets, and downloads other packets that
were previously deposited by other agents. Therefore, each
agent receives only outdated information about the state of the
other agents. The control law and the rule for scheduling the
cloud accesses are designed to guarantee that the closed-loop
system is well-posed and achieves the control objective, in
spite of only using outdated information. Our analysis extends
the use of the edge Laplacian [12], [13] to second-order
directed networks, which allows us to consider control tasks
with asymmetric information flow among the agents, such
as leader-following tasks. With respect to the related works
[14]–[17], this paper introduces cloud support for multi-agent
systems with second-order dynamics. Moreover, differently
than [16], [17], here we consider additive disturbances (both
persistent and vanishing) on the agent dynamics.

With respect to centralized solutions for multi-agent coordi-
nation, the proposed cloud-supported control scheme presents
several important advantages: the computational burden can
be distributed between the agents and the cloud according to
the available resources; the architecture can be made resilient
to failures of individual subsystems; fall-back local control
laws can be used to put the agents in a failsafe state in
case the communication with the cloud is temporarily lost;
the framework can be also used for tasks that require the
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agents to perform local computations between two consecutive
cloud accesses. We wish to emphasize that the proposed cloud-
supported control scheme is, conversely to what happens to a
centralized one, scalable with the number of agents. Indeed,
each agent can carry its own computational resources, while
performing only local computations. The amount of such
computation does not scale with respect to the number of
agents added to the overall system. Indeed, at any cloud access,
only the data referred to a single agent is communicated
and processed. The only centralized resource that grows with
respect to the number of agents is the memory of the cloud,
which scales linearly. Moreover, the proposed setup differs
from existing control schemes for asynchronous consensus
algorithms with communication delays, e.g. [18], in that the
delay in the information acquisition is not an undersired
exogenous phenomenon, but it is induced by the control policy
itself. In particular, the proposed scheduling policy aims at
prolonging as much as possible the interval between two
consecutive cloud connections of the same agent, in order to
reduce the total number of communication instances.

Our motivating application is a waypoint generation al-
gorithm for formation control of AUVs, which, as described
above, represents a challenging application, since underwater
communication is interdicted: the traditional event-triggered
communication schemes are not applicable, since the AUVs
are isolated while navigating underwater, and even if one
vehicle emerges to broadcast a message, the other vehicles
would be unable to receive it. Instead, with the proposed cloud-
supported scheme, each vehicle can access the cloud repository
while on the water surface, thus being able to download data
previously uploaded by different agents.

The rest of this paper is organized as follows. In Sec-
tion II, we present some background notation and results.
In Sections III and IV, we present the system model and
outline the control strategy. In Section V, we state our main
result, whose proof is given in Sections VI, VII and VIII.
Section IX corroborates the theoretical results by presenting
two numerical simulations of the proposed control strategy.
Finally, in Section X, we present our conclusions and some
directions for future research.

II. PRELIMINARIES

The set of the positive real numbers is denoted as R++.
The operator ‖·‖ denotes the Euclidean norm of a vector and
the corresponding induced norm of a matrix. The operator
⊗ denotes the Kronecker product. For the properties of the
Kronecker product, we refer the reader to [19]. The n-by-n
identity matrix is denoted as In, while the n-by-m matrix
whose entries are all zero is denoted as 0n×m. Similarly, the
column vector with n zero entries is denoted as 0n. For a
matrix M ∈ Rm×n, the entry in the ith row and jth column
is denoted as {M}ij , while eig(M) is the set of the distinct
eigenvalues of M .

In this paper, a graph is defined as a triple G = (V, E , w),
where V = {1, . . . , N} with N ∈ N, E ⊆ V × V with the
constraint (i, i) /∈ E for all i ∈ V , and w : E → R++.
Each element of V is called a vertex, and each element of
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Fig. 1. A graph with 4 nodes and 5 edges. The nodes and the edges are
labeled with their indexes.

E is called an edge. For each edge (j, i), the value w(j, i) is
called the weight of that edge. This type of graph is known
in the literature as a simple weighted digraph [20]. The edges
are denoted as e1, . . . , eM , where M is the number of edges
in the graph. For each edge eι, we denote as head(eι) and
tail(eι) respectively the first and the second node of the edge.
A graph is illustrated by representing each vertex as a circle
and each edge e as an arrow from tail(e) to head(e). For
example, Figure 1 illustrates a graph with 4 vertexes and
5 edges, each labeled with its index (the weights of the
edges are not represented). For each vertex i ∈ V , the set
Ni = {j ∈ V : (j, i) ∈ V} is called the neighborhood
of i, and the vertexes j ∈ Ni are called the neighbors of
i. Moreover, the sets E ini = {e ∈ E : head(e) = i},
Eouti = {e ∈ E : tail(e) = i} are called respectively the
edge in-neighborhood and edge out-neighborhood of vertex
i. A path from a vertex i1 to a vertex iP is a sequence
of distinct vertexes i1, . . . , iP such that (ik, ik+1) ∈ E for
each k = 1, . . . , P − 1. The incidence matrix is defined as
B ∈ RN×M such that {B}iι = 1 if eι ∈ E(in)i , {B}iι = −1

if eι ∈ E(out)i , and {B}iι = 0 otherwise. We also introduce
the matrix C ∈ RN×M such that {C}iι = w(eι) if eι ∈ E(in)i

and {C}iι = 0 otherwise. The Laplacian matrix is defined as
L = CBᵀ. A spanning tree is a subset T ⊆ E of the edges
with the following properties: (i) there exists a vertex i0 such
that there exists a path from i0 to any other vertex in the graph
made up of edges in T ; (ii) the property (i) does not hold for
any proper subset of T . The vertex i0 is called the root of
the spanning tree T . If a spanning tree exists, then it contains
exactly N − 1 edges. For a graph containing a spanning tree,
we take without loss of generality T = {e1, . . . , eN−1}, and,
following [13], we define BT as the full column-rank minor
of B made up of the first N − 1 columns.

III. SYSTEM MODEL

A. Agent Model

We consider a network of N autonomous agents indexed
as 1, . . . , N , and we let V = {1, . . . , N}. Each agent i has a
position pi(t) ∈ Rn and a velocity vi(t) ∈ Rn, which evolve
according to

ṗi(t) =vi(t), (1a)
v̇i(t) =ui(t) + di(t), (1b)

where ui(t) ∈ Rn is a control input, and di(t) ∈ Rn is a
disturbance input.



ADALDO et al.: CLOUD-SUPPORTED COORDINATION OF SECOND-ORDER MULTI-AGENT SYSTEMS 3

Assumption III.1. The disturbance signals di(t) in (1) satisfy
‖di(t)‖ ≤ δ(t), where

δ(t) = (δ0 − δ∞)e−λδt + δ∞, (2)

for some 0 ≤ δ∞ ≤ δ0 and λδ > 0.

Assumption III.1 allows to consider scenarios where only a
constant upper bound is known (δ0 = δ∞) as well as scenarios
where the disturbances vanish exponentially (δ∞ = 0).

B. Control Objective

The control objective is to bring the agents to a formation
defined by the bias vectors b1, . . . , bN ∈ Rn, in the sense
that, for all i ∈ V , we have pi(t) → p̄(t) + bi, where p̄ is
the average position, and vi(t) → v̄(t), where v̄(t) is the
average velocity. This objective can be cast as the practical
second-order consensus over a given graph of the unbiased
positions pi(t)−bi and of the velocities vi(t). To formalize this
control objective mathematically, let G be a graph containing a
spanning tree T , and let BT be the incidence matrix associated
to the edge in the tree. Define the edge states of the network as
x(t) = (BT ⊗ In)(p(t)− b) and y(t) = (BT ⊗ In)v(t), where
we have denoted p(t) = [p1(t)ᵀ, . . . , pN (t)ᵀ]ᵀ, and similarly
for b and v(t). Finally, let ξ(t) = [x(t)ᵀ, y(t)ᵀ]ᵀ. We say that
the multi-agent system (1) achieves practical consensus over
G if there exists χ ≥ 0 such that

lim sup
t→∞

‖ξ(t)‖ ≤ χ. (3)

In particular, if the system achieves practical consensus with
χ = 0, we say that the system achieves asymptotic consensus.
In the rest of the paper, we take bi = 0n for all i ∈ V to avoid
clutter in the notation. The results extend trivially to the case
of nonzero bias vectors.

C. Cloud Repository

The agents cannot exchange any information directly, but
can only upload and download information on a shared
repository hosted on a cloud, which is accessed intermittently
by each agent and asynchronously by different agents. The
topology of the information exchanges happening through
the cloud is described by a network graph G = (V, E , w):
each vertex represents one of the agents, and each agent i
downloads the information uploaded by its neighbors j ∈ Ni
in the graph.

Assumption III.2. The network graph G is time-invariant and
contains a spanning tree.

When an agent accesses the cloud, it also has access to a
sampled measurement of its own state. The time instants when
agent i accesses the cloud are denoted as ti,k, with k ∈ N,
and by convention ti,0 = 0 for all the agents. For convenience,
we denote as li(t) the index of the most recent access time of
agent i before time t, i.e.,

li(t) = max{k ∈ N : ti,k ≤ t}. (4)

The measurement obtained by agent i upon the time instant ti,k

agent 1 2 . . . N
last access t1,l1 t2,l2 . . . tN,lN

position p1,l1 p2,l2 . . . pN,lN
velocity v1,l1 v2,l2 . . . vN,lN
control u1,l1 u2,l2 . . . uN,lN

next access t1,l1+1 t2,l2+1 . . . tN,lN+1

Table III-C. Data contained in the cloud at a generic time
instant t ≥ 0. The i-th column corresponds to the latest
packet uploaded by agent i. The time dependence of the
functions li is omitted to keep the notation agile.

is denoted as xi,k. The control signals ui(t) are held constant
between two consecutive cloud accesses:

ui(t) = ui,k ∀t ∈ [ti,k, ti,k+1). (5)

The data contained in the cloud at a generic time instant is
represented in Table III-C. When an agent accesses the cloud,
it uploads data that other agents may download later, when
they, in turn, access the cloud. Namely, when agent i accesses
the cloud at time ti,k, it uploads a packet containing the
following information: the current time ti,k, the measurements
pi,k and vi,k, the value ui,k of the control input that is going
to be applied in the time interval [ti,k, ti,k+1), and the time
ti,k+1 of the next access. This packet overwrites the packet
that was uploaded on the previous access, thus avoiding that
the amount of data contained in the cloud grow over time.
When agent i accesses the cloud at time ti,k, it downloads
and stores the latest packet uploaded by each agent j ∈ Ni.
This information, together with the measurements pi,k and
vi,k, is used by agent i to compute its control input ui,k for
the upcoming time interval [ti,k, ti,k+1), and to schedule the
next cloud access ti,k+1. If the cloud is endowed with some
computational capabilities, it may also compute some global
information about the state of the system for the agents to
download. In this case, the cloud provides a positive scalar
η̂i,k, which represents an upper bound on ‖ξ(t)‖. This estimate
is formally defined in Section IV. However, as we shall see,
this information is not necessary to the convergence properties
of the closed-loop system, but can be introduced purely for
performance improvement.

To better illustrate the access sequence and the correspond-
ing notation, Figure 2 shows a possible sequence of cloud
accesses on the time line. Note that, in the scenario depicted
in Figure 2, agent j surfaces and changes its control input
more than one time within the interval [ti,k, ti,k+1) . Agent i
does not know the control input that agent j will apply after
tj,hj+1, nor it knows whether agent j will surface more times
after tj,hj+1. Our scheduling algorithm is able to guarantee
the overall system’s convergence in spite of these limitations.

The operations that each agent i performs upon each cloud
access ti,k are summarized as the following Algorithm 1.

Remark III.1. In most existing self-triggered control proto-
cols for multi-agent coordination, when one agent updates its
control input, such information is broadcast immediately to
that agent’s neighbors, which requires the neighbors to always
be alert for possibly incoming information. Conversely, in the
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tj,lj(ti,k)

ti,k

tj,lj(ti,k)+1 tj,lj(ti,k)+2

ti,k+1

Fig. 2. Excerpt of a possible sequence of cloud accesses on the time line.
Recall that tj,lj(t) denotes the most recent cloud access of agent j with
respect to the time t. Note that there can be more than one access of agent j
between two consecutive accesses of agent i.

Algorithm 1 Operations executed by agent i at time ti,k.
download measurements pi,k and vi,k
for j ∈ Ni do

download packet {tj,lj , pi,lj , vi,lj , uj,lj , tj,lj+1}
end for
download η̂i,k
compute control input ui,k
schedule next access ti,k+1

upload packet {ti,k, pi,k, vi,k, ui,k, ti,k+1}

proposed cloud-based framework the agents do not need to be
alert for incoming information, because they only acquire new
information on the scheduled cloud accesses.

D. Controller

The control inputs ui,k are computed through a second-order
Laplacian flow of predicted states, where the predictions are
based on the sample measurements acquired from the cloud,
and on assuming that no disturbances are acting on the agents.
Namely, we let v̂i,kj (t) (respectively, p̂i,kj (t)) be the velocity
(respectively, position) of agent j at time t as predicted by
agent i upon its kth access to the cloud. These predictions
are computed by agent i using the data downloaded from the
cloud about agent j as follows:

v̂i,kj (t) = vj,lj(ti,k) + (t− tj,lj(ti,k))uj,lj(ti,k)
for t ∈ [ti,k, tj,lj(ti,k)+1),

(6a)

v̂i,kj (t) = v̂i,kj (tj,hj(ti,k)+1) for t > tj,lj(ti,k)+1, (6b)

p̂i,kj (t) = pj,lj(ti,k) +

∫ t

tj,lj(ti,k)

v̂i,kj (τ)dτ. (6c)

Note that the predictions (6) are obtained by integrating the
agent dynamics (1) in the time interval [tj,lj(ti,k), t], while
neglecting the effect of the disturbances. Finally, the control
input ui,k is computed as

ui,k =
∑
j∈Ni

wij(kp(p̂
i,k
j (ti,k)− pi,k) + kv(v̂

i,k
j (ti,k)− vi,k)),

(7)

where kp and kv are positive gains, Ni is the set of the neigh-
bors of agent i in the network graph, and wij = w(j, i) > 0
is the weight of edge (j, i).

E. Dynamics of the Edge States

Since the controller is based on a Laplacian flow, it is
convenient to rewrite the system dynamics in terms of edge
states pj(t)− pi(t) and vj(t)− vi(t), where (j, i) is an edge

of the spanning tree in the network graph. Namely, define
the edge states x(t) and y(t) as in Section III-B, with BT
referred to the network graph. Using (1), the dynamics of the
edge states are described by

ẋ(t) =y(t), (8a)
ẏ(t) =(Bᵀ

T ⊗ In)(u(t) + d(t)), (8b)

where we have denoted u(t) = [u1(t)ᵀ, . . . , uN (t)ᵀ]ᵀ and
similarly for d(t).

IV. SELF-TRIGGERED CLOUD ACCESS SCHEDULING

Each agent schedules its own access to the cloud recur-
sively; that is, agent i schedules the access ti,k+1 when it
accesses the cloud at time ti,k. The scheduling is based on
computing an upper bound σi,k(t) on the difference ũi(t)
between the actual control signal ui,k and an ideal diffusive
coupling control, defined as

zi(t) =
∑
j∈Ni

wij(kp(pj(t)− pi(t)) + kv(vj(t)− vi(t))). (9)

When the error bound becomes larger than a given threshold
function (given later in (10)), a cloud access is triggered, so
that the control error is reset to a lower value thanks to the new
data acquired from the cloud. Following [21], the threshold
function is chosen as

ς(t) = ς∞ + (ς0 − ς∞)e−λςt, (10)

with λς > 0 and 0 ≤ ς∞ < ς0.

Remark IV.1. Note that the parameters ς0, ς∞ and λς rep-
resent a tradeoff between convergence performance and the
number of control updates: smaller values of ς∞ lead to
a smaller convergence radius, but possibly induce a larger
number of control updates; smaller values of ς0 and larger
values of λς lead to faster convergence rate, but possibly
induce a larger number of control updates.

Next, we complete the definition of our control algorithm
by giving the expression for σi,k(t) and the scheduling law.
Note that σi,k(t) needs to account for the effect of the
unknown disturbances, for the control error induced by the
sampling, and for the fact that the control input applied by
a neighbor becomes unknown after tj,lj(ti,k)+1. Therefore,
σi,k(t) is defined by aggregating three functions that capture
these effects. To capture the effect of the disturbances, let

Ωi,k(t) = kv

∫ t

ti,k

δ(τ)dτ + kp

∫ t

ti,k

∫ τ

ti,k

δ(θ)dθdτ, (11)

Ψi,k(t) =
∑
j∈Ni

wij(Ωi,k(t) + Ωj,lj(ti,k)(t)). (12)

To capture the effect of the sampling, let

Θi,k(t) =

∥∥∥∥∑
j∈Ni

wij(kp(p̂
i,k
j (t)− p̂i,ki (t))

+ kv(v̂
i,k
j (t)− v̂i,ki (t)))− ui,k

∥∥∥∥.
(13)

To capture the effect of some neighbors’ inputs being un-
known, we shall construct an upper bound to apply to the
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unknown control inputs. To this aim, let R = Bᵀ
T CT

ᵀ, where
L is the Laplacian matrix of the network graph, and T is such
that B = BT T . (Note that, under Assumption III.2 such a
matrix T exists, since BT is full rank.) Then, let

H =

[
0(N−1)×(N−1) IN−1
−kpR −kvR

]
, (14)

where kp and kv are the control gains used in (5). Under
Assumption III.2, it is always possible to choose these gains in
such a way that H is Hurwitz (the interested reader is referred
to the Appendix for the proof), and throughout the rest of the
paper we shall assume that they are indeed chosen to make H
Hurwitz. Let λ = −max{Re(λH) : λH ∈ eig(H)} and

η(η0, t0, t) =e−λ(t−t0)η0

+
√
N‖BT ‖

∫ t

t0

e−λ(t−τ)(ς(τ) + δ(τ))dτ.

(15)
As we shall see, η(η0, t0, t) constitutes an upper bound for
‖ξ(t)‖ whenever η0 ≥ ‖ξ(t0)‖, and it is mapped to an upper-
bound on the control signals: let

µi(t) = βiη(η0, 0, t) + ς(t), (16)

where η0 ≥ ‖ξ(0)‖ and βi = ‖CiT ᵀK‖, with Ci being the
ith row of C, and K = IN ⊗ [kp, kv]. Note that a suitable
η0 can be computed by knowing only some bounds on the
possible initial conditions. Finally, let N ′i,k(t) be the subset of
Ni containing the neighbors of i with unknown control input
at time t; namely, N ′i,k(t) = {j ∈ Ni : tj,lj(ti,k)+1 < t}.
The effect of the unknown control inputs of some neighbors
is captured by the function

Φi,k(t) =
∑

j∈N ′i,k(t)

wij

(∫ t

tj,lj(ti,k)+1

µj(t)dτ

+

∫ t

tj,lj(ti,k)+1

∫ τ

tj,lj(ti,k)+1

µj(θ)dθdτ

)
,

(17)

We can now define σi,k(t) as

σi,k(t) = Ωi,k(t) + Θi,k(t) + Φi,k(t), (18)

and the scheduling rule is given by

ti,k+1 = inf

{
t > ti,k : σi,k(t) ≥ ς(t) or Ωi,k(t) ≥ α

νi
ς(t)

}
,

(19)
where νi = maxq: i∈Nq{

∑
s∈Nq wsq} and α ∈ (0, 1).

Remark IV.2. The parameter α represents the fraction of the
tolerance ς(t) reserved to the control error caused by the
disturbances that have acted on the neighbors of agent i in
the interval [tj,h, ti,k). While the choice of α may influence
the number of control updates triggered by the algorithm, the
convergence properties hold for any α ∈ (0, 1).

Remark IV.3. Note that (19) can be evaluated by agent i
when it accesses the cloud (i.e., at time ti,k) and does not
require communication with the other agents. Note also that
σi,k(t) is a sum of only linear, quadratic or exponential
functions of (t−ti,k), (t−tj,h), and (t−tj,h+1), which can be

evaluated numerically with the information downloaded from
the cloud.

Improved scheduling for a cloud with computational ca-
pabilities. If the cloud has some computational capabil-
ities (although they are not needed for the convergence
of the proposed control scheme), then it may provide
the agents with a tighter upper-bound on ‖ξ(t)‖ than
η(η0, 0, t). Namely, consider the estimated states p̂(t) =

[p̂
1,l1(t)
1 (t)ᵀ, . . . , p̂

N,lN (t)
N (t)ᵀ]ᵀ and v̂(t) (defined similarly),

and let x̂(t) = (BT ⊗ In)p̂(t), ŷ(t) = (BT ⊗ In)v̂(t), and
ξ̂(t) = [x̂(t)ᵀ, ŷ(t)ᵀ]ᵀ. Moreover, let

∆i,k(t) =

∫ t

ti,k

δ(τ)dτ +

∫ t

ti,k

∫ τ

ti,k

δ(θ)dθdτ, (20)

∆(t) = [∆1,l1(t), . . . ,∆N,lN (t)]
ᵀ. (21)

Note that ξ̂(t) and ∆(t) (21) can always be computed in the
cloud, and, by the triangular inequality, ‖ξ(t)‖ ≤ ‖ξ̂(t)‖ +
‖BT ‖‖∆(t)‖. Hence, if the cloud provides η̂i,k = ‖ξ̂(ti,k)‖+
‖BT ‖‖∆(ti,k)‖, then agent i can use

µi(t) = βiη(η̂i,k, ti,k, t) + ς(t) (22)

in the scheduling law, instead of (16). However, such informa-
tion is used only for improving the performances, in the sense
of reducing the cloud accesses. The convergence properties of
the algorithm still hold if such information is not available,
because they only rely on µi(t) being a valid upper bound for
ui(t), which is true for both (16) and (22). Hence, in the rest
of the paper, all the proofs refer to the case that no global
information is computed by the cloud (i.e., (16) is used in the
scheduling). The case of η̂i,k being computed by the cloud
and shared with agent i upon access k is easily captured by
preliminarily observing that η(η̂i,k, ti,k, t) ≤ η(η0, 0, t).

V. MAIN RESULT

Our main result is formalized as the following theorem.

Theorem V.1. Consider the multi-agent system (1), with con-
trol law (5)–(7) and cloud accesses scheduled by (19). Let
Assumptions III.1 and III.2 hold, and let kp and kv be such
that H(14) is Hurwitz. If ς∞ > 0, the closed-loop system does
not exhibit Zeno behavior and achieves practical consensus
over the network graph with

χ =

√
N‖BT ‖(ς∞ + δ∞)

λ
, (23)

where ς∞ is the asymptotic value of the threshold function
(10), δ∞ is the asymptotic value of the disturbance bound (2),
λ is defined in Section IV, and BT is the incidence matrix of
the network graph. If δ∞ = 0, ς∞ = 0 and λς < min{λ, λδ},
then the closed-loop system does not exhibit Zeno behavior
and achieves asymptotic consensus over the network graph.

Remark V.1. Note that our convergence result (23) is similar
to that obtained in related works on event-triggered coor-
dination of multi-agent system, see for example [21]. Here,
however, convergence is obtained by using an asynchronously
accessed repository, rather than by direct inter-agent commu-
nication. Note also that the convergence error represented by
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χ is distributed across the whole network, which is reflected in
that χ grows with

√
N . Such dependence vanishes if we focus

on the mean square error attained by a single agent, which is
bounded by

√
χ2/N . Finally, note that the edge weights wij

influence the convergence radius χ through the parameter λ.

The proof of Theorem V.1 is given in the following three
sections of the paper. Namely, in Section VI, we study the
convergence properties of the closed-loop system, while, in
Section VII, we show that the closed-loop system does not
exhibit Zeno behavior [22]. Finally, in Section VIII we put
the results of Sections VI and VII together to state a formal
proof of Theorem V.1.

VI. CONVERGENCE PROOF

Our first step in the analysis of the closed-loop system is
to rewrite the closed-loop dynamics of the edge-state vector
ξ(t). First, we compare the control signals ui,k defined by (5)
with the ideal diffusive coupling zi(t). We can write zi(t) in
terms of the Laplacian matrix of the network graph as

zi(t) = −(Lᵀ
i ⊗ In)(kpp(t) + kvv(t)), (24)

where Lᵀ
i denotes the ith row of L. Letting z(t) =

[z1(t)ᵀ, . . . , zN (t)ᵀ]ᵀ, we can rewrite (24) in the compact form

z(t) = −(L⊗ In)(kpp(t) + kvv(t)). (25)

Now recall that L = CBᵀ, and that, since BT is full column
rank, there exists a matrix T such that B = BT T (namely,
T = Bᵀ

T (BT B
ᵀ
T )−1B). Therefore,

z(t) = −(CT ᵀBᵀ
T ⊗ In)(kpp(t) + kvv(t)). (26)

By the mixed-product property of the Kronecker product, (26)
can be rewritten in terms of the edge states as

z(t) = −(CT ᵀ ⊗ In)(kpx(t) + kvy(t)). (27)

Let ũi(t) be the mismatch between the control input of agent
i and zi(t), namely,

ũi(t) = ui(t)− zi(t). (28)

We denote ũ(t) = [ũ1(t)ᵀ, . . . , ũN (t)ᵀ]ᵀ, so that we can
rewrite (28) as

ũ(t) = u(t)− z(t). (29)

From (29) and (26), we have

u(t) = (CT ᵀ ⊗ In)(kpx(t) + kvy(t)) + ũ(t), (30)

which substituted in (8) yields

ẋ(t) = y(t), (31a)
ẏ(t) =− (Bᵀ

T ⊗ In)(CT ᵀ ⊗ In)(kpx(t) + kvy(t))

+ (Bᵀ
T ⊗ In)(ũ(t) + d(t)).

(31b)

Having introduced R = Bᵀ
T CT

ᵀ in Section IV, we can
use the mixed-product property of the Kronecker product to
rerwite (31) as

ẋ(t) = y(t), (32a)
ẏ(t) =− (R⊗ In)(kpx(t) + kvy(t))

+ (Bᵀ
T ⊗ In)(ũ(t) + d(t)).

(32b)

Recalling that ξ(t) = [x(t)ᵀ y(t)ᵀ]ᵀ, 26 and (32) can be
rewritten compactly as

z(t) =− ((CT ᵀK)⊗ In)ξ(t), (33)

ξ̇(t) =(H ⊗ In)ξ(t) + (G⊗ In)(ũ(t) + d(t)), (34)

where H is the Hurwitz matrix defined in (14), G =
[0ᵀ(N−1)×N , BT ]ᵀ, and K = IN ⊗ [kp, kv].

The following Lemma relates a bound on the control errors
ũi(t) to a bound on the state error vector ξ(t) and on the
control signals ui(t).

Lemma VI.1. Consider the multi-agent system (1), and let
Assumptions III.1 and III.2 hold. Suppose that

‖ũi(τ)‖ ≤ ς(τ) (35)

for all τ ∈ [0, t) and all i ∈ V , where ũi(·) is defined by (28)
and ς(·) is the threshold function (10). Then, for all τ ∈ [0, t),
we have ‖ξ(τ)‖ ≤ η(η0, 0, τ), where η(·, ·, ·) is defined by
(15), and ‖uj(τ)‖ ≤ µj(τ) for all j ∈ V .

Proof. The Laplace solution of (34) reads

ξ(τ) = eFe,rτξ(t0) +

∫ τ

0

eFe,r(τ−θ)(G⊗ In)(ũ(θ) + d(θ))dθ.

(36)
Taking norms of both sides in (36), and using (35), As-
sumption (III.1), the properties of the Kronecker product, and
the triangular inequality, and observing that ‖eFe,r(τ−t0)‖ ≤
e−λ(τ−t0), and that ‖G‖ = ‖BT ‖, we have ‖ξ(t)‖ ≤
η(η0, 0, t). Moreover, from (28), we have ui(τ) = zi(τ) +
ũi(τ). Taking norms of both sides, and using the triangular
inequality, we have ‖ui(τ)‖ ≤ ‖zi(τ)‖ + ‖ũi(τ)‖. Selecting
the rows corresponding to the jth agent in (33), we have
zj(τ) = ((CjT

ᵀK)⊗ In)ξ(τ), where Cj denotes the jth row
of C. Taking norms of both sides, and substituting the result
in the previous inequality, we have ‖uj(τ)‖ ≤ βj‖ξ(τ)‖ +
‖ũj(τ)‖. The proof is concluded by using ‖ξ(τ)‖ ≤ η(η0, 0, τ)
and (35), to obtain ‖uj(τ)‖ ≤ µj(τ).

The following Lemma VI.2 shows that, under the scheduling
rule (19), we can guarantee that ‖ũi(t)‖ ≤ ‖ς(t)‖ for all
agents, thus satisfying the hypotheses of Lemma VI.1.

Lemma VI.2. Consider the multi-agent system (1) under
the control law (5)–(7) and the scheduling rule (19). Under
Assumption III.1, ‖ũi(t)‖ ≤ ς(t) for all t ≥ 0 and all i ∈ V .

Proof. Since (19) guarantees σi,li(t)(t) ≤ ς(t) for all t ≥ 0
and all i ∈ V , we only need to show that ‖ũi(t)‖ ≤ σi,li(t)(t)
for all t ≥ 0 and all i ∈ V . Without loss of generality, let
li(t) = k, and consider t ∈ [ti,k, ti,k+1). Using (5) and (9) in
(28), we have

ũi(t) =ui,k −
∑
j∈Ni

wij(kp(pj(t)− pi(t)) + kv(vj(t)− vi(t)))

(37)
To show that ‖ũi(t)‖ ≤ σi,k(t), we shall break down the terms
vi(t), pi(t), vj(t) and pj(t) in (37). First, consider the term
vi(t). Integrating (1b) in [ti,k, t), and using (6a), we have

vi(t) = v̂i,ki (t) +

∫ t

ti,k

di(t)dτ. (38)
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Second, consider the term pi(t). Integrating (1a) in [ti,k, t),
we have

pi(t)− pi,k =

∫ t

ti,k

vi(τ)dτ, (39)

which using (38) and (6c) can be rewritten as

pi(t) = p̂i,ki (t) +

∫ t

ti,k

∫ τ

ti,k

di(θ)dθdτ. (40)

Third, consider the term vj(t). Without loss of generality, let
lj(ti,k) = h. Integrating (1b) for agent j in [tj,h, t), we have

vj(t) = vj,h +

∫ t

tj,h

uj(τ)dτ +

∫ t

tj,h

dj(τ)dτ. (41)

Here we need to distinguish two cases: namely t ≤ tj,h+1 or
t > tj,h+1. In the first case, we have uj(τ) = uj,lj(ti,k) for
all τ ∈ [ti,k, t), and therefore (41) becomes, also using (6a),

vj(t) = v̂i,kj (t) +

∫ t

tj,h

dj(τ)dτ. (42)

In the second case, we have uj(τ) = uj,lj(ti,k) for τ ∈
[ti,k, tj,lj(ti,k+1)), so we can rewrite (41) as

vj(t) = v̂i,kj (t) +

∫ t

tj,h+1

uj(τ)dτ +

∫ t

tj,h

dj(τ)dτ, (43)

where again we have also used (6a). Last, consider the term
pj(t). Integrating (1a) for agent j in [tj,h, t), and using (41),
we have

pj(t) =pj,h + (t− tj,h)vj,h

+

∫ t

tj,h

∫ τ

tj,h

(uj(θ) + dj(θ))dθdτ.
(44)

Again, we need to distinguish the two cases t ≤ tj,h+1 and
t > tj,h+1. In the first case, we have simply uj(θ) = uj,h for
all θ ∈ [tj,h, τ) and all τ ∈ [ti,k, t); therefore, (44) becomes,
using (6c),

pj(t) = p̂i,kj (t) +

∫ t

tj,h

∫ τ

tj,h

dj(θ)dθdτ. (45)

In the second case, the control input of agent j is not known for
t > tj,h+1, and therefore, it does not contribute to the estimate
p̂i,kj (t); namely, a few passages show that in this case, using
(6c), (44) becomes

pj(t) = p̂i,kj (t) +

∫ t

tj,h+1

∫ τ

tj,h+1

uj(θ)dθdτ +

∫ t

tj,h

∫ τ

tj,h

dj(θ)dθdτ.

(46)
Using (38), (40), (42), (43), (45) and (46) in (37), we have

ũi(t) =ui,k −
∑
j∈Ni

wij

(
kp

(
p̂i,kj (t) +

∫ t

tj,h

∫ τ

tj,h

dj(θ)dθdτ

− p̂i,ki (t)−
∫ t

ti,k

∫ τ

ti,k

di(θ)dθdτ

)
+ kv

(
v̂i,kj (t)

+

∫ t

tj,h

dj(τ)dτ − v̂i,ki (t)−
∫ t

ti,k

di(τ)dτ

))
−
∑

j∈N ′i,k(t)

wij

(
kv

∫ t

tj,h+1

uj(τ)dτ + kp

∫ t

tj,h+1

∫ τ

tj,h+1

uj(θ)dθdτ

)
.

(47)

Now we can take norms of both sides in (47), use the triangular
inequality, use Assumption III.1 to bound the disturbance
terms, and use ‖uj(τ)‖ ≤ µj(τ) to bound the unknown control
terms. Altogether, we obtain

‖ũi(t)‖ ≤ Θi,k(t) + Ψi,k(t) + Φi,k(t) = σi,k(t), (48)

where Θi,k(·), Ψi,k(·), Φi,k(t), and σi,k(·) have been defined
in Section IV. Observing that the scheduling rule (19) imposes
σi,k(t) ≤ ς(t) concludes the proof.

VII. WELL-POSEDNESS PROOF

The second step in our analysis is to prove that the closed-
loop system is well posed, in the sense that the sequence of
the updates ti,k for k ∈ N0 does not present Zeno behavior
for any of the agents. We are going to distinguish two cases,
namely ς∞ > 0 and ς∞ = 0, where ς∞ is the asymptotic value
of the threshold function (10).

Lemma VII.1. Consider the multi-agent system (1), with
control law (5)–(7) and cloud accesses scheduled by (19). Let
kp and kv be chosen in such a way that H is Hurwitz and
choose ς∞ > 0 in (10). Then, under Assumptions III.1 and
III.2, the closed-loop system does not exhibit Zeno behavior.

Proof. Without loss of generality, let t ∈ [ti,k, ti,k+1) and
h = lj(ti,k). We are going to show that there exists a lower
bound for the interval ti,k+1−ti,k. First consider the triggering
condition Ωi,k(t) ≥ (α/νi)ς(t). We can use (2) and (11) to
compute Ωi,k(t) explicitly as

Ωi,k(t) =
δ0 − δ∞
λδ

e−λδti,k
(
kv
(
1− e−λδ(t−ti,k)

)
+ kp

(
(t− ti,k) +

1− e−λδ(t−ti,k)

λδ

))
+ δ∞(t− ti,k)(kv + 0.5kp(t− ti,k)).

(49)

Since ς(t) can be lower-bounded as ς(t) ≥ ς∞, a necessary
condition to have Ωi,k(t) ≥ (α/νi)ς(t) is that the right-hand
side of (49) is larger than ς∞. This condition implies that t ≥
ti,k + τ∗i , where τ∗i is the smallest (strictly) positive solution
of

δ0 − δ∞
λδ

(
kv
(
1− e−λδτ

)
+ kp

(
τ +

1− e−λδτ

λδ

))
+ δ∞τ(kv + 0.5kpτ) = (α/νi)ς∞.

(50)

Now we produce a similar argument for the triggering con-
dition σi,k(t) ≥ ς(t). First consider the term Ψi,k(t). Note
that, evaluating (11) for agent j, and splitting the integration
interval [tj,h, t) into [tj,h, ti,k) and [ti,k, t), we have

Ωj,h(t) = Ωj,h(ti,k)+kv

∫ t

ti,k

δ(τ)dτ+kp

∫ t

ti,k

∫ τ

tj,h

δ(θ)dθdτ.

(51)
Splitting the integration interval [tj,h, τ) further in [tj,h, ti,k)
and [ti,k, t), we have

Ωj,h(t) = Ωj,h(ti,k)+Ωi,k(t)+kp

∫ t

ti,k

∫ ti,k

tj,h

δ(θ)dθdτ. (52)

Observing that δ(θ) ≤ δ0, and that ti,k − tj,h ≤ tj,h+1 − tj,h,
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we have
∫ ti,k
tj,h

δ(θ)dθ ≤ δ0τ
∗
j , where τ∗j denotes the smallest

(strictly) positive solution of (50), evaluated for agent j.
Hence, we can upper-bound (52) as

Ωj,h(t) ≤ Ωj,h(ti,k) + Ωi,k(t) + kpδ0τ
∗
j (t− ti,k). (53)

Thanks to the scheduling rule (19), we have Ωj,h(ti,k) ≤
(α/νj)ς(ti,k), which substituted in (53) yields

Ωj,h(t) ≤ (α/νj)ς(ti,k) + Ωi,k(t) + kpτ
∗
j (t− ti,k). (54)

Using (54) in (20), we can upper-bound Ψi,k(t) as

Ψi,k(t) ≤
∑
j∈Ni

wij

(
α

νj
ς(ti,k) + Ωi,k(t) + kpδ0τ

∗
j (t− ti,k)

)
.

(55)
Since, by the definition of νj ,

∑
j∈Ni(wij/νj) ≤ 1, we can

further bound (55) as

Ψi,k(t) ≤ ας(ti,k)

+

(∑
j∈Ni

wij

)
Ωi,k(t) + kpδ0

(∑
j∈Ni

wijτ
∗
j

)
(t− ti,k).

(56)
Next, consider the term Φi,k(t). Since η(η0, t0, t) is an upper-
bounded function of t, we can denote as η̄ largest value of
η(η0, t0, t) for t ≥ 0, which, by observing also that ς(t) ≤ ς0,
allows us to bound µj(t) as µj(t) ≤ βj η̄ + ς0. Consequently,
from (17), we have

Φi,k(t) ≤
∑

j∈N ′ik(t)

wij(βj η̄+ς0)
(
(t−tj,h+1)+0.5(t−tj,h+1)2

)
.

(57)
Last, consider the term Θi,k(t), and note that, using (7), it can
be written as

Θi,k(t) =

∥∥∥∥∑
j∈Ni

wi,j
(
kp(p̂

i,k
j (t)− p̂i,kj (ti,k)− p̂i,ki (t) + pi,k)

+ kv(v̂
i,k
j (t)− v̂i,kj (ti,k)− v̂i,ki (t) + vi,k)

)∥∥∥∥.
(58)

Using (6), the right-hand side of (58) can be rewritten as

Θi,k(t) =

∥∥∥∥∑
j∈Ni

wij

(
kv

(∫ t′j,h

ti,k

uj,hdτ −
∫ t

ti,k

ui,kdτ

)

+ kp

(∫ t′j,h

ti,k

∫ τ

ti,k

uj,hdθdτ −
∫ t

ti,k

∫ τ

ti,k

ui,kdθdτ

))∥∥∥∥,
(59)

where we have denoted t′j,h = min{t, tj,h+1} for brevity.
Since each control input is upper-bounded as ‖ui(t)‖ ≤
µi(t) ≤ βiη̄ + ς0, using the triangular inequality on the right-
hand side of (59), then summing side by side with (57), yields

Θi,k(t)+Φi,k(t) ≤
∑
j∈Ni

wij((βj + βi)η̄ + 2ς0)·

· (kv(t− ti,k) + 0.5kp(t− ti,k)
2
).

(60)

Now we can sum the right-hand sides of (60) and (55) to
obtain an upper bound for σi,k(t). To keep the notation
compact, note—considering also (49)—that this upper bound

only contains terms of the types t − ti,k, (t − ti,k)2 and
1− eλδ(t−ti,k), plus the term ας(ti,k), so that we can write

σi,k(t) ≤σ1(t− ti,k) + σ2(t− ti,k)2

+ σ3(1− e−λδ(t−ti,k)) + ας(ti,k),
(61)

with σ1, σ2, σ3 > 0. From (61), it is clear that a necessary
condition to have σi,k(t) ≥ ς(t) is

σ1(t− ti,k)+σ2(t− ti,k)2

+ σ3(1− e−λδ(t−ti,k)) + ας(ti,k) ≥ ς(t).
(62)

Since ς(t) ≥ ς(ti,k)− λς(ς0 − ς∞)(t− ti,k), (62) implies

(σ1+λς(ς0 − ς∞))(t− ti,k) + σ2(t− ti,k)2

+ σ3(1− e−λδ(t−ti,k)) ≥ (1− α)ς(ti,k).
(63)

Finally, observing that ς(ti,k) ≥ ς∞,(63) implies ti,k+1 ≥
ti,k+τ∗∗i , where τ∗∗i is the smallest (strictly) positive solution
of (σ1 +λς(ς0− ς∞))τ +σ2τ

2 +σ3(1− e−λδτ ) ≥ (1−α)ς∞.
Since ti,k+1 is defined as the smallest time when either
Ωi,k(t) ≥ ας(t) or σi,k(t) ≥ ς(t), and both these conditions
require a finite value of t − ti,k, we can conclude that the
scheduling law (19) does not induce Zeno behavior, and
guarantees a positive lower bound between two consecutive
updates.

Lemma VII.2. Consider the multi-agent system (1), with
control law (5)–(7), and cloud accesses scheduled by (19).
Let Assumptions III.2 and III.1 hold, with δ∞ = 0 in Assump-
tion III.1. Choose kp and kv such that H is Hurwitz, and
choose ς∞ = 0 and λς < min{λ, λδ}. Then, the closed-loop
system does not exhibit Zeno behavior.

Proof. Using δ∞ = 0 and λδ ≥ λς in (11), we obtain

Ωi,k(t) ≤ δ0
λς
e−λςti,k

(
kv
(
1− e−λς(t−ti,k)

)
+ kp

(
(t− ti,k) +

1− e−λς(t−ti,k)

λς

)) (64)

Moreover, observe that, with ς∞ = 0, the threshold function
can be written as

ς(t) = ς0e
−λςt = ς0e

−λςti,ke−λς(t−ti,k). (65)

Inequalities (64) and (65) show that the triggering condition
Ωi,k(t) ≥ (α/νi)ς(t) implies implies that t ≥ ti,k+τ∗i , where
τ∗i is the smallest (strictly) positive solution of

δ0
λς

((
kv +

kp
λς

)(
1− e−λςτ

)
+ kpτ

)
≥ ς0
νi
e−λςτ . (66)

Reasoning as in Lemma VII.1, we find again that (52) holds,
but since by hypothesis δ(θ) = δ0e

−λδθ ≤ δ0e
−λςθ, we

compute therein∫ t

ti,k

∫ ti,k

tj,h

δ(θ)dθdτ ≤ δ0
λς

(eλς(ti,k−tj,h)−1)e−λςti,k(t−ti,k).

(67)
Recalling that ti,k − tj,h ≤ tj,h+1 − tj,h ≤ τ∗j allows us to
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upper-bound (67) as (δ0/λς)(e
λςτ
∗
j −1)e−λςti,k(t−ti,k), which

substituted in (52) yields

Ωj,h(t) ≤Ωj,h(ti,k) + Ωi,k(t)

+ kp(δ0/λς)(e
λςτ
∗
j − 1)e−λςti,k(t− ti,k).

(68)

Similarly as done in Lemma VII.1, we can now use (68) in
(20), obtaining

Ψi,k(t) ≤ας(ti,k) +

(∑
j∈Ni

wij

)
Ωi,k(t)

+
kpδ0e

−λςti,k

λδ

(∑
j∈Ni

wijτ
∗
j

)
(t− ti,k).

(69)

Now note that, using (15) with δ∞ = 0 and ς∞ = 0, η(t)
can be upper-bounded by the slowest exponential among e−λt,
e−λςt and e−λδt. Since by hypothesis λς ≤ min{λ, λδ}, we
can write η(t) ≤ η̄e−λςt, where η̄ > 0 depends on the initial
conditions. Consequently, we can upper-bound the control
inputs as

‖ui(t)‖ ≤ βiη(t) + ς(t) ≤ (βiη̄ + ς0)e−λςti,k . (70)

Using (70) in (17), we have

Φi,k(t) ≤e−λςti,k
∑

j∈N ′ik(t)

wij(βj η̄ + ς0)·

·
(
(t− tj,h+1) + 0.5(t− tj,h+1)2

)
.

(71)

Similarly as done in Lemma VII.1, we can now sum (59) and
(71) side by side, then use the triangular inequality and (71)
to obtain

Θi,k(t)+Φi,k(t) ≤ e−λςti,k
∑
j∈Ni

wij((βj + βi)η̄ + 2ς0)·

·
((

kv +
kp
λς

)
(1− e−λς(t−ti,k)) + kp(t− ti,k)

)
.

(72)
By summing the right-hand sides of (69) and (72), considering
also (49), and observing that ς(ti,k) = ς0e

−λςti,k , we have an
upper bound for σi,k(t) in the form

σi,k(t) ≤(σ1(t− ti,k) + σ2(t− ti,k)2

+ σ3(1− e−λς(t−ti,k)))e−λςti,k + ας(ti,k).
(73)

From (73), we reason as in Lemma VII.1 to show that
σi,k(t) ≥ ς(t) implies t ≥ ti,k+τ∗∗i , where τ∗∗i is the smallest
(strictly) positive solution of σ1τ + σ2τ

2 + σ3(1 − e−λςτ ) +
ας0 = ς0e

−λςτ . Since ti,k+1 is defined as the smallest time
when either Ωi,k(t) ≥ ας(t) or σi,k(t) ≥ ς(t), and both these
conditions require a finite value of t−ti,k, we can conclude that
the scheduling law (19) does not induce Zeno behavior, and
guarantees a positive lower bound between two consecutive
updates.

VIII. PROOF OF THEOREM V.1

We are now ready to prove Theorem V.1 by using the results
developed in the previous two sections. From Lemma VI.2, we
know that, under the control law (5)–(7) and the scheduling
rule (19) the hypotheses of Lemma VI.1 are satisfied.

If δ∞ > 0, we know from Lemma VII.1 that the closed-
loop system does not exhibit Zeno behavior. Therefore,
we can take t → ∞ in (15) in Lemma VI.1, obtaining
lim supt→∞‖ξ(t)‖ ≤ χ with χ given by (23). If δ∞ = 0,
ς∞ = 0 and λς < min{λ, λδ}, we know from Lemma (VII.2)
that the closed-loop system does not exhibit Zeno behavior.
Therefore, we can take again t → ∞ in (15), obtaining
lim supt→∞‖ξ(t)‖ ≤ χ. But since δ∞ = ς∞ = 0, (23)
evaluates to zero, and therefore limt→∞ ξ(t) = 0.

IX. NUMERICAL SIMULATIONS

In this section, two numerical simulations of the proposed
control algorithm are presented, one for a scenario where
practical convergence is reached, and one for a scenario where
asymptotic convergence is reached. For both simulations, we
consider a multi-agent system made up of N = 4 agents
with state in R2, which exchange information through a cloud
repository according to the graph G illustrated in Figure 1,
where all the edges are assigned unitary weights. The assigned
graph contains a spanning tree T made up of the first three
edges. The corresponding matrix R is

R =

 2 0 −1
−1 2 1
0 −1 1

 . (74)

The control gains are chosen as kp = 0.5 and kd = 1.0,
which leads to λ = −max{Re(s) : s ∈ eig(H)} = 0.5 and
‖BT ‖ ' 2.45. The disturbances are chosen as

di(t) = δ(t)

[
cos(2π(i/N)t+ 2π((N − i)/N))
sin(2π(i/N)t+ 2π((N − i)/N))

]
, (75)

where δ(t) is defined by Assumption III.1 with δ0 = 0.2,
λδ = 0.45, δ∞ = 0.02 in the first simulation, and δ∞ = 0
in the second simulation. It is easy to see that, with these pa-
rameters, Assumption III.1 is satisfied. The threshold function
is chosen as (10), with ς0 = 5.0, λς = 0.4, ς∞ = 0.5 for the
first simulation, and ς∞ = 0 for the second simulation. Note
that, with these choices, the first simulation scenario satisfies
the hypotheses of Theorem V.1 for practical consensus, and
the second simulation scenario satisfies the hypotheses of
Theorem V.1 for asymptotic consensus. For the coefficient α
that appears in (19), we choose α = 0.05. The upper bounds
on the control signals are computed as (22).

The results of the first simulation are illustrated in Figure 3.
From Figure 3 it looks clear that the multi-agent system
only achieves practical convergence, but the norm of the
disagreement vector is significantly reduced. From Figure 3,
we can also see that the cloud accesses do not accumulate;
on the contrary, they seem to become less frequent over
time, which corroborates the result that the closed-loop system
does not exhibit Zeno behavior. The results of the second
simulation are illustrated in Figure 4. From Figure 4 it looks
clear that ξ(t)→ 0, which means that asymptotic convergence
is reached. From Figure 4, we can also see that the cloud
accesses do not accumulate even if the threshold function is
converging to zero, which again corroborates the result that
the closed-loop system does not exhibit Zeno behavior.
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Fig. 3. Simulation with persistent disturbances. Top: position mismatches
across the edges (j, i) in the spanning tree over time. Middle: time instants
when each agent accesses the cloud; a green cross denotes an access triggered
by Ωi,k(t) ≥ α/νiς(t); a red cross denotes an access triggered by σi,k(t) ≥
ς(t). Bottom: norm of the global disagreement vector ξ(t) over time.
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Fig. 4. Simulation with asymptotically vanishing disturbances. Same subplots
as in Figure 3.

X. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper has addressed a self-triggered control problem
for multi-agent coordination of a team of agents with second-
order dynamics. Coordination has been achieved by having the
agents asynchronously deposit and retrieve data on a cloud
repository, rather than by inter-agent communication. Two
control objectives have been considered, namely practical and
asymptotic convergence. It has been shown that the proposed
control strategy achieves practical convergence in the presence
of unknown bounded persistent disturbances, and asymptotic
convergence in the presence of unknown disturbances if they
slowly vanish. Well-posedness of the closed-loop system has

been proved by showing that there is a lower bound for the
time interval between two consecutive accesses to the cloud.
The proposed scheme can be adopted in all cases when direct
communication among agents is interdicted, as illustrated in
our motivating example of controlling a fleet of AUVs.

Future work will address possible imperfections in the
communication with the repository, such as time delays and
packet losses, as well as more complex control objectives.

APPENDIX - PROOF THAT H IS HURWITZ

Consider the matrix F =

[
0N×N IN
−kpL −kvL

]
, where L is

the Laplacian matrix of the graph G. A well known result
in multi-agent coordination is that, under Assumption III.2,
kp and kv can always be chosen in such a way that F has
exactly 2(N−1) eigenvalues with negative real parts (counted
with their multiplicities) and a double eigenvalue in zero [23].
But H ∈ R2(N−1)×2(N−1), therefore, it has exactly 2(N −
1) eigenvalues (counted with their multiplicity). Therefore, if
we show that F and H have the same nonzero eigenvalues
with the same multiplicities, then we can conclude that H is
Hurwitz. Using the rule for the determinant of block-diagonal
matrices1, we can compute the characteristic polynomial of F
is

P(λ) = det(λI2N − F ) = det
(
λ2IN + (λkv + kp)L

)
,
(76)

which for λ 6= 0 can be written as

P(λ) = λ2N det
(
IN + (λkv + kp)/λ

2L
)
. (77)

Now consider the matrix Fe =

[
0M×N IM
−kpLe −kvLe

]
, where

Le = BᵀC is the edge Laplacian of G. Similarly as done
for F , we can compute the characteristic polynomial of Fe as

Pe(λ) = det
(
λ2IM + (λkv + kp)Le

)
, (78)

which for λ 6= 0 can be rewritten as

Pe(λ) = λ2M det
(
IM + (λkv + kp)/λ

2Le
)
. (79)

Since L = CBᵀ and Le = BᵀC, by (77), (79) and Sylvester’s
determinant identity2, we have P(λ)/λ2N = Pe(λ)/λ2M for
any λ 6= 0, which implies that F and Fe have the same
nonzero eigenvalues with the same multiplicity. Therefore, we
only need to prove that Fe and H have the same nonzero
eigenvalues with the same multiplicity. To this aim, consider
the matrix

S =

[
IN−1 0(N−1)×(M−N+1)

−T ᵀ IM−N+1

]
, (80)

and note that

SLeS
−1 =

[
R ∗

0(M−N+1)×(N−1) 0(M−N+1)

]
. (81)

1det

[
A B
C D

]
= det(AD −BC) whenever C and D commute [24]

2det(In +AB) = det(Im +BA) for appropriate n,m ∈ N [25]
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Multiplying the right-hand side of (78) by det(S) det
(
S−1

)
=

1, and using (81), we have

Pe(λ) = det
(
S(λ2IM + (λkv + kp)Le)S

−1)
= λ2(M−(N−1)) det

(
λ2IN−1 + (λkv + kp)R

)
= λ2(M−(N−1))Pe,r(λ),

(82)

where Pe,r(λ) is the characteristic polynomial of H . There-
fore, Fe and H have the same nonzero eigenvalues with the
same multiplicity, which concludes the proof.
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