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Abstract—This paper addresses the tracking control problem
of 3D trajectories for underactuated underwater robotic vehicles
operating in a constrained workspace including obstacles. More
specifically, a robust Nonlinear Model Predictive Control (NMPC)
scheme is presented for the case of underactuated Autonomous
Underwater Vehicles (AUVs) (i.e., unicycle-like vehicles actuated
only in surge, heave and yaw). The purpose of the controller
is to steer the unicycle-like AUV to a desired trajectory with
guaranteed input and state constraints (e.g., obstacles, predefined
vehicle velocity bounds, thruster saturations) inside a partially
known and dynamic environment where the knowledge of the
operating workspace is constantly updated via the vehicle’s
on–board sensors. In particular, considering the sensing range
of the vehicle, obstacle avoidance with any of the detected
obstacles is guaranteed, by on-line generation of a collision-free
trajectory tracking path, despite the model dynamic uncertainties
and the presence of external disturbances representing ocean
currents and waves. Finally, realistic simulation studies verify
the performance and efficiency of the proposed framework.

Note to Practitioners. This paper was motivated by the
problem of robust trajectory tracking for an Autonomous Un-
derwater Vehicle (AUV) operating in an uncertain environment
where the knowledge of the operating workspace (e.g. obstacle
positions) is constantly updated on–line via the vehicle’s
on–board sensors (e.g., multi-beam imaging sonars, laser
based vision systems). In addition, there may be other system
limitations (e.g., thruster saturation limits, etc) and other op-
erational constraints, induced by the need of various common
underwater tasks (e.g., a predefined vehicle speed limit for
inspecting the seabed, mosaicking etc), where it should also
be considered into the control strategy. However, based on the
existing trajectory tracking control approaches for underwater
robotics, there is a lack of an autonomous control scheme
that provides a complete and credible control strategy that
takes the aforementioned issues into consideration. Based on
the above, we present a reliable control strategy that takes
into account the aforementioned issues, along with dynamic
uncertainties of the model and the presence of ocean currents.
In future research, we will extend the proposed methodology
for multiple AUV performing collaborative inspection task in
an uncertain environment.
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Fig. 1: Trajectory tracking in uncertain and constrained workspace including
obstacles where the knowledge of the operating workspace (e.g., the accurate
obstacles’ positions) is constantly updated via the vehicle’s on–board sensors.
The reference and actual vehicle trajectories are depicted with green dashed
and blue lines respectively.

I. INTRODUCTION

During the last decades, considerable progress has been
made in the field of unmanned marine vehicles, with a
significant number of results in a variety of marine activ-
ities [1]. Applications such as ocean forecasting, deep see
exploration, underwater inspection of oil/gas pipelines are
indicative examples of applications that require the underwater
robots to work under various constraints and increased level
of autonomy. In particular, Autonomous Underwater Vehicles
(AUVs) are characterized by constrained high-dimensional
nonlinear dynamics, especially in the case of underactuated
systems which induce significant complexity regarding model
uncertainty as well as various operational constraints such as
sensing capabilities and visibility constraints [2].

A typical marine control problem is trajectory tracking [3].
Classical approaches such as local linearization and input-
output decoupling have been used in the past to design
motion controllers for underwater vehicles [4]. Nevertheless,
the aforementioned methods yielded poor closed-loop per-
formance and the results were local, around only certain
selected operating points. Output feedback linearization [5] is
an alternative approach which however is not always possible.
Moreover, based on a combined approach involving Lyapunov
theory and backstepping, various model-based non-linear con-
trollers have been proposed in the literature requiring a very
accurate knowledge of the vehicle dynamic parameters, which
in most cases is quite difficult to obtain [6]. Moreover, the
effect of ocean currents either is assumed to be known or
an exponential observer is adopted for its estimation, thus
increasing the design complexity [7].

Dynamic model uncertainties of AUVs have been mainly
compensated by employing adaptive control techniques [8].



However, the application of these control strategies in a real
time experiment is questionable, owing to their sensitivity to
unknown parameters. Additionally, based on switching control
strategies and backstepping techniques, a hybrid parameter
adaptation law was presented in [9], [10]. However, external
disturbances and un–modeled dynamics were not considered.
Moreover, sliding mode control, owing to its strong robustness
against uncertain model and time varying parameters, is an
alternative method that has been adopted in order to meet the
problem of dynamic model’s uncertainties [11]–[13]. Nonethe-
less, the main disadvantage of the aforementioned control
schemes is the inherent control input chattering that is energy
intensive and may result in high frequency dynamics, which
is undesirable for underwater applications. Finally, adaptive
neural network [11], [14], learning [15], [16] and fuzzy control
[17], [18] schemes that deal with model uncertainties by
exploiting the universal approximation capabilities of neural
network and fuzzy system structures, but unfortunately, yield
inevitably reduced levels of robustness against modeling im-
perfections [19].

In addition, by employing all of the aforementioned motion
control strategies, it is not always feasible or straightforward to
incorporate input (generalized body forces/torques or thrust)
and state (3D obstacles, velocities) constraints into the ve-
hicle’s closed-loop motion [20]. In that sense, the trajectory
control problem of underwater robots continues to pose con-
siderable challenges to system designers, especially in view of
the high-demanding missions envisioned by the marine indus-
try (e.g., surveillance of oil platforms, cable tracking, etc.). In
this context, Nonlinear Model Predictive Control (NMPC) [21]
can be considered a suitable approach for complex underwater
missions, as it is able to handle efficiently input and state
constraints, while dealing with parameter uncertainties through
its robustness [22]. A sampling based Model Predictive Con-
trol scheme was proposed in [23] for motion control of
underwater vehicles in presence of constraints. A depth control
strategy for an over-actuated AUV based on Linear Model
Predictive Control was presented in [24]. However, actuator
limits were the only considered constraints of the system.
In [25], a MPC framework was proposed for the trajectory
tracking of a full-actuated AUV under state constraints without
taking into account the effects of disturbances and model
uncertainties. In the aforementioned studies, the validation of
the proposed strategies was conducted via simple simulation
tests. Experimental validation of a NMPC scheme for robust
stabilization of an AUV was presented in [20].

The reference trajectory for the underwater robot is usually
the result of some path planning techniques [26]. The majority
of planning techniques are based on off–line optimization
schemes, which consider static or quasi–static operational
environments. Their output is often a set of way-points or
trajectories satisfying certain environmental constraints (i.e.,
known obstacles). On the other hand, robust AUV control
around corals reefs is difficult because of their unstructured
dynamic nature. In the absence of GPS in the underwater
environment, localization errors are increasing, making any
prior knowledge of the environment coarse and inappropriate.
Nonetheless, the reference trajectory might not feasible in

real ocean environments, due to the fact that ocean is a
partially-known environment even in the best case scenario.
When operating in such uncertain environment, the underwater
vehicle has to be reactive and has the ability to re-calculate its
path online in order to generate collision-free paths, as more
information about the surroundings becomes available [27].

Motivated by the aforementioned considerations, this ar-
ticle presents a robust trajectory tracking control scheme
for underactuated Autonomous Underwater Vehicles (AUVs)
operating in a constrained workspace including obstacles.
In particular, a robust Nonlinear Model Predictive Control
(NMPC) scheme is presented for the underactuated AUVs
(i.e., vehicles actuated only in surge, heave and yaw). Various
constraints such as: sparse obstacles, workspace boundaries,
sensing range capability, predefined upper bounds for the
velocity of the underwater robotic vehicle (requirements for
several underwater tasks such as seabed inspection scenario,
mosaicking etc) as well as thruster saturation are considered
during the control design. The purpose of the controller is to
steer the underactuated AUV on a desired trajectory inside
a constrained and dynamic workspace. Since the knowledge
of the operating workspace is constantly updated online via
the vehicle’s on–board sensors, the robot re-calculates its
path online and generates a collision-free trajectory tracking
path, if the updated environmental changes (i.e., new detected
obstacles) are in conflict with the reference trajectory. In
particular, by considering a ball which covers the volume
of the system and the sensing range of the vehicle, obstacle
avoidance with any of the detected obstacles is guaranteed, by
on-line generation of a collision-free trajectory tracking path,
despite the model dynamic uncertainties and the presence of
external disturbances representing ocean currents and waves.
The proposed feedback control law consists of two parts: an
online law which is the outcome of a Finite Horizon Optimal
Control Problem (FHOCP) solved for the nominal dynamics;
and a state feedback law which is tuned off-line and guarantees
that the real trajectories remain bounded in a tube centered
along the nominal trajectories for all times. The volume of
the tube depends on the upper bound of the disturbances as
well as bounds of derivatives of the dynamics. The closed-loop
system has analytically guaranteed stability and convergence
properties.

The rest of the paper is organized as follows. Section II
provides the notation and the mathematical preliminaries. The
problem treated in the paper in hand is formulated in Section
III. Section IV analyzes the proposed framework. In Section
V, a simulation study is demonstrated through figures and
video. Finally, in section VI conclusions and future research
directions are discussed.

II. NOTATION AND BACKGROUND

The sets of positive integers and real numbers are denoted
by N and R, respectively. Rn≥0 and Rn>0 are the sets of
real n-vectors with all elements nonnegative and positive,
respectively. Given a set S, denote by |S| and Sn := S×· · ·×S
its cardinality and its n-fold Cartesian product. Given a
vector z ∈ Rn define by: ‖z‖2 :=

√
z>z, ‖z‖∞ :=



Fig. 2: The underactuated unicycle-like underwater vehicle. Blue color
indicates the actuated degrees of freedom.

maxi=1,...,n |zi|, ‖z‖P :=
√
z>Pz, its Euclidean, infinite

and P -weighted norm, respectively, with P ≥ 0. The notation
λmin(P ) stands for the minimum absolute value of the real
part of the eigenvalues of P ∈ Rn×n; 0m×n ∈ Rm×n
and In ∈ Rn×n stand for the m × n matrix with all
entries zeros and the identity matrix, respectively. The notation
diag{P1, . . . , Pn} stands for the block diagonal matrix with
the matrices P1, . . . , Pn in the main diagonal. Moreover
B(c, r) := {x ∈ Rn : ‖x− c‖2 ≤ r} , stands for a ball in
Rn with center and radius c ∈ Rn, r > 0, respectively.
The boundary of a set A is denoted as ∂A and is defined
as ∂A = A\Å where Å is the interior of set A. Given sets S1,
Z ⊆ Rn, S2 ⊆ Rm and matrix P ∈ Rn×m, the Minkowski
addition, the Pontryagin difference and the matrix-set multipli-
cation are defined by: S1 ⊕Z := {s1 + z : s1 ∈ S1, z ∈ Z},
S1 	 Z := {s1 ∈ S1 : s1 + z ∈ S1,∀z ∈ Z} and
P ◦ S2 := {Ps, s ∈ S2} respectively.

Definition 1. [28] Consider a dynamical system:

ẋ = f(x,u,d), x ∈ X , u ∈ U , d ∈ D,

with initial condition x(0) ∈ X and external disturbances
d ∈ D. A set X ′ ⊆ X is a Robust Control Invariant (RCI)
set for the system, if there exists a feedback control law u :=
κ(x) ∈ U , such that for all x(0) ∈ X ′ and for all d ∈ D it
holds that x(t) ∈ X ′ for all t ≥ 0, along every solution x(t)
of the closed-loop system.

Definition 2. A nonlinear system ẋ = f(x,u,d), x ∈
X , u ∈ U , d ∈ D, with initial condition x(0) ∈ X is said
to be Input-to-State Stable (ISS) with respect to d ∈ D, if
there exist functions β ∈ KL, γ ∈ K such that for any initial
condition x(0) ∈ X and for any input u(t) ∈ U , the solution
x(t) exists for all t ∈ R≥0 and satisfies:

‖x(t)‖ ≤ β
(
‖x(0)‖, t

)
+ γ

(
sup

0≤s≤t
‖d(s)‖

)
.

III. PROBLEM STATEMENT

In this section, the overall problem is formulated. Initially,
the mathematical model of the under-actuated underwater
vehicle is presented.

A. Mathematical Modeling

The pose vector of the vehicle with respect to (w.r.t.) the
inertial frame I is denoted by ηtot =

[
ηT1 ηT2

]T ∈ R6

including the position (i.e., η1 = [x y z]
T ) and orientation

(i.e., η2 = [φ θ ψ]
T ) vectors. The vtot =

[
vT1 vT2

]T ∈ R6 is
the velocity vector of the vehicle expressed in body fixed frame
V and includes the linear (i.e., v1 = [u v w]

T ) and angular
(i.e., v2 = [p q r]

T ) velocity vectors (Fig.2). In this work,
we consider one of the most common types of underactuated
underwater vehicles, namely unicycle-like vehicles (see Fig.
2). The considered unicycle-like vehicles are equipped with a
set of thrusters which are effective only in surge, heave and
yaw motion (Fig.2), meaning that the vehicle is underactuated
along the sway axis.

Remark 1. The unicycle-like underactuated underwater vehi-
cles considered in this work are usually designed with meta-
centric restoring forces in order to regulate roll and pitch
angles. Thus, the angles φ, θ and angular velocities p and
q are negligible and we can consider them to be equal to zero
[29]. In addition, the vehicle is symmetric about the x - z plane
and close to symmetric about the y - z plane. Therefore, we
can safely assume that motions in heave, roll and pitch are
decoupled [30].

Without loss of generality and based on the aforementioned
considerations, the dynamic equations of the considered un-
derwater robotic vehicle can be given as follows [30]:

ẋ = u cosψ − v sinψ (1a)
ẏ = u sinψ + v cosψ (1b)
ż = w (1c)

ψ̇ = r (1d)

u̇ =
1

m11

[
m22vr +Xuu+Xu|u||u|u+ τX

]
(1e)

v̇ =
1

m22

[
−m11ur + Yvv + Yv|v||v|v

]
(1f)

ẇ =
1

m33

[
(W −B) + Zww + Zw|w||w|w + τZ

]
(1g)

ṙ =
1

m44

[
(m11 −m22)uv +Nrr +Nr|r||r|r + τN

]
(1h)

where m11 , m22, m33, m44 are the terms of the inertia matrix
including the added mass, W , B are the vehicle weight and the
buoyancy force, Xu, Xu|u|, Yv , Yv|v|, Zw, Zw|w|, Nr, Nr|r|
are negative hydrodynamic damping coefficients and τX , τZ ,
τN are the control inputs of the system and consist of body
forces and torque generated by the thrusters along the surge,
heave and yaw directions.

Remark 2. In this work, we consider one of the most com-
mon types of underactuated underwater vehicles, namely the



unicycle-like vehicles (see Fig. 2). In particular, the unicycle-
like underactuated vehicles considered in this class are actu-
ated by forces τX and τZ along the longitudinal (surge) and
vertical (heave) axes respectively and a torque τN about the
vertical (yaw) axis (see Fig. 2). The aforementioned forces
τX , τZ and torque τN define the input control variables of
the corresponding dynamic system (1), which in this case is
unactuated in the sway degree of freedom (i.e., τY = 0).

The dynamic equations of (1) can be re-written as:

η̇ = J (η)v + g(η, v) (2a)

v̇ = M−1
[
τ+C(v, v)v +D(v)v+g

]
(2b)

v̇ =
1

m22

[
−m11ur + Yvv + Yv|v||v|v

]
. (2c)

where:

• η = [x y z ψ]
>∈ R4 is the pose vector expressed in I;

• v = [u, w, r]
> ∈ R3 is the velocity vector of the vehicle

along actuated degrees of of freedom, expressed in the
body fixed frame V;

• τ = [τX , τZ , τN ]
> ∈ R3 is the propulsion force/torque

vector (i.e., the body forces and torques generated by the
thrusters) applied on the vehicle and expressed in body-
fixed frame V;

• g(η, v) = [−sψ, cψ, 0, 0]T v ;
• M = diag

(
m11,m33,m44

)
∈ R3×3 is the inertia matrix;

• C(v, v) =

[
0 0 m22v
0 0 0

(m11 −m22)v 0 0

]
is the coriolis

matrix;

• D(v) =

[
Xu+Xu|u||u| 0 0

0 Zw+Zw|w||w| 0
0 0 Nr+Nr|r||r|

]
is

the drag matrix;

• g = [0, (W − B), 0]T ∈ R3 is the hydrostatic restoring
force vector;

• J (η) =

 cos(ψ) 0 0
sin(ψ) 0 0

0 1 0
0 0 1

 ∈ R4×3 is the Jacobian

matrix transforming the velocities from the body-fixed
(V) to the inertial (I) frame;

Notice that the robot moves under the influence of an
irrotational current which behaves as an external disturbance
on the system’s dynamic equation (2b). In particular we set δY
and δ = [δX , δZ , δN ]> ∈ ∆ ⊂ R3 with ∆ being a compact set.
In this vein, there exist upper bounds δ̄Y > 0 and δ̄ > 0 such
that |δY | ≤ δ̄Y and ||δ|| ≤ δ̄ respectively. Furthermore, it is as-
sumed that vehicle’s dynamic parameters have been identified
via a proper identification scheme. However, some degree of
model uncertainty should be considered. In particular, we set
γY as the model uncertainty regarding the sway direction and
γ = [γX , γZ , γN ]> ∈ Γ ⊂ R3 as the vector of uncertainties
with Γ being a compact set. In the same vein, we assume
that there exist positive upper bounds γ̄Y and γ̄ ≥ 0, such
that |γY | ≤ γ̄Y and ||γ|| ≤ γ̄. Taking into consideration the

aforementioned disturbances and uncertainties, we can model
the perturbed system as follows:

η̇ = J (η)v + g(η, v) (3a)

v̇ = M−1
[
τ+C (v, v)v+D(v)v+g

]
+ ξ (3b)

v̇ =
1

m22

[
−m11ur + Yvv + Yv|v||v|v

]
+ δY . (3c)

where ξ = γ + δ ∈ Ξ ⊂ R3 in the vector that is the result
of adding uncertainties and external disturbances and Ξ is a
compact set with Ξ = ∆ ⊕ Γ. Since the sets ∆ and Γ are
compact, we have that Ξ is also compact, and:

Ξ := {ξ(t) ∈ R3 : ||ξ(t)||2 ≤ ξ̄} (4)

with ξ̄ , δ̄ + γ̄.

B. Geometry of the Workspace

We consider that the underwater vehicle operates inside
a workspace W ⊂ R3 with boundary ∂W and scattered
obstacles located within it. Without loss of the generality,
the robot and the obstacles are modeled by spheres (i.e., we
adopt the spherical world representation [31]). Let B(η1, r̃)
be a closed ball that covers the whole vehicle volume (main
body and additional equipments). Moreover, let B(η1, R̄) with
R̄ > r̃ be a sensing area where the robot can perceive and
update its knowledge of the workspace (i.e., the obstacle
locations) using its on-board sensors. Furthermore, the M
static obstacles within the workspace are defined as closed
balls described by πm = B(pπm , rπm), m ∈ {1, . . . ,M},
where pπm ∈ R3 is the center and rπm > 0 the radius of the
obstacle πm. Additionally, based on the property of spherical
world [31], for each pair of obstacles m,m′ with m 6= m′

we have: ||πm − πm′ || > 2r̃ + rπm + rπ′
m

, which intuitively
means that the obstacles m and m′ are disjoint in such a way
that the entire volume of the vehicle can pass through the
free space between them. Therefore, there exists a feasible
trajectory η1(t) for the vehicle such that:

B(η1(t), r̃)∩{B(pπm , rπm)∪∂W}=∅,
∀t ≥ 0,m∈{1,. . .,M} (5)

A graphical representation of the feasible trajectory is depicted
in Fig. 3.

C. Constraints

1) State Constraints: as already stated, the robot should
be able to avoid the newly detected obstacles which may had
been unknown to the off-line trajectory planner. Moreover,
for the needs of several common underwater tasks (e.g.,
seabed inspection, mosaicking), the vehicle is required to move
with relatively low speeds with upper bound denoted by v̄
and the velocity vector v̄ = [ū w̄ r̄]>, where (̄·) denotes
the corresponding upper bounds for each coefficient. These
requirements are captured by the state constraint sets H and
V , given by:

η(t) ∈ H ⊂ R4, and v(t) ∈ V ⊂ R3 (6)



Fig. 3: Graphical representation of a feasible trajectory in the workspace. The
boundary of workspace ∂W is illustrated in cyan. The orange areas indicate
the obstacles within the workspaceW . The blue line encircles the area covered
by the vehicle at times 0 and t with t > 0 respectively. The feasible trajectory
of the vehicle is depicted in green.

which can be defined as:

V :=
{
v ∈ R3 : |u| ≤ ū, |w| ≤ w̄, |r| ≤ r̄

}
(7)

with upper bound as V̄ = (ū+ w̄ + r̄)
1
2 , and

H :=
{
η ∈ R4 : B(η1, r̃) ∩ {B(pπm , rπm) ∪ ∂W} = ∅,

m ∈ {1, . . . ,M}
}

(8)

2) Input Constraints: The actuation body forces and
torques are generated by the thrusters. Thus, we define the
control constraint set T as follows:

τ (t) = [τX , τZ , τN ]> ∈ T ⊆ R3 (9)

which can be defined as:

T :=
{
τ ∈ R3 : |τX | ≤ τ̄X , |τZ | ≤ τ̄Z , |τN | ≤ τ̄N

}
(10)

with τ̄X , τ̄Z , τ̄N ∈ R≥0 are the corresponding upper bound for
each thrust directions.

D. Problem statement

Let pd(t) = [xd(t), yd(t), zd(t)]
T denote a smooth desired

trajectory with bounded time derivatives, thus, the problem of
this paper can be stated as follows:

Problem 1. (Robust Tracking Control for an Autonomous Un-
deractuated Underwater Vehicle): Consider an Underactuated
Autonomous Underwater Vehicle described by (3) operating
in a workspace W ⊂ R3 with state and input constraints
as well as disturbances imposed by the sets H , V and T as
well as Ξ as in (6), (9) and (4), respectively. Consider also
that the robot and the obstacles are all modeled according
to the spherical world representation1 and the knowledge

1as described in section-III-B

of the operating workspace W (e.g., obstacles positions) is
constantly updated via the vehicle’s on–board sensors inside a
sensing region defined by B(η1, R̄). Given a desired trajectory
pd(t) = [xd(t), yd(t), zd(t)]

T , design a feedback control law
τ = κ(η,v) ∈ T such that the desired trajectory pd(t) is
tracked, while guaranteeing the following specifications:

• Capability to be flexible regarding environmental changes
(i.e., avoiding new detected obstacles which may coincide
with desired trajectory, etc.)

• Respect operational limitations in the form of state (e.g
velocity bounds) and input (thrust saturation) constraints:

η(t) ∈ H, v(t) ∈ V, τ (t) ∈ T.

• Respect capability sensing range of the system.
• Predefined robustness with respect to the external distur-

bances and model uncertainties

IV. METHODOLOGY

In this section we present in detail the methodology pro-
posed in order to formulate the solution of Problem-1 defined
in Section-III-D. In particular, a Nonlinear Model Predic-
tive Control (NMPC) framework [32]–[35] is utilized, and
a relevant robust NMPC analysis, the so-called tube-based
approach is provided here for the trajectory tracking problem
for underactuated systems in presence of disturbances. The
proposed feedback control law consists of two parts: an on-line
control law which is the outcome of Finite Horizon Optimal
Control Problem (FHOCP) for the nominal system dynamics
and a state feedback law which guarantees that the real system
trajectories always lie within a tube centered along the nominal
trajectories. First we begin by defining the error states and the
corresponding transformed constraints.

A. Error Definitions

Given the desired trajectory pd(t) = [xd(t), yd(t), zd(t)]
T ,

let us define the position errors:

ex(t)=x−xd(t), ey(t)=y−yd(t), ez(t)=z−zd(t) (11)

the projected on the horizontal plane distance error:

ed(t) =
√
e2
x(t) + e2

y(t) (12)

as well as the projected on the horizontal plane orientation
error:

eo(t) =
ey(t)

ed(t)
cψ(t) −

ex(t)

ed(t)
sψ(t) = sψe (13)

where s? = sin(?), c? = cos(?), ψ is the yaw angle and ψe
is the angle measured from the normalized error vector

ed =
[ex
ed
,
ey
ed
, 0
]>
,

on the horizontal plane to the normalized projection of the
longitudinal axis of the vehicle on the horizontal plane, defined
by the vector [cψ, sψ, 0]> (See Fig. 4). Now, differentiating



Fig. 4: Graphical illustration of the error definition.

the aforementioned errors of (11)-(13) and employing (2), and
using the:

cψe =
ex
ed
cψ +

ey
ed
sψ

cψ+ψe = cψcψe − sψsψe =
ex
ed

sψ+ψe = sψcψe + cψsψe =
ey
ed

we arrive at:

ėd = cψeu− ẋdcψ+ψe − ẏdsψ+ψe+sψev (14)

ėz = ż − żd ⇒ ėz = w − żd (15)

ėo = −sψecψe
ed

u− cψer+
ẋd
ed

[
sψecψ+ψe + sψ

]
+
ẏd
ed

[
sψesψ+ψe − cψ

]
+
c2ψe
ed
v (16)

By defining the error vector e = [ed, ez, eo]
>, the aforemen-

tioned formulas can be written in matrix form as:

ė = J(e,pd)v + ζ(e, ṗd)+ξ(e, v) (17)

where:

J(e,pd) :=

 cψe 0 0
0 1 0

− sψecψeed
0 −cψe

, ξ(e, v) :=

sψev0
c2ψe
ed
v



ζ(e, ṗd):=

 −ẋdcψ−ψe − ẏdsψ−ψe
−żd

ẋd
ed

[
sψecψ+ψe + sψ

]
+ ẏd
ed

[
sψesψ+ψe − cψ

]


which are the transformed kinematic error equations of the
underwater vehicle system. It should be noted that the tracking
control problem is solved if the projected on the horizontal
plane distance error ed, the vertical error ez and the orientation
error eo converge to zero. Moreover it should be noticed that
the orientation error eo as well as the Jacobian matrix J(e,pd)
are well-defined when the following holds:

ed(t) > 0 and − π

2
< ψe <

π

2
, ∀t ≥ 0. (18)

Thus, a feasible error configuration imposed to the system is
captured by the set:

E :=
{
η∈H :

√
e2
x+e2

y ≥εd, −
π

2
+εr≤ψe≤

π

2
−εr

}
. (19)

where εd and εo are arbitrarily small positive constants, that
guarantee avoidance of the aforementioned singularity issues.

Remark 3. It should be noted that in J(e,pd), the singularity
appears when det(J(e,pd)) = −| cos(ψe)|2 = 0 =⇒ |ψe| =
π
2 . On the other hand, we have that the angle ψe is the
pointing angle of the vehicle to the target trajectory. Therefore,
a configuration where |ψe| > π/2 will not be singular, but the
vehicle in this case will face the desired trajectory from the
opposite side. In this respect, we select and impose the feasible
error configuration set in (19), in order to guarantee that i)
the system is in a non-singular configuration as well as that
ii) the vehicle is facing directly the target trajectory.

Remark 4. It should be noted that the constraint set E in (19)
guarantees that J(e,pd) is non-singular. Thus, there exists
strictly positive constants J and J̄ such that:

λmin

(
J(·) + J>(·)

2

)
≥ J > 0 and ‖J(·)‖ ≤ J̄ ,

respectively.

Now, in view of (17) and considering the perturbed dynamic
equations of (3a)-(3c), the uncertain transformed kinemat-
ics/dynamics of the systems can be given as follows:

ė = J(e,pd)v + ζ(e, ṗd)+ξ(e, v) (20a)

v̇ = M−1
[
τ+C (v, v)v+D(v)v+g

]
+ ξ (20b)

v̇=
1

m22

[
−m11ur + Yvv + Yv|v||v|v

]
+ δY (20c)

The corresponding nominal dynamics (i.e., ξ = 0) are now
given by:

˙̂e = J(ê,pd)v̂ + ζ(ê, ṗd)+ξ(ê, v̂) (21a)

˙̂v = M−1
[
τ̂+C (v̂, v̂) v̂+D(v̂)v̂+g

]
(21b)

˙̂v=
1

m22

[
−m11ûr̂ + Yv v̂ + Yv|v||v̂|v̂

]
(21c)

It should be noticed that we use the (̂·) notation for the nominal
state in order to account for the mismatch between the real
state and the nominal one which will be used in the following
analysis.

B. State Feedback Design

Consider the feedback law:

τ = τ̂ (ê, v̂) + κ(e, ê,v, v̂) (22)

which consists of a nominal control action τ̂ (ê, v̂) ∈ T and a
state feedback law κ : R3 × R3 → T . The control action
τ̂ (ê, v̂) will be the outcome of a FHOCP solved for the
nominal dynamics (21) while the state feedback law κ(·) is
designed in order to guarantee that the real trajectories e(t),
v(t) (i.e., the solution of (20)) always remain inside a bounded
tube centered along the nominal trajectories ê(t), v̂(t) i.e.,



the solution of (21). Now let us define by ρe(t) and ρv(t)
the discrepancy between the real errors and the nominal ones,
given as:

ρe(t) := e(t)− ê(t) (23a)
ρv(t) := v(t)− v̂(t) (23b)

with ρe(0) = e(0)− ê(0) = 0 and ρv(0) = e(0)− ê(0) = 0
respectively. In view of (23a), the dynamics of ρe(t) are given
as:

ρ̇e = ė− ˙̂e

= J(e,pd)v − J(ê,pd)v̂ + ζ(e, ṗd)− ζ(ê, ṗd)

+ξ(e, v)− ξ(ê, v̂). (24)

By adding and subtracting the term J(e,pd)v̂ and by defining
the function

he(e, v̂) := J(e,pd)v̂,

for which it also holds that:

he(ê, v̂) := J(ê,pd)v̂,

(24) becomes:

ρ̇e = he(e, v̂)−he(ê, v̂)+J(e,pd)ρv+ζ(e, ṗd)−ζ(ê, ṗd)

+ ξ(e, v)− ξ(ê, v̂). (25)

Note that for the continuously differentiable functions he(·),
ζ(·) and ξ(·) the following hold:

‖he(e, v̂)− he(ê, v̂)‖ ≤ L1‖e− ê‖ = L1‖ρe‖, (26a)
‖ζ(e, ṗd)− ζ(ê, ṗd)‖ ≤ L2‖e− ê‖ = L2‖ρe‖, (26b)
‖ξ(e, v)− ξ(ê, v̂)‖ ≤ L3‖e− ê‖+ L4‖v − v̂‖,

= L3‖ρe‖+ L4‖v − v̂‖, (26c)

where L1, L2, L3, L4 > 0 stand for their Lipschitz constants.
The time derivative of the signal ρv in view of (23b) is

given as:

ρ̇v = v̇ − ˙̂v = M−1(τ − τ̂ ) + ϕ(v, v)−ϕ(v̂, v̂)+ ξ, (27)

where for the continuously differentiable function

ϕ(v, v) := M−1
[
C (v, v)v+D(v)v+g

]
,

ϕ(v̂, v̂) := M−1
[
C (v̂, v̂) v̂+D(v, v̂)v̂+g

]
,

it holds that:

‖ϕ(v, v)− ϕ(v̂, v̂)‖ ≤ L5‖v − v̂‖ + L6‖v − v̂‖
= L5‖ρv‖ + L6‖v − v̂‖. (28)

It will be proven thereafter that for the unactuated velocities
v, v̂ it holds that:

‖v − v̂‖ ≤ v̄ + ˆ̄v, (29)

where v̄ and ˆ̄v to be defined Section IV-C. Now based on the
aforementioned analysis the following Lemma can be stated:

Lemma 1. The state feedback law:

κ(e, ê,v, v̂) := −kσ(e− ê)− σ(v − v̂), (30)

ρ̃e

ρ̃e

• ••

e(t)
ê(t)

Fig. 5: The tube centered along the trajectory ê(t) (depicted by the blue
line) with radius ρ̃e. Under the proposed control law, the real trajectory e(t)
(depicted with red line) lies inside the tube for all times, i.e., ‖ρe(t)‖ ≤ ρ̃e,
∀t ∈ R≥0.

where the gains are chosen such that:

k :=
L+k+L4(v̄ + ˆ̄v)

λmin(J)
, k > 0, $>

α1

4k
, σ>

α1$+α2

λmin(M−1)
(31a)

α1 := L+ kL5+kL6(v̄ + ˆ̄v), α2 := L5+L6(v̄ + ˆ̄v) + J̄ ,
(31b)

renders the sets:

Z1 =

{
ρe : ‖ρe‖ ≤ ρ̃e :=

ξ̄

min{ς1, ς2}

}
, (32a)

Z2 =

{
ρv : ‖ρv‖ ≤ ρ̃v :=

(1 + k)ξ̄

min{ς1, ς2}

}
, (32b)

RCI sets for the error dynamics (25) and (27), where the
constants ς1, ς2 are given by:

ς1 :=k− α1

4$
>0, ς2 :=σλmin(M−1)−α1$−α2>0. (33)

Proof. A baskstepping control design technique will be
adopted. The signal ρe in (25) can be seen as the virtual con-
trol input to be designed in ordered to stabilize the system (25).
Consider the positive definite function Λ1(ρe) = 1

2‖ρe‖
2. The

time derivative of Λ1 along the solutions of system (25) is
given by:

Λ̇1(ρe)=ρ>e [h(e,v)−h(ê, v̂)]+ρ>e [ζ(e, ṗd)−ζ(ê, ṗd)]

+ ρ>eJ(e,pd)ρv+ρ
>
e [ ξ(e, v)− ξ(ê, v̂)]

≤ L1‖ρe‖2 + L2‖ρe‖2 + ρ>e J(e,pd)ρv

+L3‖ρe‖2 + L4(v̄ + ˆ̄v)

= L‖ρe‖2 + ρ>e J(e,pd)ρv+L4(v̄ + ˆ̄v),

where L := L1 + L2 + L3. By designing the virtual control
input as ρv = −kρe where k := L+k+L4(v̄+ˆ̄v)

λmin(J) , k > 0 it holds
that:

Λ̇1(ρe) ≤ L‖ρe‖2 − kρ>e J(e,pd)ρe+L4(v̄ + ˆ̄v)

≤ L‖ρe‖2 − kλmin(J)‖ρe‖2+L4(v̄ + ˆ̄v)

= − [kλmin(J)− L] ‖ρe‖2+L4(v̄ + ˆ̄v)

= −k‖ρe‖2+L4(v̄ + ˆ̄v).

By taking the aforementioned virtual control design into
consideration, define the backstepping auxiliary vector by:

% := ρv + kρe, n := [ρ>e ,%
>]>.



and consider the function Λ(n) := 1
2‖n‖

2. Then, the time
derivative of Λ(n) is given by:

Λ̇(n) = ρ>e ρ̇e + %>%̇

= ρ>e ρ̇e + %>[ρ̇v + kρ̇e]

= [ρe + k%]
>
ρ̇e + %> [ϕ(v, v)− ϕ(v̂, v̂)]

+ %>M−1(τ − τ̂ ) + %>ξ (34)

By using the fact that:

xy ≤ 1

$
x2 +$y2,

for every x, y ∈ R, $ > 0, we get:

‖ρe‖‖%‖ ≤
1

4$
‖ρe‖2 +$‖%‖2.

By using the latter, (34) becomes:

Λ̇(n) ≤ −
(
k − α1

4$

)
‖ρe‖2 + (α1$ + α2) ‖%‖2

+ %>M−1(τ − τ̂ ) + ‖n‖ξ̄ (35)

with α1, α2 given in (31a). By designing:

τ − τ̂ = −σ% = −kσ(e− ê)− σ(v − v̂),

which is compatible with (30), we get:

Λ̇(n) ≤ −
(
k − α1

4$

)
‖ρe‖2 + (α1$ + α2) ‖%‖2

− σ%>M−1%+ ‖n‖ξ̄

≤ −
(
k − α1

4$

)
‖ρe‖2 + (α1$ + α2) ‖%‖2

− σλmin(M−1)‖%‖2 + ‖n‖ξ̄

=−
(
k− α1

4$

)
‖ρe‖2−

[
σλmin(M−1)−α1$−α2

]
‖%‖2

+‖n‖ξ̄
= −ς1‖ρe‖2 − ς2‖%‖2 + ‖n‖ξ̄
≤ −min {ς1, ς2} ‖n‖2 + ‖n‖ξ̄
≤ −‖n‖

[
min {ς1, ς2} ‖n‖ − ξ̄

]
, (36)

with ς1, ς2 as given in (33). Thus, Λ(n) < 0, when

‖n‖ > ξ̃

min{ς1, ς2}
.

Taking the latter into consideration and the fact that n(0) = 0,
it holds that:

‖n(t)‖ ≤ ξ̃

min{ς1, ς2}
, ∀t ≥ 0.

Moreover, the following inequalities hold:

‖ρe‖ ≤ ‖n‖ ⇒ ‖ρe(t)‖ ≤
ξ̄

min{ς1, ς2}
, ∀t ≥ 0,∣∣∣‖ρv‖ − k‖ρe‖∣∣∣ ≤ ‖ρv + kρe‖ = ‖%‖ ≤ ‖n‖

⇒ ‖ρv(t)‖ ≤
(1 + k)ξ̄

min{ς1, ς2}
, ∀t ≥ 0.

which concludes the proof. �

A graphical illustration of the proposed tube based control
strategy is given in Fig 5. Under the proposed control scheme

(22), the real trajectory e(t) lies inside the tube which is
centered along the nominal trajectory ê with radius ρ̃e for
all times, i.e., ‖ρe(t)‖ ≤ ρ̃e, ∀t ∈ R≥0.

C. Bounds on the Unactuated Velocity v

In the sequel, we will prove the boundedness of the unactu-
ated velocity v along the sway direction. Let us define the pos-
itive definite and radially unbounded function Vv = 1

2m22v
2

where m22 denotes the vehicle’s mass/added-mass of inertia
of the sway degree of freedom, see (1f). Differentiating Vv
with respect to time and substituting (1f), we obtain:

V̇v = m22vv̇

= −m11uvr + Yvv
2 + Yv|v|v

2|v|+ vm22δY

which after algebraic manipulations, and using the facts
Yv, Yv|v| < 0, |δY | ≤ δ̄Y , leads to:

V̇v ≤ Yv|v||v|3 + Yv|v|2 +m11ūr̄|v|+m22δ̄Y |v|

Therefore, we conclude that V̇v is negative when

|v| >
√
a + b + c

where a ,
( Yv

2Yv|v|

)2

, b ,
m11ūr̄ +m22δ̄Y

− Yv|v|
and c ,

− Yv
2Yv|v|

. Consequently we have:

|v(t)| ≤ v̄ := max
{
|v(0)|,

√
a + b− c

m22

}
, ∀t ≥ 0 (37)

which intuitively means that for any underactauted underwater
vehicle, and for any bounded velocities |u| ≤ ū, |w| ≤ w̄
and |r| ≤ r̄, the velocity v in the unactuated sway direction
remain bounded by an upper bound which depends on: i) the
upper bounds ū, w̄ and r̄, ii) the parameters of the dynamic
model (1) and iii) the magnitude of the external disturbances.
In a similar way, by defining a positive definite and radially
unbounded function Vv̂ = 1

2m22v̂
2, we can calculate an upper

bound for the nominal velocity v̂ given as:

|v̂(t)| ≤ ˆ̄v := max
{
|v̂(0)|,

√
a + b̂− c

m22

}
, ∀t (38)

where b̂ ,
m11ūr̄

− Yv|v|
.

D. Online Optimal Control

As mentioned before, the control action τ̂ (ê, v̂) in eq. (22)
will be the outcome of a FHOCP solved for the nominal
dynamics eq. (21). In this respect, consider a sequence of
sampling times {tk}, k ∈ N, with a constant sampling period
0 < t < N , where N is a prediction horizon such that



tk+1 := tk + t, ∀k ∈ N. At each sampling time tk, a FHOCP
is solved as follows:

min
τ̂ (·)

{
‖ê(tk +N)‖2P +

∫ tk+N

tk

[
‖ê(s)‖2Q+‖τ̂ (s)‖2R

]
ds

}
(39a)

subject to:
˙̂χ(s) = g(χ(s), τ̂ (s)), χ̂(tk) = χ(tk), (39b)

χ̂(s) ∈ Ẽ × Ṽ, τ̂ (s) ∈ T̃ , ∀s ∈ [tk, tk +N ], (39c)
χ̂(tk +N) ∈ F , (39d)

where:

χ := [e>,v>, v]> ∈ R6,

g(χ, τ ) :=

 J(ê,pd)v̂ + ζ(ê, ṗd)+ξ(ê, v̂)

M−1
(
τ̂+C (v̂, v̂) v̂−D(v̂)v̂−g

)
1
m22

[
−m11ûr̂ + Yv v̂ + Yv|v||v̂|v̂

]
 ,

and Q, P ∈ R6×6 and R ∈ R3×3 are positive definite gain
matrices. Moreover, Ẽ , Ṽ and F are designing sets that are
defined in order to guarantee that while the solution of the
FHOCP (39a)-(39d) is derived for the nominal dynamics (21),
the real trajectory χ(t) and control inputs τ (t) satisfy the
corresponding state and input constraints. More specifically,
the following modifications are performed:

Ẽ := E 	 Z1, Ṽ := V 	Z2, T̃ := T 	
[
K ◦ Z̃

]
,

where:

K := diag{−kσI3,−σI3}, Z̃ := Z1 ×Z2.

This intuitively means that the sets E , V are tightened ac-
cordingly, in order to guarantee that while the nominal states
ê, v̂ and the nominal control input τ̂ are calculated, the
corresponding real states e, v and real control input τ satisfy
the state and input constraints E , V and T , respectively2.
Define the terminal set by:

F :=
{
χ̂ ∈ Ẽ : ‖χ̂‖P ≤ ε̄

}
, ε̄ > 0, (40)

which is employed here in order to enforce the stability of the
system [33].

Newly Detected Obstacles: as mentioned before, the ob-
stacles within the workspace may be detected online by the
vehicle’s on–board sensors (e.g., multi–beam imaging or side
scan sonar). In such a case, it should be assured that the
solution of the FHOCP corresponds to the region that is
accessible by the sensing capabilities of the vehicle. This
intuitively means that at the time of sampling tk when solving
the FHOCP, any new obstacles have been taken into account
by the controller even for the scenario with maximum running
speed (i.e., a case when vehicle moves with its maximum
speed under maximum disturbances which is tangent to robot’s
moving direction.). Thus, recalling that R̄ denotes the sensing
range of the system as already stated in Section-III-B, the
prediction horizon is set as follows:

N ≤
R̄

max{ū, w̄, r̄}+ ξ̃t
(41)

2This constitutes a standard constraints set modification technique adopted
in tube-based NMPC frameworks. For more details see [36]).

Algorithm 1 Implementation of feedback control laws τ (t)

Step 1: At time tk, the current state of the robot (i.e.,
η(tk), v(tk)) is measured, the errors ed(tk), ez(tk) and
eo(tk) of (11)-(13) are designed, and e(tk) = ê(tk) and
v(tk) = v̂(tk) are set.
Step 2: Based on (e(tk), ê(tk)) and (v(tk), v̂(tk)) solve
FHOCP (39a)-(39d) to obtain the nominal control action
τ̂ (tk) and the actual control action τ (tk) = τ̂ (tk) +
κi(e(tk), ê(tk),v(tk), v̂(tk)).
Step 3: Apply the control τ (tk) to the system, during
sampling interval [tk, tk+1), where tk+1 = tk + t.
Step 4: Measure the state of the system at the next time
instant tk+1, and set tk ← tk+1; Go to Step 1.

where ū, w̄ and r̄ are defined in (7).

Remark 5. It should be noticed that in a real scenario, AUVs
use sonar sensors to obtain knowledge about the environment.
The detection range of these sonar sensors (i.e., R̄) depends on
many factors, including the frequency. Low frequency sonars
can detect objects at very long distance, depending on the
sound propagation environment. Medium frequency sonars
(typically operating between 7.5kHz and up to 30kHz) can
detect a object at a multiple nautical miles. On the other
hand, high frequency sonars (> 100kHz), typically used for
underwater inspection can detect smaller objects at a few
hundreds meters (i.e., > 100m). Thus, in view of (7), in a real
scenario the predefined upper bound of the vehicle velocity can
be tuned accordingly to the capability sensing range R̃ of the
available sonar system (i.e., by selecting lower values for the
velocity constraints in (7), with respect to the original given
upper bounds.) in order to get a valuable prediction horizon
enough for solving the FHOCP (39a)-(39d).

The pseudo-code description of the proposed real-time
control scheme is given in Algorithm-1. Now we are ready
to state the main result of this work:

Theorem 1. Suppose that at time t = 0 the FHOCP (39a)-
(39d) is feasible. Then, the proposed feedback control law (22),
(30), renders the closed-loop system Input-to-State stable (ISS)
with respect to the disturbances, for every initial condition
χ̂(0) ∈ E .

Proof. The proof of the theorem follows similar arguments
presented in our previous work [37]. Due to the fact that only
the state of the nominal system is used while the FHOCP
(39a)-(39d) is solved, the on-line optimization does not depend
on the disturbances. The proof of feasibility, follows same
arguments as in [33], [37]3 which leads to:

χ
(
tk+1 + s; τ̂ (·),χ(tk+1)

)
∈ E × V, ∀s ∈ [0, N ].

By taking the aforementioned into consideration, the feasibility
of a solution to the optimization problem at time tk implies
feasibility at all times tn+1 with n > k. Thus, since at time
t = 0 a solution is assumed to be feasible, a solution to the

3The analytical proof of feasibility is outside the scope of this work and
has been omitted.



optimal control problem is feasible for all t ∈ R≥0. Regarding
the convergence analysis, due to the fact that the sets Z1, Z2

are RPI sets, it holds that:

‖ρe(t)‖ ≤ ρ̃e,∀t ≥ 0, (42)
‖ρv(t)‖ ≤ ρ̃v,∀t ≥ 0, (43)

where:

ρ̃e :=
ξ̄

min{ς1, ς2}
, ρ̃v :=

(1 + k)ξ̄

min{ς1, ς2}
.

Since only the nominal system dynamics (21) are used for
the online computation of the control actions τ̂ (s) ∈ T̃ ,
s ∈ [tk, tk +N ] through the FHOCP (39a)-(39d), by invoking
nominal NMPC stability results found on [33], it can be
proven that the NMPC control law τ̂ renders the closed
loop trajectories of the nominal system (21) asymptotically
ultimated bounded in the sets F [38]. Then, from [28, Lemma
4.5, p. 150], there exist class KL functions βe, βv such that:

‖ê(t)‖ ≤ βe(‖ê(0)‖, t), ∀t ∈ R≥0, (44)
‖v̂(t)‖ ≤ βv(‖v̂(0)‖, t), ∀t ∈ R≥0. (45)

By combining (23), (42), (43), (44) and (45), we get:

‖e(t)‖ ≤ βe(‖ê(0)‖, t) + ρ̃e, ∀t ∈ R≥0

‖v(t)‖ ≤ βv(‖v̂(0)‖, t) + ρ̃v, ∀t ∈ R≥0

Thus, we have shown that the proposed control law (22),(30)
renders the closed-loop system ISS with reference to the
disturbances ξ(t) ∈ Ξ, for every initial condition x(0) ∈ X ,
v(0) ∈ V which leads to the conclusion of the proof. �

Remark 6. Regarding the tube’s design parameters, by ob-
serving (31)-(33), the parameters J , λmin(M−1), λmin(J) are
initially given. Then, according to the given dynamics and state
constraints, the Lipschitz constants L1, . . . , L6 are computed.
Then, we tune the parameter gain k > 0 and subsequently, we
tune the remaining three control gains k, $ and σ such that
the inequalities in (31a) are satisfied.

V. SIMULATION RESULTS

Real-time simulation have been performed to demonstrate
the efficiency of the proposed approach. The simulation en-
vironment was designed based on UwSim dynamic simulator
[39], a realistic simulation environment developed in the Robot
Operating System (ROS) [40] framework with 1 ms time step
which is common in a real time operation with an underwater
robotic system. The constrained NMPC employed in this work
is implemented using the NLopt Optimization library [41].

We conducted an underwater inspection task under external
disturbances representing ocean currents and waves. More
specifically, two separate scenarios have been considered: i)
obstacle free and ii) constrained workspace including obsta-
cles. In particular, obstacle free scenario consists of a pipeline
inspection task where the tracking control problem for an un-
deractuated AUV was considered in along a pipeline structure,
while in the constrained scenario, the tracking control problem
was considered in a workspace including two obstacles where

their locations in x − y plane are given by: p1 = [−5, 5]>

and p2 = [7.8, − 4]> respectively (see Fig.6).
In both scenarios we considered a unicycle-like under-

actuated autonomous underwater vehicle where its dynamic
parameters are given in Table-I. The capability sensing range
and the horizon of the FHOCP are considered as R̄ = 3 and
N = 10 ∗ t = 1.0 sec respectively. Moreover, The predefined
upper bound of the vehicle velocities in (7) are defined as:
ū = 0.8ms , v̄ = 0.04ms , w̄ = 0.6ms and r̄ = 0.6 rads .
Furthermore, each of the three control inputs must obey
the following input constraint: τ̄X = 140N , τ̄Z = 100N ,
τ̄N = 60Nm. The control design parameters were chosen
as k = 1.0, $ = 4.0 and k = 5.0. In both scenarios, the
vehicle initially was at rest and was request to track a desired
trajectory within the workspace. In addition, in the subsequent
simulation study the dynamics of the considered AUV were
affected by external disturbances in the form of slowly time
varying sea currents acting along X , Y , Z and N axes of the
vehicle frame modeled by the corresponding dynamics δX =
0.2 sin(2 π

15 t)
m
s , δY = 0.2 sin(2 π

15 t)
m
s δZ = 0.2 cos(2 π

15 t)
m
s

and δN = 0.2 sin(2 π
15 t)

m
s (i.e., we set δ̄ = 0.6 and δ̄Y = 0.2).

Furthermore, we considered 20% uncertainties on the AUV
dynamic parameters (i.e., we set γ̄ = 0.2).

TABLE I: Vehicle dynamic parameter set

m11 m22 m33 m44

21.5 26.5 26.5 8.0

Xu Yv Zw Nr

−70.0 −100.0 −100.0 −50.0

X|u|u Y|v|v Z|w|w N|r|r

−100.0 −200.0 −200.0 −100.0

W B

176.6N 181.2N

A. Obstacle-Free Scenario
The vehicle initially was at rest from the location η(0) =

[−15, − 12, 10, 0] and was requested to track a trajectory
along a pipeline structure. The desired trajectory involving
line and curved segments was defined by pd(t) = [−10 +
0.015∗πt, 2.5 sin(0.015πt), 6 cos(0.015πt)]>.The results are
given in Fig. 7 - Fig. 11 respectively. The trajectory of the
system within the workspace is depicted in Fig. 6 and in 3D
space in Fig. 7 respectively. It can be seen that the vehicle
performs successfully the trajectory tracking task along the
pipeline structure. The evolution of the transformed and real
error coordinates are shown in Fig. 8 and Fig. 9 respectively.
It can be seen that the real errors remain close to zero and
the constraint ed(t) ≥ ε, ε = 0.1 of (19) remain satisfied
during the task operation. In Fig. 10 the vehicle velocities
are presented and respective constraints are satisfied. Finally,
in Fig. 11 the vehicle’s thruster inputs are shown. As it can
be seen the input constraints are also satisfied.

B. Constrained Scenario
The vehicle initially was at rest from the location η(0) =

[−10, − 8, 9, 0] and was request to track a trajectory along



(a) Obstacle free scenario

(b) Constrained workspace scenario

Fig. 6: The evolution of the proposed methodology in two separate scenarios:
a) obstacle free and b) constrained workspace including obstacles. In obstacle
free scenario, an inspection task along a pipeline structure was considered,
while in the constrained scenario, the tracking control problem was considered
in a workspace including two obstacles. The trace of the vehicle and the de-
sired trajectory are depicted by blue and green lines respectively. The desired
trajectory coincides with obstacles positions. The obstacles are detected and
considered to the controller when they are within the sensing range R̄. The
robot has been left the desired trajectory when is needed in order to avoid
the obstacles.

Fig. 7: Obstacle-Free Scenario: The 3D evolution of the vehicle and desired
trajectory.

the . The desired trajectory involving line and curved segments
was defined by pd(t) = [−15+0.1t, 12 sin( π

120 t), 8]>. Notice
that the desired trajectory that is required to be tracked by
the AUV coincides with obstacles positions. The obstacles
are modeled according to the spherical world representations
as consecutive spheres (i.e., cylinders) with radius rπi =
0.7m, i = {1, . . . 2}. The radius of the sphere B(η1, r̃) which
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Fig. 8: Obstacle-Free Scenario: The evolution of the transformed errors.
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Fig. 9: Obstacle-Free Scenario: The evolution of the real errors.

covers all the vehicle volume (i.e., main body and additional
equipment) is defined as r̃ = 0.4. However, for the clarity of
presentation, we depict it as a safe zone around the obstacles
where the vehicle center η1 (denoted by blue line, see Fig.
12) should not violated it. The capability sensing range and
the horizon of the FHOCP are considered as R̄ = 3 and
N = 10 ∗ t = 1.0 sec respectively, satisfying the condition
(41). Notice that the obstacles are detected and considered by
the controller when they are within the sensing range of the
robot. Finally, the parameters εd and εr defined in (19) are set
to εd = 0.1 and εr = 0.1.

The simulation scenario has been conducted in such a way
that the robot is required to track the desired trajectory which
coincides 2 times with obstacles. The results are given in Fig.
12-Fig. 16. The trajectory of the system within the workspace
is depicted in Fig. 6 and along horizontal plane in Fig. 12.
It can be seen that the vehicle performs successfully the
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Fig. 10: Obstacle-Free Scenario: The evolution of the vehicle velocities during
the task operation.
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Fig. 11: Obstacle-Free Scenario: The control input signals during the task
operation.

trajectory tracking while safely avoids the obstacles within
the workspace. We observe that the robot has been left the
desired trajectory when it was needed in order to avoid the
obstacles. The evolution of the transformed and real error
coordinates are shown in Fig. 13 and Fig. 14 respectively.
It can be seen that the real errors remain close to zero and
the constraint ed(t) ≥ ε, ε = 0.1 of (19) remain satisfied
during the task operation. In Fig. 15 the vehicle velocities are
presented and respective constraints are satisfied. Finally, in
Fig. 16 the vehicle’s thruster inputs are shown. As it can be
seen the input constraints are also satisfied.
Video:
A video demonstrating the simulation scenarios of
this section can be found in the following link:
https://youtu.be/v-rWqNsCfY0
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Fig. 12: Constrained Scenario: The evolution of the vehicle and desired
trajectory in horizontal plane.
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Fig. 13: Constrained Scenario: The evolution of the transformed errors.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a robust trajectory tracking control for
underactuated Autonomous Underwater Vehicles operating in
a constrained workspace including obstacles. The purpose of
the controller is to steer the underactuated AUV on a desired
trajectory inside a constrained and dynamic workspace. The
workspace knowledge (i.e., obstacles’ locations) is constantly
updated online via the vehicle’s sensors. Obstacle avoidance
with any of the detected obstacles is guaranteed, despite the
presence of external disturbances. Moreover, various con-
straints such as: obstacles, workspace boundaries, predefined
upper bound of the vehicle velocity (requirements for various
underwater tasks such as seabed inspection, mosaicking etc.)
are considered during the control design. The proposed feed-
back control law consists of two parts: i) a Finite Horizon Op-
timal Control Problem (FHOCP) and ii) a state feedback law
which is tuned off-line and guarantees that the real trajectories

https://youtu.be/v-rWqNsCfY0
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Fig. 14: Constrained Scenario: The evolution of the real errors.
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Fig. 15: Constrained Scenario: The evolution of the vehicle velocities during
the task operation.

remain inside a tube centered along the nominal trajectories.
The closed-loop system has analytically guaranteed stability
and convergence properties. Future research efforts will be
devoted towards extending the proposed methodology for
multiple Autonomous Underwater Vehicles operating in a
dynamic environment including not only static but also moving
obstacles.
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[35] L. Grüne and J. Pannek, “Nonlinear model predictive control: Theory
and algorithms,” Communications and Control Engineering, 2011.

[36] S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube MPC Scheme Based
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