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A General Approach to Coordination Control of Mobile

Agents with Motion Constraints
Shiyu Zhao, Dimos V. Dimarogonas, Zhiyong Sun and Dario Bauso

Abstract—This paper proposes a general approach to design con-

vergent coordination control laws for multi-agent systems subject to

motion constraints. The main contribution of this paper is to prove

in a constructive way that a gradient-descent coordination control law

designed for single integrators can be easily modified to adapt for vari-

ous motion constraints such as nonholonomic dynamics, linear/angular

velocity saturation, and other path constraints while preserving the

convergence of the entire multi-agent system. The proposed approach is

applicable to a wide range of coordination tasks such as rendezvous and

formation control in two and three dimensions. As a special application,

the proposed approach solves the problem of distance-based formation

control subject to nonholonomic and velocity saturation constraints.

I. INTRODUCTION

Coordination control of multiple mobile agents has received

tremendous research attention in recent years due to its great po-

tentials in many application areas. The single-integrator model has

been widely considered in distributed coordination control due to

its simplicity. However, this model usually cannot well approximate

real agent dynamics because the velocity of a single integrator can

be arbitrarily assigned whereas the velocity of a real agent may be

subject to various constraints such as nonholonomic dynamics and

velocity saturations. If not handled properly, these constraints may

undermine the system convergence and cause unpredictable system

behaviors. Motivated by this, many researchers have studied dis-

tributed coordination control subject to various motion constraints

such as nonholonomic constraints [1]–[11], velocity saturation [4],

[8], [11]–[13], and obstacle avoidance [3], [4], [6], [10], [14], [15].

However, most of the existing approaches are merely applicable to

unicycle agents moving in the plane and they are usually restricted

to certain specific types of coordination tasks or motion constraints.

In this paper, we propose a general approach to handle multiple

types of motion constraints while guaranteeing system convergence

for a wide range of coordination control tasks in both two and three

dimensions. Our approach starts from the observation that many

motion constraints of a mobile agent can be viewed as constraints

on the direction and magnitude of the agent velocity. For instance,

a nonholonomic constraint may require the velocity direction of an

agent to align with its heading vector; velocity saturation requires

the velocity magnitude to be bounded; and obstacle avoidance

requires an agent to turn its velocity direction away from any

obstacles. Considering that gradient-descent control laws play an

important role in the area of multi-agent coordination control (see

[16] and the references therein), we suppose that a gradient control

law designed for single integrators in a given coordination task has

been obtained. In order to handle motion constraints, motivated

by the above observation and a recent work in [17], we modify
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the gradient control law by introducing a time-varying orthogonal

projection matrix and a time-varying scalar to adjust the velocity

direction and magnitude, respectively.

Compared to the existing results, the proposed approach pos-

sesses the following novel features. First, the approach can handle

multiple types of constraints such as nonholonomic constraints

and linear/angular velocity saturations while guaranteeing system

convergence. It also provides additional freedom to potentially fulfil

other path constraints such as obstacle avoidance. Second, the

proposed approach is applicable to a wide range of coordination

tasks such as rendezvous and formation control. As a special yet

important application, our approach successfully solves the problem

of distance-based formation control with nonholonomic and velocity

saturation constraints. This problem is still unsolved to a large extent

up to now due to its highly nonlinear dynamics. This successful

application demonstrates the usefulness of the proposed approach.

Third, while most of the existing results are only applicable to

unicycle agents in the plane, the proposed approach is applicable to

nonholonomic agents moving in two- or three-dimensional spaces.

Finally, the proposed approach establishes connections between

single-integrator and nonholonomic models. These connections en-

hance the usefulness of the existing gradient coordination control

laws designed for single-integrator models. The present paper is a

significant generalization of our previous work in [18].

II. PROBLEM SETUP

Consider n agents in R
d where n ≥ 1 and d = 2 or 3. Let

pi ∈ R
d be the position of agent i ∈ {1, . . . , n} := V and

p = [pT1 , . . . , p
T
n ]

T ∈ R
dn. The interaction among the agents is

described by a graph G = (E ,V), which consists of the vertex set

V and an edge set E ⊂ V × V . If (i, j) ∈ E , agent i can receive

information from agent j and agent j is a neighbor of agent i. The

set of neighbors for agent i is denoted as Ni = {j ∈ V : (i, j) ∈ E}.

For a given motion coordination task, let e(p) be the coordination

error vector of appropriate dimensions so that e(p) = 0 when

the coordination task is achieved. Let V (e) be a continuously

differentiable Lyapunov function satisfying V (e) ≥ 0 for all e and

V (e) = 0 ⇔ e = 0. The corresponding gradient control law is

ṗi = −∇piV := fi(e, p), i ∈ V. (1)

Note that V̇ (e) =
∑

i∈V
−fT

i fi ≤ 0 under the action of the

gradient control law. The gradient control is distributed if fi(e, p)
merely depends on the positions of agent i and its neighbors. The

error dynamics of (1) is

ė =
∂e

∂p
f(e, p), (2)

where f = [fT
1 , . . . , fT

n ]T ∈ R
dn. Let Ω(r) = {e : V (e) ≤ r}

where r ≥ 0 be the level set. The gradient control (1) is convergent

if there exists r0 > 0 such that the trajectory of (2) converges to

e = 0 for any initial error e0 ∈ Ω(r0). In this case, Ω(r0) is called

the attraction region.
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The design of the gradient control law in (1) does not consider

any motion constraints. When applied in practice, real agents may

not be able to follow the gradient flow fi exactly due to certain

motion constraints such as nonholonomic dynamics and velocity

saturation. As a result, the convergence of the entire coordination

system may not be guaranteed. The objective of this paper is to

modify the gradient control law to handle motion constraints while

preserving the system convergence.

In this paper, we consider general coordination control tasks that

satisfy the following mild assumption. Let ‖·‖ denote the Euclidian

norm of a vector or the spectral norm of a matrix.

Assumption 1. For a given coordination task, functions V (e) and

e(p) satisfy the following conditions:

(a) Ω(r) is compact for any r ≥ 0;

(b) There exists r0 > 0 such that e = 0 ⇔ f = 0 in Ω(r0);

(c) ‖∂e(p)/∂p‖ and ‖f(e, p)‖ are bounded for bounded ‖e‖;

(d) f(e, p) is continuous in e and uniformly continuous1 in p.

Assumption 1 implies that e = 0 is asymptotically stable and

Ω(r0) is the attraction region according to the invariance principle

[19, Thm 4.4]. The attraction region may be the entire space or a

sufficiently small neighborhood of e = 0. If the attraction region

is the entire space, then the coordination system is globally stable;

otherwise, the system is locally stable.

Assumption 1 is satisfied by a wide range of coordination

control laws such as the distance-based formation control law as

shown below. More examples are given in the appendix. In these

examples, the underlying graphs are assumed to be bidirectional and

connected. If the graph is not bidirectional, the control laws may

still work, but they may not be gradient control laws. For the sake

of simplicity, suppose the weight for each edge to be one and let

m = |E|/2 denote the number of undirected edges.

Example 1 (Distance-Based Formation Control). The objective

of distance-based formation control is to steer a group of agents

from some initial positions to a desired geometric pattern defined

by constant inter-neighbor distances {ℓij}(i,j)∈E . Consider the

Lyapunov function

V =
1

8

∑

i∈V

∑

j∈Ni

(

‖pi − pj‖
2 − ℓ2ij

)2

.

Then V = 0 if and only if the inter-neighbor distances satisfy the

constraints. The gradient control law

ṗi = fi =
∑

j∈Ni

(

‖pi − pj‖
2 − ℓ2ij

)

(pj − pi) (3)

is the distance-based formation control law studied in [20]–[24].

We next show that all the conditions in Assumption 1 are satisfied.

Consider any oriented graph and define the error state as ek =
‖qk‖

2 − ℓ2k where qk = pi − pj and ℓk = ℓij with k = 1, . . . ,m.

Let e = [e1, . . . , em]T ∈ R
m and q = [qT1 , . . . , q

T
m]T ∈ R

dm. We

have q = (H ⊗ I)p where H ∈ R
m×n is the incidence matrix of

the oriented graph [21], ⊗ denotes the Kronecker product, and I
is the identity matrix with appropriate dimensions. Then, V (e) =
1/4

∑m

k=1 ‖ek‖
2, ∂e/∂p = 2diag(qT1 , . . . , q

T
m)(H⊗I) is bounded

when e is bounded, f is uniformly continuous in both e and p, and

1A function f(x) is uniformly continuous in x if for any ǫ > 0 there
exists δ > 0 such that ‖f(x1)− f(x2)‖ < ǫ for every pair of x1 and x2

satisfying ‖x1 − x2‖ < δ. A sufficient (yet not necessary) condition for
uniform continuity is that if a function is differentiable and its derivative is
bounded, then the function is uniformly continuous. This sufficient condition
will be frequently used in the proof of Theorem 3

‖fi‖ is bounded when ‖e‖ is bounded. Let R ∈ R
m×dn be the

rigidity matrix of the network (see the definition in [21]). Then, R =
diag(qT1 , . . . , q

T
m)(H⊗I) and ṗ = f = −RT e. A sufficient (but not

necessary) condition for R to have full row rank is that the network

is minimally infinitesimally rigid [20], [21]. Under this condition,

f = 0 ⇔ e = 0 holds in a sufficiently small neighborhood of e = 0
[20], [21].

III. NONHOLONOMIC CONSTRAINTS

In this section, we modify the gradient control law in (1) to handle

the nonholonomic constraint that the velocity direction of each agent

must align with its heading vector.

A. A Modified Gradient Control Law

Let hi(t) ∈ R
d be the unit-length heading vector of agent i. The

proposed modified gradient control law is

ṗi = hih
T
i fi,

ḣi = wi × hi, i ∈ V, (4)

where × denotes the cross product and wi ∈ R
3 is the angular

velocity to be designed. In this control law, since hih
T
i is an

orthogonal projection matrix, the velocity ṗi is the orthogonal

projection of fi onto hi. As a result, the velocity is aligned with

the heading vector hi and the nonholonomic constraint is satisfied.

The magnitude of hi is invariant since wi×hi is always orthogonal

to hi.

Our objective is to design wi so that the entire multi-agent system

remains convergent in the sense that V → 0. To this end, design

wi = hi × fi. (5)

The geometric interpretation of (5) is that wi attempts to rotate hi

to align with fi (see Figure 1 for an illustration). Denote [·]
×

as the

skew-symmetric matrix of a vector. For any x = [x1, x2, x3]
T ∈

R
3,

[x]
×
:=





0 −x3 x2

x3 0 −x1

−x2 x1 0



 .

Then we have x × y = [x]
×
y for any x, y ∈ R

3. Substituting (5)

into (4) gives

ḣi = − [hi]× wi = − [hi]
2
×
fi = (I − hih

T
i )fi,

where the last equability follows from the fact that − [x]2
×

= I −
xxT for any unit vector x ∈ R

3 [25, Thm 2.11]. Then, the modified

gradient control law (4) becomes

ṗi = hih
T
i fi,

ḣi = (I − hih
T
i )fi, i ∈ V. (6)

Note that I −hih
T
i is an orthogonal projection matrix that projects

any vector onto the orthogonal complement of hi. Although derived

in R
3, control law (6) is also valid in R

2 because the case of R
2

can be viewed as a special case of R3 by treating the plane spanned

by hi and fi as the x–y plane in R
3.

The convergence of (6) is analyzed below.

Theorem 1 (Modified Gradient Control Law). Under Assump-

tion 1, the modified gradient coordination control law (6) is con-

vergent with the same attraction region as (1).
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wi = hi × fi

fi

ṗi = hih
T
i fihi

ḣi = (I − hih
T
i )fi

agent i

Fig. 1: An illustration of the modified gradient control law in (6).

Proof. The error dynamics corresponding to (6) is ė = (∂e/∂p)Mf
where M = diag(h1h

T
1 , . . . , hnh

T
n ) ∈ R

dn. The time derivative of

V is

V̇ = −
∑

i∈V

fT
i ṗi = −

∑

i∈V

fT
i hih

T
i fi ≤ 0.

It follows that Ω(V (e0)) ⊆ Ω(r0) is positively invariant for any

e0 ∈ Ω(r0). Let M = {e : V̇ (e) = 0}. Then, the system

trajectory starting from any point in Ω(V (e0)) converges to the

largest invariant set in M∩ Ω(V (e0)) by the invariance principle

[19, Thm 4.4]. For any point in M, we have hT
i fi = 0 for all i,

which indicates either (i) fi = 0 for all i or (ii) hi ⊥ fi but fi 6= 0
for certain i. In the first case, it follows that e = 0 by condition

(b) in Assumption 1. As a result, the error converges to zero and

the theorem is proved. The second case is impossible. To see that,

assume hi ⊥ fi but fi 6= 0. Then, ṗi = hih
T
i fi = 0 for all i,

which indicates that all the agents are stationary. As a result, fi
is time-invariant for all i. However, it follows from hi ⊥ fi that

ḣi = (I − hih
T
i )fi = fi 6= 0. As a result, hi is rotating. It is

impossible to maintain hi ⊥ fi if fi is time-invariant while hi is

rotating. Hence the system trajectory will escape from M.

Theorem 1 indicates that if Ω(r0) is the attraction region of the

gradient system (1), then it remains an attraction region for the

modified gradient system (6). As a result, if the original gradient

control is globally (respectively, locally) stable, then the modified

one is also globally (respectively, locally) stable. The initial values

of the heading vectors, {hi(0)}i∈V , do not affect the convergence.

The final values {hi(∞)}i∈V are not specified.

B. Application to Unicycle Models

Considering that unicycle models have been widely considered in

multi-agent coordination control, we apply (6) to derive the specific

control law for unicycle agents moving in the plane. It is, however,

worth noting that (6) is applicable to agents moving in both two

and three dimensions.

Let pi = [xi, yi]
T ∈ R

2 and θi ∈ R be the position coordinate

and heading angle of agent i, respectively. The motion of agent i
is governed by the unicycle model

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = wi, (7)

where vi ∈ R and wi ∈ R are the linear and angular velocities. We

propose the following control law for the unicycle model,

vi = [cos θi, sin θi]fi,

wi = [− sin θi, cos θi]fi. (8)

The convergence of the control law is proved below.

fi

ṗi = hih
T
i fi

ḣi = h⊥
i (h⊥

i )T fi

hi

h⊥
i

wi

Fig. 2: The geometric interpretation of the control law in (8). Note that ṗi is

the orthogonal projection of fi onto hi and ḣi is the orthogonal projection
of fi onto h⊥

i . The angular velocity aims to turn hi to align with fi.

Theorem 2 (Control Law for Unicycle Agents). Under Assump-

tion 1, control law (8) designed for the unicycle model in (7) is

convergent with the same attraction region as (1).

Proof. Let hi = [cos θi, sin θi]
T and h⊥

i = [− sin θi, cos θi]
T .

Note that hi ⊥ h⊥
i . Substituting control law (8) into the uni-

cycle model yields ṗi = hih
T
i fi and ḣi = h⊥

i (h
⊥
i )

T fi. Since

h⊥
i (h

⊥
i )

T = I−hih
T
i for any hi ∈ R

2, the closed-loop system has

the same expression as (6). The convergence property then follows

from Theorem 1.

The geometric interpretation of the control law in (8) is illustrated

in Figure 2. The initial values of the heading angles, {θi(0)}i∈V ,

do not affect the convergence. The final values {θi(∞)}i∈V are

not specified. We next apply (8) to derive a displacement-based

formation control law for unicycles.

Example 2 (Displacement-Based Formation Control of Uni-

cycles). Consider the displacement-based formation control law

ṗi = fi =
∑

j∈Ni
(pj−pi−p∗j+p∗i ) (details are given in Example 3

in the appendix). Substituting fi into (8) yields

vi = [cos θi, sin θi]
∑

j∈Ni

(

pj − pi − p∗j + p∗i
)

,

wi = [− sin θi, cos θi]
∑

j∈Ni

(

pj − pi − p∗j + p∗i
)

. (9)

Another well-known formation control law for unicycles proposed

in [1, Eq. (1)] is

vi = [cos θi, sin θi]
∑

j∈Ni

(

pj − pi − p∗j + p∗i
)

,

wi = cos t. (10)

The two control laws in (9) and (10) have the same linear velocity.

They, however, have different angular velocities. The angular veloci-

ty in (10), wi = cos t, will cause periodical rotation of the unicycle.

As a comparison, the control law in (9) is more reasonable in the

sense that it avoids unnecessary periodical rotations by turning the

heading vector to align with the gradient flow.

IV. NONHOLONOMIC AND VELOCITY SATURATION

CONSTRAINTS

In this section, we generalize (6) to propose a flexible control law

to simultaneously handle nonholonomic and linear/angular velocity

saturation constraints.
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A. A Flexible Coordination Control Law

The proposed flexible coordination control law is

ṗi = κihih
T
i fi,

ḣi = (I − hih
T
i )h

d
i , (11)

where κi(t) > 0 and hd
i (t) ∈ R

d are time-varying. The variable

κi can be used to adjust the velocity magnitude to fulfil the

linear velocity saturation constraint. The desired heading vector hd
i

can be used to adjust the velocity direction to fulfil the angular

velocity saturation constraint. The vector hd
i also provides additional

freedom to fulfil other path constraints such as obstacle avoidance.

The magnitude of hi is invariant for arbitrary hd
i because ḣi is

always orthogonal to hi. In the special case of κi = 1 and hd
i = fi,

control law (11) degenerates to (6).

The convergence of (11) is analyzed below. Since system (11) is

nonautonomous, we use Barbalat’s Lemma [19, Lem 8.2] to derive

the convergence result.

Theorem 3 (Flexible Coordination Control Law). Under Assump-

tion 1, the control law in (11) is convergent with the same attraction

region as (1) if κi(t) and hd
i (t) satisfy the following conditions:

(a) κi(t) is uniformly continuous in t and bounded with 0 <
κmin ≤ κi(t) ≤ κmax for all i and all t;

(b) φd
i (t) is bounded with 0 ≤ φd

i (t) ≤ φd
max < π/2 for all i and

all t, where φd
i (t) is the angle between hd

i and fi;
(c) ‖hd

i (t)‖ is bounded with 0 ≤ ‖hd
i (t)‖ ≤ µd

max and ‖hd
i (t)‖ =

0 only if ‖fi‖ = 0 for all i and all t.

Proof. The error dynamics corresponding to (11) is ė =
(∂e/∂p)Mf where M = diag(κ1h1h

T
1 , . . . , κnhnh

T
n ) ∈ R

dn.

The derivative of V is

V̇ = −
∑

i∈V

fT
i ṗi = −

∑

i∈V

κif
T
i hih

T
i fi ≤ 0.

Since V̇ ≤ 0, for any initial condition e0 ∈ Ω(r0), the set

Ω(V (e0)) ⊆ Ω(r0) is positively invariant. Since V is nonincreasing

and bounded from below, V converges as t → ∞.

We next prove that V̇ is uniformly continuous in t by showing

that hi, fi, and κi are all uniformly continuous in t. Step (i): Since

‖ḣi‖ = ‖(I − hih
T
i )h

d
i ‖ ≤ ‖hd

i ‖ ≤ µd
max, hi is uniformly

continuous in t because it is differentiable and its derivative is

bounded. Step (ii): Since e is bounded on Ω(V (e0)), fi and ∂e/∂p
are also bounded according to condition (c) in Assumption 1. It

follows from the boundedness of fi and hi as well as κi ≤ κmax

that ‖ṗi‖ = ‖κihih
T
i fi‖ is bounded. As a result, pi is uniformly

continuous in t because it is differentiable and its derivative is

bounded. Moreover, since ṗi is bounded for all i, we know that

ė = (∂e/∂p)ṗ is bounded and hence e is uniformly continuous in

t. Step (iii): Since fi(e, p) is continuous in e and e is bounded on

Ω(V (e0)), we know that fi is uniformly continuous in e. Together

with condition (d) in Assumption 1, it is implied that f(e, p) is

uniformly continuous in both e and p. It then follows from the

uniform continuity of e and p as shown in Step (ii) that fi(e, p) is

uniformly continuous in t. Finally, since κi is uniformly continuous

as assumed, we conclude that V̇ = −
∑

i∈V
κif

T
i hih

T
i fi is

uniformly continuous in t and hence V̇ → 0 as t → ∞ by

Barbalat’s Lemma [19, Lem 8.2].

Because κi ≥ κmin, V̇ → 0 implies hT
i fi converges to zero for

all i ∈ V . It follows that either (i) ‖fi‖ = 0 for all i or (ii) hi ⊥ fi
but fi 6= 0 for certain i. In the first case, the system trajectory

converges to e = 0 according to condition (b) in Assumption 1.

The second case is impossible. To see that, assume hi ⊥ fi but

fi

hi

hd
i

robot i

φd

iφ
d
max

wi

Fig. 3: An illustration of the control law in (11).

fi 6= 0 for certain i. Since hT
i fi = 0 for all i, we have ṗi =

κihih
T
i fi = 0 for all i and hence all the agents are stationary.

Since fi is continuous in p, fi is time-invariant. However, ‖ḣi‖ =
‖(I − hih

T
i )h

d
i ‖ ≥ ‖hd

i ‖ cosφ
d
i ≥ ‖hd

i ‖ cosφ
d
max. Since ‖fi‖ 6=

0 ⇒ ‖hd
i ‖ 6= 0 as assumed, we know ‖ḣi‖ 6= 0 and consequently

hi will keep rotating. It is impossible to maintain hi ⊥ fi if fi is

time-invariant but hi is rotating.

The vector hd
i (t) is not required to be continuous. Even if hd

i (t)
is discontinuous, hi may be still uniformly continuous as long as ḣi

is bounded. As a result, nonsmooth stability analysis tools [26] are

not desired to analyze the system convergence. The conditions on

κi(t) and hd
i (t) in Theorem 3 are mild. We may choose κmin to be

arbitrarily small, κmax arbitrarily large, the angle φd
max arbitrarily

close to π/2 so that κi(t) and hd
i (t) may vary within broad intervals.

This provides great flexibility to design κi(t) and hd
i (t).

B. Application to Unicycles subject to Velocity Saturation

We now apply (11) to derive the specific control law for unicycle

agents subject to both linear and angular velocity saturation con-

straints. It is worth noting that (11) is applicable to agents moving

in two- and three-dimensional spaces.

Consider the unicycle model in (7). Here vi > 0 indicates that

the agent moves forward, and vi < 0 backward; and wi > 0
indicates that the agent turns its heading vector to the left (i.e.,

counterclockwise), and wi < 0 to the right (i.e., clockwise).

Suppose vi and wi are constrained by

−vb
i ≤vi ≤ vf

i,

−wr
i ≤wi ≤ wl

i,

where vf
i, v

b
i > 0 are the maximum forward and backward linear

speeds, respectively, and wr
i ,w

l
i > 0 are the maximum left-turn

and right-turn angular speeds, respectively. Define the saturation

functions for the linear and angular speeds for agent i as

satvi(x) =







−vb
i , x ∈ (−∞,−vb

i ),

x, x ∈ [−vb
i , v

f
i],

vf
i, x ∈ (vf

i,+∞),

satwi
(x) =







−wr
i , x ∈ (−∞,−wr

i),

x, x ∈ [−wr
i ,w

l
i],

wl
i, x ∈ (wl

i,+∞).

Note that the saturation bounds vf
i, v

b
i ,w

r
i ,w

l
i may differ for differ-

ent agents. The proposed control law for unicycle i is

vi = satvi

{

[cos θi, sin θi]fi
}

,

wi = satwi

{

[− sin θi, cos θi]fi
}

. (12)

The convergence of the control law is proved below.
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hT
i fi

κi

0

1

vfi−vbi

Fig. 4: An illustration of κi in (14). Here hT
i fi is treated as one single

variable.

Theorem 4 (Linear and Angular Velocity Saturation). Under

Assumption 1, the control law in (12) applied to (7) renders the

close-loop system convergent with the same attraction region as

(1).

Proof. The control law in (12) can be rewritten as vi = satvi(h
T
i fi)

and wi = satwi
((h⊥

i )
T fi). Substituting into the unicycle model in

(7) yields

ṗi = hisatvi(h
T
i fi),

ḣi = h⊥
i satwi

((h⊥
i )

T fi). (13)

The idea of the proof is to rewrite (13) as the expression of (11)

and the convergence result follows from Theorem 3.

Rewrite the saturation function as satvi(h
T
i fi) = κih

T
i fi, where

κi =























vb
i

−hT
i fi

, hT
i fi ∈ (−∞,−vb

i ),

1, hT
i fi ∈ [−vb

i , v
f
i],

vf
i

hT
i fi

, hT
i fi ∈ (vf

i,+∞).

(14)

The value of κi in (14) is depicted in Figure 4. With the notation

of κi, we have ṗi = hisatvi(h
T
i fi) = κihih

T
i fi. Similarly, rewrite

satwi
((h⊥

i )
T fi) = ρi(h

⊥
i )

T fi, where

ρi =























wr
i

−(h⊥
i )

T fi
, (h⊥

i )
T fi ∈ (−∞,−wr

i),

1, (h⊥
i )

T fi ∈ [−wr
i ,w

l
i],

wl
i

(h⊥
i )

T fi
, (h⊥

i )
T fi ∈ (wl

i,+∞).

Then, we have ḣi = h⊥
i (h

⊥
i )

T (ρifi) = (I − hih
T
i )(ρifi).

First, as shown in Figure 4, κi in (14) is uniformly continuous

in hT
i fi by definition though κi is not differentiable. Similar to

the proof of Theorem 3, we know that fi and hi are uniformly

continuous in t. Thus, κi is uniformly continuous in t. Second, for

any initial error e0, the set Ω(V (e0)) ⊆ Ω(r0) is compact and

positively invariant. Since ‖fi‖ is bounded over the compact set

Ω(V (e0)), there exists a constant γ such that ‖fi‖ ≤ γ and hence

|hT
i fi| ≤ ‖fi‖ ≤ γ for all t. Then, 1 ≥ κi ≥ min{vb

i /γ, v
f
i/γ} =

κmin. Therefore, κi is bounded from both below and above for all t
and condition (a) in Theorem 3 is satisfied. Similarly, we have 1 ≥
ρi ≥ min{wr

i/γ,w
l
i/γ}. It follows that ‖ρifi‖ is bounded from

above and ρifi = 0 if and only if fi = 0. Then, the convergence

result follows directly from Theorem 3.

V. APPLICATION TO

DISTANCE-BASED FORMATION CONTROL

In this section, we consider the problem of distance-based for-

mation control of unicycle agents subject to linear and angular

velocity saturations. This problem is challenging to analyze because

distance-based formation control laws are nonlinear. It is still an

unsolved problem to a large extent up to now. We show that this

fi

hd
i

robot i
obstacle

Fig. 5: An illustration of the proposed strategy for obstacle avoidance.

problem can be successfully solved by our proposed approach. In

the meantime, we demonstrate how to apply the proposed approach

to achieve obstacle avoidance.

A. Proposed Control Law and Obstacle Avoidance Strategy

The distance-based formation control law for unicycles is

vi = satvi

{

[cos θi, sin θi]fi
}

,

wi = satwi

{

[− sin θi, cos θi]h
d
i

}

, (15)

where fi is the distance-based formation control law designed for

the single-integrator model as shown in (3). It is noted that (15)

would become (12) if hd
i is replaced by fi. Here hd

i can be designed

to potentially achieve obstacle avoidance as shown below. When

there are no obstacles, design

hd
i (t) =







fi, ‖fi‖ ≤ α,
fi

‖fi‖
α, ‖fi‖ > α,

so that hd
i is aligned with fi and satisfies ‖hd

i ‖ ≤ α where α > 0
is a constant control gain. When the distance between agent i and

an obstacle is less than a predefined threshold and the gradient flow

fi points towards the obstacle, agent i must change its velocity

direction; otherwise, the agent will collide with the obstacle. As

shown in Figure 5, the obstacle and the agent form a cone with the

agent as the vertex. We may choose hd
i to be a vector along the

edge of the cone. In terms of magnitude, we may choose ‖hd
i ‖ = α.

If the angle between hd
i and fi is always less than π/2, then

the system convergence is guaranteed because all the conditions in

Theorem 3 are satisfied. However, if there are multiple obstacles,

we may not be able to find hd
i satisfying the angle condition. In

this case, the convergence may not be guaranteed. Indeed, obstacle

avoidance subject to control saturation is a very challenging research

problem. Even if an obstacle can be successfully detected, the

agent may still collide to the obstacle due to the lack of sufficient

maneuverability. To tackle this problem, more complicated strategies

may be designed based on other theoretical tools such as reciprocal

velocity obstacles [27], [28] or game theory [29].

B. Simulation Results

To demonstrate the control law in (15) and the obstacle avoidance

strategy, a simulation example is shown in Figure 6. In this example,

there are three agents and the underlying graph is complete. The

target formation is an equilateral triangle with side length equal

to four meters. The maximum forward and backward linear speeds

are vf
i = 1 m/s and vb

i = 0.5 m/s for all i. The maximum angular

speeds are wl
i = wr

i = π/4 rad/s for all i. For obstacle avoidance,

α is chosen to be equal to 1. Agent i triggers obstacle avoidance

mechanism when the gradient flow points to an obstacle and the
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distance from agent i to any point on the obstacle is less than two

meters.

As can be seen, the Lyapunov function converges to zero, which

indicates that the target formation is successfully achieved. The

linear and angular speed saturation constraints are both satisfied. It is

notable that the velocity control resembles bang-bang control within

the first 18 seconds. That is because the gradient control term fi
may be extremely large when the distance errors are large (‖fi‖ may

reach 104 in this simulation example). Moreover, the angular speed

for each agent may be discontinuous due to the discontinuous switch

of hd
i to avoid obstacles. Of course, one may design a continuous

version of hd
i to obtain a continuous angular velocity if needed.

VI. CONCLUSIONS

This paper proposed a general approach to design coordination

control laws for multi-agent systems subject to motion constraints. It

has been shown that a distributed gradient control law designed for

single-integrator dynamics can be easily modified to accommodate

heterogeneous motion constraints such as nonholonomic dynamics

and velocity saturation while preserving the system convergence.

The proposed approach also provides additional flexibility to handle

path constraints such as obstacle avoidance. The proposed ap-

proach is applicable to a wide range of coordination tasks such

as rendezvous and formation control in two- and three-dimensional

spaces. Acceleration saturation is a common constraint that real

mobile robots are subject to. It is meaningful to study if the pro-

posed approach can be generalized to handle acceleration saturation

constraints in the future.

APPENDIX

A. Examples Satisfying Assumption 1

Example 3 (Displacement-Based Formation control). The objec-

tive of displacement-based formation control is to steer the agents

from some initial positions to converge to a desired geometric

pattern defined by constant relative positions {p∗i −p∗j}(i,j)∈E . This

formation control problem degenerates to the rendezvous problem

when p∗i = p∗j for all i, j ∈ V . Consider the Lyapunov function

V =
1

4

∑

i∈V

∑

j∈Ni

∥

∥(pi − pj)− (p∗i − p∗j )
∥

∥

2
.

The target formation is achieved if and only if V = 0 since the

graph is bidirectional and connected. The gradient control law

ṗi = fi =
∑

j∈Ni

[

(pj − pi)− (p∗j − p∗i )
]

is the displacement-based formation control law [24], [30]. Con-

sider any oriented graph and define the error state as ek =
pi − pj − (p∗i − p∗j ) with k = 1, . . . ,m and e = (H ⊗ I)(p− p∗).
Then, V (e) = 1/2

∑m

i=1 ‖ek‖
2, ∂e/∂p = H ⊗ I is constant, f is

continuous in e, and ‖f‖ is bounded when ‖e‖ is bounded. Since

V = 1/2(p−p∗)T (L⊗I)(p−p∗) and ṗ = f = −(L⊗I)(p−p∗),
we have f = 0 ⇔ V = 0 ⇔ e = 0 and the attraction region

Ω(r0) is the entire space R
dm. Therefore, all the conditions in

Assumption 1 are satisfied.

Example 4 (Bearing-Based Formation Control). The objective

of bearing-based formation control is to steer the agents from

some initial positions to converge to a desired geometric pattern

defined by constant inter-neighbor bearings {g∗ij}(i,j)∈E . Consider

the Lyapunov function

V =
1

4

∑

i∈V

∑

j∈Ni

‖Pg∗
ij
(pi − pj)‖

2,

where Pg∗
ij

= I − g∗ij(g
∗
ij)

T . The gradient control law

ṗi = fi =
∑

j∈Ni

Pg∗
ij
(pj − pi)

is the bearing-based formation control law proposed in [31]. For

any oriented graph, define the error state as ek = Pg∗
ij
(pi − pj)

with k = 1, . . . ,m. Then, V (e) = 1/2
∑m

k=1 ‖ek‖
2, ∂e/∂p =

diag(Pg∗
1
, . . . , Pg∗m

)(H⊗ I) is constant, f is uniformly continuous

in e, and ‖f‖ is bounded when ‖e‖ is bounded. Let B ∈ R
dn×dn

be the bearing Laplacian (see the definition in [32, Sec 3]). Then,

V = 1/2pTBp and ṗ = f = −Bp. As a result, f = 0 ⇔ V =
0 ⇔ e = 0 and the attraction region Ω(r0) is the entire space

R
dm. Therefore, all the conditions in Assumption 1 are satisfied.
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(d) The angular velocity saturation is satisfied.
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(f) Obstacle indicator (one means obstacle detected and zero no obstacle)

Fig. 6: Simulation results of distance-based formation control of unicycle agents with motion constraints.
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