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Abstract—This paper investigates event-triggered pinning con-
trol for the synchronization of complex networks of nonlinear
dynamical systems. We consider networks described by time-
varying weighted graphs and featuring generic linear interaction
protocols. Sufficient conditions for the absence of Zeno behavior
are derived and exponential convergence of a global normed error
function is proven. Static networks are considered as a special case,
wherein the existence of a lower bound for interevent times is also
proven. Numerical examples demonstrate the effectiveness of the
proposed control strategy.

Index Terms—Network analysis and control, networked control
systems, switched systems.

I. INTRODUCTION

N ETWORKS of dynamical systems are a suitable model
for many distributed phenomena in biology, social sci-

ences, physics, economics, and engineering [1], [2] and have
attracted much research interest in the last few decades [1]–[5].

Pinning control is a strategy to steer the collective behavior
of a multiagent system in a desired manner. In pinning control
problems, the goal is for a set of interconnected dynamical
systems to synchronize onto a given reference trajectory. The
reference trajectory is supposed to be a solution of the un-
coupled agents’ dynamics, known a priori, and corresponding
to some control objective. A small fraction of the agents is
selected in order to receive direct feedback control. Such agents
are called pins or pinned agents. The remaining agents are
influenced only through their connections with other agents.

Research on pinning control has been carried out from phys-
ical and engineering perspectives. The focus is usually on the
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design of adaptive pinning controllers [6]–[8], or on finding cri-
teria for the optimal selection of the agents to control [9]–[11],
or on finding sufficient conditions for synchronization [12]–
[14]. Such conditions usually relate to the agents’ dynamics,
the network topology, and the pinning scheme.

In many scenarios of multiagent coordination, the assump-
tion that the network topology is constant over time is unreal-
istic. Topology variations are due to imperfect communication
between agents, or simply the existence of a proximity range
beyond which communication is not possible. A large num-
ber of papers investigate synchronization [15]–[18] or pinning
control [19]–[21] under time-varying interaction topologies.
Note that communication failures can usually be regarded as
switching events. Therefore, a pinning control algorithm, which
is intended to be robust against such failures, can be designed
by considering the controlled network as a switched system.

Pinning control algorithms have been traditionally designed
under the hypothesis of continuous-time communication. In
many realistic network systems, however, such hypothesis is
not verified. Also, synchronized sampled communication is
hard to obtain. Event-triggered control was introduced to limit
the amount of communication instances for feedback systems
[22]. Recently, event-triggered control has been extended to
multiagent systems [23]–[29].

In a realistic multiagent control problem, several challenges
are present at the same time: nonlinear dynamics, exogenous
reference signals, limited communication capacity, and time-
varying interaction topology. In [30], the authors addressed the
problem of event-triggered pinning synchronization consider-
ing linear diffusive coupling and unweighted network topolo-
gies. In this paper, a more general setup is considered, namely,
weighted switching topologies with generic linear interactions
are investigated. A model-based and event-triggered pinning
control law is designed, which drives the agent states to an
a priori specified common reference trajectory. We derive a
set of sufficient conditions under which Zeno behavior [31]
is avoided and the agents achieve exponential convergence to
the reference trajectory. Static networks are studied as a special
case, for which we also prove that there exists a lower bound
for the interevent times in the sequences of updates of the
control signals. Differently from most existing works on event-
triggered multiagent control, we envision an implementation of
the control algorithm which does not require agents to exchange
state measurements at each update time. Agents exchange state
measurements only when they establish their connection. When
an agent updates its control signal to a new value, it is required
to broadcast its value to its neighbors in the network. In this
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way, it is possible for neighboring agents to predict each others’
states consistently.

The rest of this paper is organized as follows. In Section II,
we introduce some notation, formalisms, and properties that are
used in later sections. In Section III, we define the mathematical
model adopted to describe the network to be controlled: we
state the control objective and we give the expressions of the
proposed event-triggered control law. In Section IV, we prove
that the closed-loop system is well-posed and achieves the
control objective. In Section V, we provide some numerical
examples to illustrate the effectiveness of the proposed control
strategy, and compare it to a time-triggered control strategy.
Section VI presents some considerations on the robustness of
the proposed algorithm. Section VII concludes this paper with a
summary of our results and some possible future developments.

II. PRELIMINARIES

A. Notation and Mathematical Background

For x ∈ IRn, we denote x[N ] := [xT, . . . , xT]T ∈ IRnN . For
a symmetric square matrix A, A > 0 denotes that A is positive
definite and A ≥ 0 denotes that it is positive semidefinite.

Definition 2.1: A function f : (t, x) ∈ IR× IRn → IRn is
globally Lipschitz with Lipschitz constant Lf if for all t ∈
IR and all x, y ∈ IRn, it holds that ‖f(t, x)− f(t, y)‖ ≤
Lf‖x− y‖.

The Kronecker product is denoted as ⊗. We recall some
useful lemmas, which can easily be derived from [32].

Lemma 2.1: Let A ∈ IRn×n have eigenvalues λ1, . . . , λn

and eigenvectors v1, . . . , vn, and B ∈ IRm×m have eigenvalues
μ1, . . . , μm and eigenvectors u1, . . . , um. Then, A⊗B has
eigenvalues λiμj and eigenvectors vi ⊗ uj , i = 1, . . . , n, j =
1, . . . ,m.

Lemma 2.2: Consider 0 ≤ A1, A2 ∈ IRN×N , 0 < B1, B2 ∈
IRn×n, and 0 < c1, c2 ∈ IR. Then, c1(A1 ⊗B1) + c2(A2 ⊗
B2) > 0 if and only if A1 +A2 > 0.

Proof: Preliminarly, note that from Lemma 2.1, we
have that A ≥ 0, B > 0 implies A⊗B ≥ 0 and A⊗B >
0 ⇐⇒ A > 0, while from the equality (A⊗B)(C ⊗D) =
(AC)⊗ (BD), we have (x⊗ y)T[c1(A1 ⊗B1) + c2(A2 ⊗
B2)](x⊗ y) =c1(x

TA1x)(y
TB1y) + c2(x

TA2x)(y
TB2y) for

any x ∈ IRN , y ∈ IRn. Now suppose xT(A1 +A2)x = 0.
Since A1, A2 ≥ 0, this implies xTA1x = xTA2x = 0 which,
in turn, implies (x⊗ y)T[c1(A1 ⊗B1) + c2(A2 ⊗B2)](x⊗
y) =c1(x

TA1x)(y
TB1y) + c2(x

TA2x)(y
TB2y) = 0. Vice-

versa, suppose that A1 +A2 > 0. Then, at least one of
A1, A2 ≥ 0 must be positive definite and, consequently, at
least one of c1(A1 ⊗B1), c2(A2 ⊗B2) ≥ 0 must be positive
definite, which implies that their sum is positive definite. �

B. Graph Theory

We define a graph as a pair G = (V,W ) consisting of a set
of nodes V = {1, . . . , N} and a time-varying matrix W (t) =
{wij(t) ≥ 0} ∈ IRN×N . A graph is undirected if the weight
wij(t) = wji(t) for all i, j ∈ V and at all times t; it is simple
if wii(t) ≡ 0 for all i ∈ V .

In a simple undirected graph, two nodes i and j are said to be
neighbors or adjacent at time t if wij(t) >0. The value di(t) =

∑N
j=1 wij(t) is the degree of node i at time t. A path between

nodes i and j is a sequence of nodes, starting in i and ending
in j or vice-versa, such that every two consecutive nodes are
adjacent. A graph is connected if there exists a path between
any two of its nodes. If a graph is not connected, then its nodes
can be partitioned into subsets such that all resulting subgraphs
are connected. Each such subgraph is called a component of the
original graph.

The Laplacian matrix L(t) = {lij(t)} ∈ IRN×N is defined as

lij(t) =

{
di(t), if i = j,
−wij(t), if i �= j.

The Laplacian of any simple undirected graph is symmetric
with zero row sum and, therefore, the vector 1[N ] is always an
eigenvector with a zero eigenvalue. Also, it can be shown that
the Laplacian of such graphs is positive semidefinite and that
it has as many zero eigenvalues as components of the graph.
In particular, when the graph is connected, the Laplacian has
exactly one zero eigenvalue [5].

C. Pinning Control

For the pinning control problem, we extend the graph formal-
ism as follows.

Definition 2.2: Consider a simple and undirected graph G =
(V,W ) and a time-varying matrix P (t) = {pij(t) ≥ 0} with
pij(t) ≡ 0 for all i �= j. The triple Ga = (V,W, P ) is an aug-
mented graph. A node i for which pii(t) > 0 is pinned at time t.
We say that a component of the graph is pinned if it contains at
least one pinned node. We also say that Ga is pinned if all of its
components are pinned. The matrix P (t) is the pinning matrix
of Ga. For any two positive definite and unity-norm matrices
C,K ∈ IRn×n and any two positive scalars c, k > 0, the matrix

La(t) = c (L(t)⊗ C) + k (P (t)⊗K) (1)

is called augmented Laplacian of Ga. The smallest eigenvalue
of the augmented Laplacian is called augmented connectivity
of Ga.

Note that by construction, the augmented Laplacian is pos-
itive semidefinite and, therefore, its augmented connectivity is
non-negative. Since the augmented Laplacian is not necessarily
positive definite, the augmented connectivity may be zero.
The following lemma shows that positive definiteness of the
augmented Laplacian is determined only by the structure of the
augmented graph, and not by C,K or the scalars c, k.

Lemma 2.3: The augmented Laplacian La of the augmented
graph Ga is positive definite at time t if and only if Ga is pinned
at time t.

Proof: We are going to prove this property for c = k =
C = K = 1, which means that n = 1 and La(t) = L(t) +
P (t). Thanks to Lemma 2.2, the property extends automatically
to generic values of c, k, C,K. Moreover, since the statement
can be applied at any generic time instant, in the proof, we are
going to omit time-dependency.

Without loss of generality, suppose that the graph has m ≥ 1
components and the nodes are ordered so that consecutive
nodes belong to the same component. Namely, the first com-
ponent contains nodes n0 = 1, . . . , n1, the second component
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contains nodes n1 + 1, . . . , n2, and the last component contains
nodes nm−1 + 1, . . . , nm = N . With such node ordering, the
Laplacian is block-diagonal with m blocks L1, . . . Lm. Each
block can be seen as the Laplacian of the corresponding com-
ponent, which is connected by definition. Hence, each block has
exactly one zero eigenvalue. The corresponding eigenvector is
1[�i], where �i := ni − ni−1 is the dimension of the ith block
or, equivalently, the number of nodes in the ith component.
The pinning matrix P is diagonal by definition. Hence, the aug-
mented Laplacian is itself block-diagonal with m blocks L1 +
P1, . . . , Lm + Pm and, consequently, its eigenvalues are the
union of the eigenvalues of these blocks. Consider the generic
ith block Li + Pi. Since Li, Pi ≥ 0, we have xT(Li + Pi)x =
0 ⇐⇒ xTLix = 0 and xTPix = 0. The first condition holds
when x is a scalar multiple of 1[�i], while the second condition
holds when x has zero entries whenever Pi has nonzero entries.
Hence, both of them are satisfied at the same time by a nonzero
x only if Pi = 0, which means that the ith component is not
pinned. On the other hand, if the ith component is pinned, then
the ith block of La is positive definite. We can conclude that La

is positive definite if and only if Ga is pinned. �

III. PROBLEM STATEMENT

A. System Model and Control Objective

In this section, we define the multiagent system model,
the control objective, and the event-triggered control law. We
consider a network of N interconnected dynamical agents. The
state of the ith agent is denoted as

xi(t) :=
[
x
(1)
i (t), . . . , x

(n)
i (t)

]T
∈ IRn

and the control input applied to that agent is denoted as

ui(t) :=
[
u
(1)
i (t), . . . , u

(n)
i (t)

]T
∈ R

n.

The state of each agent evolves according to the nonlinear
control system

ẋi(t) = f (t, xi(t)) + ui(t), xi(0) = xi,0 (2)

with t ≥ 0. It is desired that the agents converge to the reference
trajectory r(t) ∈ IRn defined by

ṙ(t) = f (t, r(t)) , r(0) = r0 (3)

with t ≥ 0. We introduce the tracking errors ei(t) := r(t)−
xi(t) and the mismatches eij(t) := xj(t)− xi(t) = ei(t)−
ej(t). We also introduce the stack vectors

x(t) :=
[
x1(t)

T, . . . , xN (t)T
]T

e(t) :=
[
e1(t)

T, . . . , eN (t)T
]T

u(t) :=
[
u1(t)

T, . . . , uN (t)T
]T

r[N ](t) :=
[
r(t)T, . . . , r(t)T

]T
all belonging to IRNn. Moreover, we define

F (t, x(t)) :=
[
f (t, x1(t))

T , . . . , f (t, xN (t))T
]T

∈ IRNn.

For convenience, we denote η(t) := ‖e(t)‖. The control goal
is to achieve convergence of the agents’ states to the reference
trajectory, in the sense that

lim
t→+∞

η(t) = 0.

B. Control Strategy

To solve the problem stated before, we propose the following
piecewise-constant control signal for agent i in (2):

ui(t) = c

N∑
j=1

wij

(
t
(i)
ki

)
Ceij

(
t
(i)
ki

)

+ kpii

(
t
(i)
ki

)
Kei

(
t
(i)
ki

)
, t ∈

[
t
(i)
ki
, t

(i)
ki+1

)
(4)

where the matrices C,K > 0 and scalars c, k > 0 are design
parameters as in (1). Times t(i)ki

when signal ui(t) changes value
are events for agent i. Note that the control signal ui(t) is
piecewise-constant, since it is held constant over each interval
[t
(i)
ki
, t

(i)
ki+1). Introduce the errors

ẽij(t) := eij

(
t
(i)
ki

)
− eij(t)

ẽi(t) := ei

(
t
(i)
ki

)
− ei(t) (5)

for t ∈ [t
(i)
ki
, t

(i)
ki+1). The sequence {t(i)ki

}+∞
ki=0 is now defined

recursively as follows:

t
(i)
ki+1 :=inf

{
t>t

(i)
ki

:wij

(
t
(i)
ki

)
‖ẽij(t)‖≥ ς(t) for some j∈V

or wij(t) �= wij

(
t
(i)
ki

)
for some j ∈ V or

pii

(
t
(i)
ki

)
‖ẽi(t)‖ ≥ ς(t) or

pii(t) �= pii

(
t
(i)
ki

)}
(6)

where the threshold function ς(t) is defined as

ς(t) := ς0e
−λςt (7)

with ς0 and λς being given positive design parameters. All
sequences are initialized at t = 0. Note that the events related
to agent i include all of the instants when that agent establishes
or loses a connection with another agent or with the reference.
The control law (4) is now completely defined.

C. Control Implementation

Let us now discuss the implementation of the control law
(4)–(7). We assume that each agent i ∈ V at each update time
t
(i)
ki

computes the new control input ui(t
(i)
ki
) according to (4),

given the values wij(t
(i)
ki
) for all j ∈ V , eij(t

(i)
ki
) (with j being

a neighbor of i), pii(t
(i)
ki
), and ei(t

(i)
ki
) (if i is a pin). We also

assume that each agent i is equipped with predictors that can
locally estimate the dynamics (2) of the agents themselves.
When two agents i, j connect, they exchange their current states
xi, xj . With such information, they update their control inputs
ui, uj . According to (6), acquiring a new connection triggers
a control update. After the update, the agents broadcast their
newly computed control inputs to their respective neighbors.
Similarly, when the reference node r connects to agent i, it
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sends its own current state to that agent, which updates its
control input ui, and broadcasts it to its neighbors. Hence,
neighboring agents know each other’s state and control input
at each connection time. For each neighbor, j agent i runs a
state prediction by integrating the equation

˙̂x
(i)

j (t) = f
(
x̂
(i)
j (t), t

)
+ uj(t)

where x̂
(i)
j denotes the state of agent j predicted by agent i.

A similar prediction is run by agent i for its own state and,
if i is pinned, for the reference trajectory. Since the predictors
are based on the exact knowledge of the agent dynamics,
the predicted states x̂

(i)
j coincide with the real states xj(t).

Consequently, agent i estimates ẽij(t) according to (5) without
communicating continuously with neighbors, but predicting
xj(t) instead. Similarly, if agent i is pinned, it estimates ẽi(t)
according to (5) without continuously querying the reference.
Notice that having piecewise-constant control signals ui(t) im-
plies that interagent communication is only necessary at update
times, when a newly calculated control input is broadcast.
Hence, the control law (4) can be implemented locally, since
each agent relies only on information provided by neighboring
agents. Similarly, each agent i does not need to be aware of all
the events, such as topology switches, but only of those relative
to pii(t) and wij(t), with j being its neighbor before or after
the switch.

Remark 3.1: In the proposed implementation, we allow
neighboring agents to have up-to-date estimates of each others’
states. In principle, such estimates may be used to compute
time-continuous control signals, resembling those that would
be applied in traditional continuous-time consensus algorithms.
However, depending on the application, there can be reasons
to choose piecewise-constant control signals despite having
continuous state estimates at disposal. For example, it is not un-
common that continuously varying control signals are avoided
in order to reduce actuator wear, or even that the available
actuators are technologically unable to exert a continuously
varying control input. Moreover, if the agents were to use
continuously vary control inputs, the predictors embedded in
an agent would need to continuously receive information from
the neighbors of that agent.

IV. MAIN RESULTS

Consider here a special class of augmented graphs, called
switching augmented graphs.

Definition 4.1: The augmented graph Ga = {V,W, P} is
said to be switching if the matrices W (t) and P (t) are
piecewise-constant, that is, wij(t), pii(t) ≥ 0 are piecewise-
constant for all i, j ∈ V . A discontinuity point of wij(t) is
called a switch for the pair (i, j) and a discontinuity point of
pii(t) is called a switch for node i. A switching-augmented
graph is said to have a dwell time τd > 0 if two consecutive
switches relative to the same pair or the same node are separated
by a time greater than or equal to τd.

Note that in a switching augmented graph, the augmented
Laplacian is a piecewise-constant matrix and the augmented
connectivity is a piecewise-constant scalar.

We make the following assumptions.
Assumption 4.1: The function f in (2) and (3) is globally

Lipschitz with Lipschitz constant Lf > 0.
Assumption 4.2: The interactions among agents (2) and (3)

are described by a switching-augmented graph Ga = (V,W, P )
with dwell time τd > 0. Moreover, there exists constant positive
upper bounds w̄ij , p̄ii such that

0 ≤wij(t) ≤ w̄ij

0 ≤ pii(t) ≤ p̄ii

for all t ≥ 0 and for all i, j ∈ V .
Assumption 4.3: Let α(t) := λa(t)− Lf , where λa(t) is the

augmented connectivity of the augmented graph Ga defined as
in Assumption 4.2. There exist two positive constants T and ψ
such that

0 < λς < ψ ≤ 1

T

∫ t+T

t

α(τ)dτ.

Remark 4.1: To satisfy Assumption 4.3, it is not necessary
for the augmented graph to be always pinned. However, it is
necessary that there exists T > 0 such that within any finite
time window [t, t+ T ], the augmented graph is pinned for some
nonzero time interval. The intuition behind Assumption 4.3 is
that in order to guarantee convergence without inducing Zeno
[31], the control parameters should be designed in such a way
that the enforced convergence rate λς is slower than the natural
convergence rate of the network, which is quantified as ψ. If a
faster convergence rate is enforced, Zeno behavior may occur.

Theorem 4.1: Consider the pinning control system defined
by the dynamics (2), reference (3), and control law (4)–(7). If
Assumptions 4.1, 4.2, and 4.3 hold, then the event sequences
do not present accumulation points and the normed error η(t)
converges exponentially to zero.

Proof: We first prove that no accumulation points
of events occur. To do so, we note that Assumption 4.2
excludes this possibility for events generated by switches.
Still, we have to prove that there are no accumulation points
of events generated by conditions wij(t)‖ẽij(t)‖ ≥ ς(t) or
pii(t)‖ẽi(t)‖ ≥ ς(t).

Consider the closed-loop dynamics of the error

ėi(t) = ṙ(t)− ẋi(t)
= f (t, r(t))− f (t, xi(t))

− c

N∑
j=1

wij(t)C (eij(t) + ẽij(t))

− kpii(t)K (ei(t) + ẽi(t)) .

If we denote with li(t)
T and pi(t)

T, the ith row of the Laplacian
and the pinning matrix, respectively, we can rewrite the last
expression as

ėi(t) = f (t, r(t))− f (t, xi(t))
−
[(
cli(t)

T ⊗ C
)
+
(
kpi(t)

T ⊗K
)]

e(t)

− c

N∑
j=1

wij(t)Cẽij(t)− kpii(t)Kẽi(t). (8)
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Denoting the sum of the last two terms of the above equation
with ξi(t), we have

ėi(t) = f (t, r(t))− f (t, xi(t))

−
[(
cli(t)

T ⊗ C + kpi(t)
T ⊗K

)]
e(t)− ξi(t).

Denoting ξ(t) := [ξ1(t)
T, . . . , ξN (t)T]

T
, we can group the pre-

vious equations for i = 1, . . . , N as

ė(t) = F
(
t, r[N ](t)

)
− F (t, x(t))− La(t)e(t)− ξ(t)

where La(t) is the augmented Laplacian. From the trig-
gering condition (6), we have wij(t)‖ẽij(t)‖ < ς(t) and
pii(t)‖ẽi(t)‖ < ς(t). Therefore, taking into account that the
matrices C,K are unity-norm, we have

‖ξi(t)‖ ≤ (cdi(t) + kpii(t)) ς(t)

where di(t) is the degree of node i. Considering this inequality
for all i ∈ V , we can write

‖ξ(t)‖ ≤ Δ(t)ς(t) (9)

where

Δ(t) :=

√√√√ N∑
i=1

(cdi(t) + kpii(t))
2.

Then, we can write

e(t)Tė(t) = e(t)T
[
F
(
t, r[N ](t)

)
− F (t, x(t))

]
−e(t)TLa(t)e(t)− e(t)Tξ(t).

Assumption 4.1 and the upper bound (9) yield

e(t)Tė(t) ≤ Lfη(t)
2 − λa(t)η(t)

2 + η(t)Δ(t)ς(t)

which, if we introduce α(t) as in Assumption 4.3, can be
rewritten as

e(t)Tė(t) ≤ −α(t)η(t)2 + η(t)Δ(t)ς(t).

Hence

η̇(t) =
d

dt
‖e(t)‖ =

e(t)Tė(t)

‖e(t)‖ =
e(t)T ˙e(t)

η(t)

≤ − α(t)η(t) + Δ(t)ς(t). (10)

Applying the comparison lemma [33] to (10) over a time
interval [t, t+ T ) yields

η(t+ T ) ≤ e
−
∫ t+T

t
α(τ)dτ

η(t)

+

∫ t+T

t

e
−
∫ t+T

τ
α(σ)dσ

Δ(τ)ς(τ)dτ.

Under Assumption 4.2, we have

di(t) ≤ d̄i :=

N∑
j=1

w̄ij

and consequently

Δ(t) ≤ Δ̄ :=

√√√√ N∑
i=1

(cd̄i + kp̄ii)2

while under Assumption 4.3, we have
∫ t+T

τ

α(σ)dσ =

∫ t+T

t

α(σ)dσ −
∫ τ

t

α(σ)dσ

≥ψT − (τ − t)ᾱ

where

ᾱ := max
0≤wij(t)≤w̄ij , ∀i,j

0≤pii(t)≤p̄ii, ∀i

α(t).

Therefore, we can bound η(t+ T ) as

η(t+ T ) ≤ e−ψT η(t) + Δ̄e−ψT

∫ t+T

t

e(τ−t)ᾱς(τ)dτ.

Substituting ς(τ) with its expression (7), we obtain

η(t+ T ) ≤ e−ψT η(t) +
Δ̄e−ψT

(
e(ᾱ−λς)T − 1

)
ᾱ− λς

ς(t).

Note that Assumptions 4.2 and 4.3 guarantee that ᾱ− λς > 0.
For t = kT , we have

η ((k + 1)T ) ≤ aη(kT ) + bς(kT ) (11)

where a and b are the positive constants

a := e−ψT ,

b :=
Δ̄e−ψT

(
e(ᾱ−λς)T − 1

)
ᾱ− λς

.

From inequality (11), we can compute

η(kT ) ≤ akη(0) + b

k−1∑
h=0

ς(hT )ak−1−h.

Substituting the expressions of a and ς(kT ), we obtain

η(kT ) ≤ e−ψkT η(0) + bς0e
−ψ(k−1)T

k−1∑
h=0

e(ψ−λς)hT . (12)

By explicitly computing the summation in (12), we obtain

η(kT ) ≤ e−ψkT η(0) + bς0e
−ψ(k−1)T e(ψ−λς)kT − 1

e(ψ−λς)T − 1

≤ e−ψkT η(0) + bς0
eψT

e(ψ−λς)T − 1
e−λςkT .

Taking into account that λς < ψ yields

η(kT ) ≤
(
η(0) + bς0

eψT

e(ψ−λς)T − 1

)
e−λςkT

= k′ης(kT ) (13)
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where

k′η :=
η(0)

ς0
+ b

eψT

e(ψ−λς)T − 1
.

Observing that α(t) = λa(t)− Lf is lower-bounded by −Lf ,
we can write

η̇(t) ≤ Lfη(t) + Δ̄ς(t)

which integrates both sides over an interval [kT, t] with kT ≤
t < (k + 1)T , giving

η(t) ≤ eLf (t−kT )η(kT ) + Δ̄ς0

∫ t

kT

eLf (t−τ)eλςτdτ

≤ eLf (t−kT )η(kT )

+ Δ̄ς0e
Lf t

e−(Lf+λς)kT − e−(Lf+λς)t

Lf + λς

≤ eLfT

(
η(kT ) +

Δ̄

Lf + λς
ς(kT )

)
.

Together with (13), the previous inequality yields

η(t) ≤ k′′ης(kT )

where

k′′η := eLfT

(
k′η +

Δ̄

Lf + λς

)
.

As kT ≤ t < (k + 1)T , we have that ς(kT ) = eλςT ς((k +
1)T ) ≤ eλςT ς(t), which leads to

η(t) ≤ k′′ηe
λςT ς(t). (14)

The argument above is valid for all k = 0, 1, . . .; therefore,
inequality (14) is valid at all times t ≥ 0. Consider now the dy-
namics of ‖ėi(t)‖. From (8), we apply the triangular inequality,
which, considering Assumption 4.1 and that C,K are unity-
norm, yields

‖ėi(t)‖ ≤ (Lf ‖ei(t)‖+ (c‖li(t)‖+ kpii(t)) ‖e(t)‖
+ cdi(t) + pii(t)k) ς(t). (15)

Under Assumption 4.2, we have pii(t) ≤ p̄ii, di(t) ≤ d̄i, and

‖li(t)‖ ≤ l̄i :=

√√√√2

N∑
j=1

w̄2
ij .

Substituting these bounds into (15) and noting from (14) that
‖ei(t)‖ ≤ ‖e(t)‖ = η(t) ≤ k′′ηe

λςT ς(t), we can write

‖ėi(t)‖≤
[
(Lf+cl̄i+kp̄ii)k

′′
ηe

λςT +cd̄i+kp̄ii
]
ς(t)=Ωiς(t)

(16)
where

Ωi := (Lf + cl̄i + kp̄ii)k
′′
ηe

λςT + cd̄i + kp̄ii.

Now, observe that

ẽi(t) = −
∫ t

t
(i)

k

ėi(σ)dσ

and therefore

‖ẽi(t)‖ ≤
∫ t

t
(i)

k

‖ėi(σ)‖ dσ. (17)

Substituting (16) into (17) yields

‖ẽi(t)‖ ≤ Ωi

∫ t

t
(i)

ki

ς(τ)dτ ≤ Ωiς
(
t
(i)
ki

)(
t− t

(i)
ki

)
.

Hence, the inequality pii(t
(i)
ki
)‖ẽi(t)‖ ≥ ς(t) cannot be satisfied

as long as

Ωipii

(
t
(i)
ki

)
ς
(
t
(i)
ki

)(
t−t

(i)
ki

)
<ς(t)= ς

(
t
(i)
ki

)
e
−λς

(
t−t

(i)

ki

)

that is

Ωipii

(
t
(i)
ki

)(
t− t

(i)
ki

)
< e

−λς

(
t−t

(i)

ki

)
.

The above inequality is guaranteed in a nonempty inter-
val [t(i)ki

, t
(i)
ki

+ τ ], where τ > 0 solves the equation Ωip̄iiτ =

e−λςτ . Therefore, there exists a positive lower bound on the
time needed to have pii(t

(i)
ki
)‖ẽi(t)‖ ≥ ς(t) after t(i)ki

.
In the same way, it is possible to prove that there ex-

ists a lower bound on the interevent time needed to have
wij(t

(i)
ki
)‖ẽij(t)‖ ≥ ς(t) after t(i)ki

, by considering

ẽij(t) = −
∫ t

t
(i)

ki

ėij(σ)dσ =

∫ t

t
(i)

ki

(ėi(σ)− ėj(σ)) dσ

and

‖ẽij(t)‖ ≤
∫ t

t
(i)

ki

(‖ėi(σ)‖+ ‖ėj(σ)‖) dσ.

Therefore, we conclude that event sequences {t(i)ki
}+∞
ki=0 present

no accumulation points.
Exponential convergence of the error norm η(t) follows from

(14), and this concludes the proof. �
Remark 4.2: Since events can be generated by switches,

which are exogenous with respect to the agents’ dynamics,
two consecutive updates of signal ui—one caused by a switch
and one caused by pii(t

(i)
ki
)‖ẽi(t)‖ or some wij(t

(i)
ki
)‖ẽij(t)‖

meeting the threshold function, may be arbitrarily close in time.
For this reason, although we proved that no accumulation points
of events exist, our algorithm can still generate control updates
that are close. However, this would not be a Zeno behavior.

Definition 4.2: An augmented graph Ga = (V,W, P ) is
static if W (t) and P (t) are constant.

Note that in a static-augmented graph, all of the entries wij

and pii, respectively, of W and P are constant scalars, and so
is the degree di of node i for i = 1, . . . , N ; moreover, the aug-
mented Laplacian is a constant matrix La and the augmented
connectivity is a constant scalar λa. The following corollary
descends directly from Theorem 4.1.

Corollary 4.1: Consider the pinning control system defined
by the dynamics (2), reference (3), control law (4)–(7), and a
static-augmented graph Ga with augmented connectivity λa. If
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Fig. 1. Illustration of the augmented graph underlying the simulated network.
The blue vertices represent the interconnected agents and the red vertex
represents the reference. The blue edges represent interagent connections, while
the red dashed edges represent the time-varying actions that the reference exerts
on two of the agents.

Assumption 4.1 holds and 0<λς <α :=λa−Lf , then the in-

terevent times t(i)ki+1−t
(i)
ki

are lower-bounded by a positive con-
stant and the normed error η(t) converges exponentially to zero.

Remark 4.3: When the graph is static, less conservative
bounds can be derived for the normed error and the interevent
times. Namely, we find

η(t) ≤ kης(t)

with

kη :=
η(0)

ς0
+

Δ

α− λς

and

ωipii

(
t
(i)
ki+1 − t

(i)
ki

)
≥ e

−λς

(
t
(i)

ki+1
−t

(i)

ki

)

with

ωi := (Lf + c ‖li‖+ kpii) kη + cdi + kpii.

Here, Δ, li, di, and pii are defined as for a switching graph, but
they are all constant since the graph is static.

V. NUMERICAL EXAMPLES

In order to illustrate the effectiveness of the proposed control
algorithm, we apply it to a simulated network of N = 5
identical Chua oscillators [34]. The individual dynamics of each
oscillator is described by

f(x) =

⎡
⎣ a (x2 − x1 − φ(x1))

x1 − x2 + x3

−bx2

⎤
⎦ (18)

where

φ(y) := m1y +
1

2
(m0 −m1) (|y + 1| − |y − 1|) ∀y ∈ IR.

Choosing a = b = 0.9, m0 = −1.34, m1 = −0.73, the oscilla-
tors are globally Lipschitz with Lf =3.54. See [27] for details.
Let the controls be given by (4) with C = K = I3, interaction
gain c = 5, and control gain k = 30. All of the agents are
connected to each other with interaction weight wij = 1.

Fig. 1 provides an illustration of the augmented graph un-
derlying the simulated network. Our simulation is set on a time

Fig. 2. Second state variable x
(2)
i for all agents i = 1, . . . , 5 and reference

r(2), when no control input is applied. The state variables do not converge to
the reference.

Fig. 3. Same variables as in Fig. 2, but with the proposed control algorithm
applied. As predicted by our main result, all state variables converge to the
reference.

interval [0, 30]s. At the beginning of the experiment, two agents
are pinned with pii = 1, which yields λa = 6.14. At t = 0.75,
one pin is removed, so that λa = 2.88. At t = 0.90 s, the two
remaining pins are removed as well, which yields λa = 0. At
t = 1.0, the original pinning scheme is restored and the cycle
repeats itself every second. It is easy to see that Assumption 4.2
holds with τd = 1. If we set T = 1, we can calculate

ψ =
1

T

T∫
t

α(τ)dτ = 1.50.

For the threshold function, we pick ς0 = 1.0 and λς = 0.30, so
that Assumption 4.3 holds. For all of the agents, the initial state
values are chosen in the domain of attraction of an uncontrolled
Chua’s oscillator with the given parameters.

Fig. 2 shows the trend of the second state variable of all of
the agents and the reference when no control input is applied.
Fig. 3 shows the trend of the same state variables when the
proposed control input is applied. Fig. 4 shows in detail the
same state trajectories in the time interval [0.0, 1.0]. Fig. 5
shows the control updates for each of the agents during the
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Fig. 4. Second state variable x(2)
i for all agents i = 1, . . . , 5 and r(2) for the

reference, in the time interval [0.0,1.0], when the proposed control algorithm is
applied.

Fig. 5. Instants when a control update is triggered during the time interval
[0.0, 1.0]. The vertical positions of the markers indicate which agent updates its
control signal.

TABLE I
AVERAGE INTEREVENT TIME FOR EACH AGENT IN THE TIME INTERVAL

[0.0, 30.0], WITH THE PROPOSED CONTROL ALGORITHM APPLIED

first second of the simulation, while Table I shows the average
interevent time exhibited by each agent during the simulation.
It is possible to observe that the lowest of these values is above
0.05 s, which means that the agent that updates its control input
more often performs less than 20 updates/s on average.

To show the advantages of using an event-triggered control
law instead of a time-triggered control law, we also ran a
parallel simulation with time-triggered control updates. We
used the same network with the same initial conditions, but we
excluded the connection failures that characterized the original
simulation. We chose a fixed updating period for all of the
nodes, equal to 0.04 s. Hence, all of the nodes update their

Fig. 6. Second state variable x
(2)
i for all agents i = 1, . . . , 5 and r(2) for

the reference, when the control algorithm for robust bounded convergence is
applied.

control input more often, on average, than in the original
simulation. Despite more conservative settings, the closed-loop
system turned out to be unstable. Simulations are omitted here
for the sake of brevity.

VI. ROBUSTNESS

The previous sections focus on the scenario where exact
knowledge of the agents’ model is available. It was shown
that Zeno behavior can be avoided even if perfect convergence
is required. However, if disturbances or modelling errors are
present, we can modify the algorithm so that bounded conver-
gence can be achieved with the absence of Zeno behavior. We
define bounded convergence as

lim sup
t→∞

η(t) ≤ ε

for some ε >0. What needs to be changed in the algorithm is
the expression of the threshold function ς(t). In the absence
of disturbances, we set ς(t) = ς0e

−λςt which forces all of the
error signals to eventually shrink to zero. If disturbances are
present, we can set ς(t) = ς00 + ς0e

−λςt, which will force the
global error e(t) to converge to a ball of radius proportional to
ς0. Proof of a similar convergence result is given in [27].

To corroborate the considerations before, we reconsider the
example proposed in Section V and assume that the predictors
embedded in the agents’ controllers rely on the model (18), with
the parameters given in Section V. However, we assume that the
real agents have parameter b equal to 0.84, 0.88, 0.92, and 0.96,
respectively. The reference agent has b = 0.90. The threshold
function is modified as ς(t) = ς00 + ς0e

−λςt, with ς00 = 0.1.
Figs. 6–8 and Table II illustrate the results of the simulation.
We can see that bounded convergence is achieved and Zeno
behavior does not occur.

VII. CONCLUSION

We proposed an algorithm for event-triggered pinning syn-
chronization of complex networks with possibly switching
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Fig. 7. Second state variable x(2)
i for all agents i = 1, . . . , 5 and r(2) for the

reference, in the time interval [0.0, 1.0], when the algorithm for robust bounded
convergence is applied.

Fig. 8. Instants when a control update is triggered in the control algorithm for
robust bounded convergence, during the time interval [0.0, 1.0]. The vertical
positions of the markers indicate which agent updates its control signal.

TABLE II
AVERAGE INTEREVENT TIME FOR EACH OF THE AGENTS IN THE

TIME INTERVAL [0.0, 30.0], WHEN THE ALGORITHM FOR

ROBUST BOUNDED CONVERGENCE IS APPLIED

topologies. We found conditions for networked nonlinear sys-
tems with event-triggered controllers under which Zeno behavior
is excluded and the norm of the error signal vanishes expo-
nentially. A constant lower bound on the interevent times has
also been provided for the case of static networks. Numerical
examples have been presented to validate the theoretical results.

Some viable extensions of this work include the application
of the proposed algorithm to more general classes of networks,
such as networks with asymmetric couplings between the
agents and networks where errors in the communication can
occur, such as delays and packet drops.
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