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Distributed Event-Triggered Communication and Control of
Linear Multi-Agent Systems Under

Tactile Communication
Pian Yu, Carlo Fischione, and Dimos V. Dimarogonas

Abstract—This note is concerned with the consensus of linear multi-
agent systems under tactile communication. Motivated by the emerging
tactile communication technology where extremely low-latency has to
be supported, a distributed event-triggered communication and control
scheme is proposed for the data reduction of each agent. Firstly, an
event-triggered data reduction scheme is designed for the communication
between neighbors. Under such a communication scheme, a distributed
event-triggered output feedback controller is further implemented for
each agent, which is updated asynchronously with the communication
action. It is proven that the consensus of the underlying multi-agent
systems is achieved asymptotically. Furthermore, it is shown that the
proposed communication and control strategy fulfils the reduction of
both the frequency of communication and controller updates as well as
excluding Zeno behavior. A numerical example is given to illustrate the
effectiveness of the proposed control strategy.

Index Terms—Distributed event-triggered control; multi-agent systems;
output feedback; tactile communication.

I. INTRODUCTION

CURRENT technological trends involving the emergence of
Internet of Things (IoT) enable the interconnection of numerous

smart devices. In a natural evolution to IoT, Tactile Internet and
the underlying tactile/haptic communication are believed to be a
next evolutionary technological leap [1]. At the very core of the
design of Tactile Internet is the ‘1ms Challenge’ (a round-trip
communication below 1ms) [2]. However, while most cutting-edge
current networks (e.g., 5G) will deliver very high data rates, they will
also provide communication delays of the order of 25 ms [1], which
is unacceptable for many IoT services. It is well known that high
network traffic is directly related to network congestion and hence
large transmission latency that can cause instability of the overall
system [3]. Data reduction methods are therefore of great importance
for the Tactile Internet applications.

The state-of-the-art in Tactile Internet communications for data
reduction is the perceptual deadband-based (PDB) schemes. Otanez
et al. [4] were first to propose to use deadbands as a solution to reduce
network traffic for networked control systems. By taking the human
perceptual limitations into account, Hinterseer et al. [5] then proposed
a PDB principle, which was inspired by a famous psychophysical
law called ‘Weber’s law’ [6]. In their work, the deadband threshold
was adjusted for each transmitted sample (proportional to the most
recently transmitted sample). As long as the perception error stays
within the deadband, no transmissions occur, thereby resulting in
a reduced communication sequence. It is shown that the PDB data
reduction can lead to high reduction rates. However, stability of the
global control loop, as stated in [7], is not guaranteed. In addition,
all of the above papers considered the tactile communication within
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one single plant (called agent), however, the coordination of multiple
agent systems under tactile communication was not investigated.

Looking at the PDB principle in tactile communication, we find
that its idea essentially coincide with the event-triggered control
(ETC) paradigm in control community, which has been widely stud-
ied in the coordination of multi-agent systems (MAS) in recent years.
Several efforts were devoted to the ETC of MAS with single/double-
integrator dynamics [9]–[12]. For MAS with linear dynamics, some
researches have recently considered event-triggered consensus prob-
lem [13]–[18]. In [13]–[15], continuous communication of neighbors’
states are required to check the triggering conditions. Then, in [16]–
[18], the continuous requirement for communication is relaxed by
adding additional assumptions [16] or by using the matrix exponen-
tial function eAt [17], [18], nevertheless the continuous controller
update is still required. However, to meet the requirement of tactile
communication, both the continuous requirements for communication
and control have to be relaxed. Moreover, control theory provides
guidance on how to design appropriate data reduction schemes such
that the stability issue of tactile communication is tackled.

Motivated by the above discussion, this note investigates the
distributed event-triggered communication and control (ETCC) of
linear MAS under tactile communication, where output feedback
is considered. Although event-triggered output synchronization is
also considered in [19], additional reference generators are required
for each agent and globally bounded synchronization is achieved.
Moreover, while asynchronous operation of the output and input event
detectors is considered in [20], the analysis is focusing on the single-
agent case. The contribution of this note is summarized as follows.
Firstly, an event-triggered data reduction scheme is proposed for
the communication between neighbors. Under this communication
scheme, a distributed event-triggered output feedback controller is
further introduced to reduce the frequency of controller updates,
and it is updated asynchronously with the communication action.
Moreover, the consensus of the closed loop MAS is proved to
be achieved asymptotically under the proposed communication and
control strategy. Furthermore, it is shown that the integration of tactile
communication and ETC is capable of reducing the frequency of
communication and controller updates as well as excluding the so-
called Zeno behavior.

The remainder of this note is organized as follows. In Section II,
some necessary preliminaries on graph theory are provided and the
problem is formulated. The main results on the distributed ETCC
under tactile communication are presented in Section III. Section IV
provides an illustrative example and Section V concludes the note.

II. PRELIMINARIES AND PROBLEM STATEMENT

Denote R as the set of real numbers, Z as the set of nonnegative
integers, Rn as the n−dimension real vector space, Rn×m as the
n × m real matrix space. In is the identity matrix of order n and
1n is the column vector of order n with all entries equal to one. Let
‖x‖ and ‖A‖ be the Euclidean norm of vector x and matrix A. For
a symmetric matrix A, denote λmin(A) and λmax(A) as the smallest
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and largest eigenvalue of A, and A � 0 means that A is positive
definite. For a complex number λ, let Re(λ), |λ| be the real part and
the modulus of λ, respectively. In addition, we use ∩ to denote the
logical operator AND and ∪ the logical operator OR. The Kronecker
product is denoted by ⊗.

A. Graph Theory

Let G = {V, E} be a directed graph (digraph) of order n with the
set of nodes V = 1, 2, . . . , N , and E ⊆ {(i, j) : i, j ∈ V, j 6= i}
being the set of edges. If (j, i) ∈ E , then node j is called a neighbor
of node i and node j can receive information from node i. A directed
path from node i1 to node in is a sequence of ordered edges of the
form (ik, ik+1), k = 1, 2, . . . , n − 1. A digraph contains a directed
spanning tree if there exists a node called the root such that there exist
directed paths from this node to every other node. The neighboring set
of node i is denoted byNi = {j ∈ E|(j, i) ∈ E} andN+

i = Ni∪{i}.
The adjacency matrix is denoted by A = (aij)N×N and is given

by aij = 1, if (j, i) ∈ E , otherwise aij = 0. Let D = (dij)N×N
represent the degree matrix which is a diagonal matrix with entries
di =

∑N
j=1,j 6=i aij . Then the Laplacian matrix of the digraph G is

defined as L = (lij)N×N = D −A.
Assumption 1: The digraph G contains a directed spanning tree.
Let

L̃ = (l̃ij)(N−1)×(N−1)

=

 l22 − l12 · · · l2N − l1N

· · ·
. . . · · ·

lN2 − l12 · · · lNN − l1N

 .
(1)

Lemma 1: [21] Denote the eigenvalues of Laplacian matrix L and
the matrix L̃, respectively by λ1, λ2, . . . , λN and µ1, µ2, . . . , µN−1,
where 0 = |λ1| 6 |λ2| 6 . . . 6 |λN | and |µ1| 6 |µ2| 6 . . . 6
|µN−1|. Then λ2 = µ1, λ3 = µ2, · · · , λN = µN−1.

Lemma 2: [18] Suppose that the matrix A ∈ Rn×n is Hurwitz.
Then, for all t ≥ 0, it holds that

∥∥eAt∥∥ ≤ ‖PA‖ ∥∥P−1
A cAe

aAt
∥∥,

where PA is a nonsingular matrix such that P−1
A APA = JA with

JA being the Jordan canonical form of A, cA is a positive constant
determined by A, and maxi Re(λi(A)) < aA < 0.

B. Problem Statement

Consider a MAS with N agents moving in the n dimensional
Euclidean space, each of which is formulated by

ẋi(t) = Axi(t) +Bui(t),
yi(t) = Cxi(t), i = 1, 2, . . . , N.

(2)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n are constant matrices;
xi ∈ Rn, ui ∈ Rm and yi ∈ Rl are agent i’s state, control input and
measurement output, respectively.

Assumption 2: [22] The matrix pair (A,B) is stabilizable. That
is, the following algebraic Riccati equation (ARE):

ATP + PA− PBR−1BTP +Q = 0, (3)

has a unique solution P = PT � 0 for any given matrices R =
RT � 0 and Q = QT � 0.

Assumption 3: The matrix pair (A,C) is detectable.
An observer-based consensus protocol is proposed as

˙̂xi(t) =Ax̂i(t) +Bui(t) + F (yi(t)− Cx̂i(t)), (4)

and
ui(t) =− cK

∑
j∈Ni

(
x̂i(t)− x̂j(t)

)
, (5)

where c > 0 is the coupling gain, x̂i ∈ Rn is the observer state,
and F ∈ Rn×l and K ∈ Rm×n are the feedback gain matrices to
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Fig. 1: Structure of the control system.

be determined. Let the gain matrix K = R−1BTP , where P is the
unique solution of ARE (3) for appropriately chosen R and Q. It was
proven in [23] that under Assumptions 1-3, consensus of the closed
loop MAS (2), (4) is achieved with the controller (5) if and only if
the coupling gain c > 1/(2λR), where λR = min2≤i≤N Re(λi).

However, in order to be implemented, the controller is required
to access the observer state continuously and update continuously.
Although different ETC strategies regarding consensus of linear MAS
were proposed recently, either continuous communication [13]–[15]
or continuous controller update [17], [18] is required. In this note, we
are interested in an implementation of distributed ETCC under tactile
communication, which is able to relax the aforementioned continuous
communication requirements.

III. DISTRIBUTED ETCC UNDER TACTILE COMMUNICATION

In this section, a distributed ETCC strategy is proposed for linear
MAS. The information within one agent (from sensor to controller,
from controller to actuator) and between neighboring agents are
assumed to be transmitted in a tactile fashion, i.e., the transmission
latency can be ignored. However, the data rate has to be reduced. By
means of reducing data rate, a substantial reduction of latency may
be achieved to support tactile communication.

The desired structure of the control system is shown in Fig. 1,
where event generators are implemented both in the communication
side and the controller side. The proposed design procedure can be
divided into two major stages. In the first stage, an event-triggered
data reduction scheme is designed for the communication between
neighbors. In the second stage, a distributed event-triggered controller
that depends only on the transmitted information of agent itself and
its neighbors is proposed for each agent. The following subsections
detail this procedure.

A. Event-triggered data reduction for communication

This subsection presents the design of the event-triggered data
reduction scheme. For each agent i, let tiσi , σi = 0, 1, 2, . . . be the
increasing sequence of communication time instants at which x̂i is
transmitted. Then, we define the communication measurement error
for agent i as

ei(t) = e
A
(
t−tiσi

)
x̂i(t

i
σi)− x̂i(t), t ∈ [tiσi , t

i
σi+1),

where the communication time instant tiσi is updated by

tiσi+1 = inf
{
t > tiσi : f (t, ei (t)) ≥ 0

}
, (6)

where
f (t, ei (t)) = ‖ei (t)‖ − I0e−αt (7)
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with I0 > 0 and α > 0 is a constant to be determined. The condition
f (t, ei (t)) ≥ 0 is called the communication function. Without loss
of generality, we assume ti0 = 0,∀i.

Remark 1: For Tactile Internet communications, the PDB data
reduction scheme is widely utilized for the transmission of haptic
data [24]. However, stability of the global control loop, as stated
in [7], is not guaranteed. Although reconstruction strategies on the
receiver side are proposed in [5], [7], none of them are appropriate
for the multi-agent coordination case. Therefore, in this note, a well-
defined exponentially decaying function is adopted as a threshold
for the communication function of each agent, which is crucial to
ensure stability of the closed-loop MAS as well as to exclude the
Zeno behavior.

B. Event-triggered data reduction for controller update

Before proceeding, the following notations are introduced. For

each agent i, ζi(t) is defined as ζi(t) = e
A
(
t−tiσi

)
x̂i(t

i
σi), t ∈

[tiσi , t
i
σi+1) and ζij(t) is defined as ζij(t) = e

A

(
t−tjσj

)
x̂j(t

j
σj ), t ∈

[tjσj , t
j
σj+1), j ∈ Ni.

The event-triggered controller for each agent i is designed as

ui(t) = −cK
∑
j∈Ni

(
ζi(T

i
k)− ζij(T ik)

)
, t ∈ [T ik, T

i
k+1), (8)

where T ik, k ∈ Z is the controller update time sequence
of agent i. From the above definitions, one has ζi(T

i
k) =

e
A
(
T ik−t

i
σi

)
x̂i(t

i
σi), σi

∆
= arg minl∈Z:T i

k
≥ti
l

{
T ik − til

}
, ζij(T

i
k) =

e
A

(
T ik−t

j
σj

)
x̂j(t

j
σj ), σj

∆
= arg min

l∈Z:T i
k
≥tj
l

{
T ik − tjl

}
, ∀j ∈ Ni,

where tiσi , x̂i(t
i
σi) and tjσj , x̂j(t

j
σj ), j ∈ Ni represent the latest

communication time instant and the latest received information of
agent i and its neighbors j before T ik, respectively.

Let zi (t) =
∑
j∈Ni (ζi(t)− ζij(t)). Define the controller mea-

surement error of agent i as the combined state differences between
the last triggering instant T ik and current time, which is

êi (t) =
∑
j∈Ni

(
ζi(T

i
k)− ζij(T ik)

)
−
∑
j∈Ni

(ζi(t)− ζij(t))

= zi(T
i
k)− zi(t).

(9)

Combining ei (t) and êi(t), the controller (8) can be rewritten as

ui(t) = −cK

∑
j∈Ni

(x̂i(t) + ei(t)− (x̂j(t) + ej(t))) + êi(t)

 .

(10)
Define the observation error of agent i as x̃i(t) = xi(t)−x̂i(t), let

x̃ (t) =
[
x̃T1 (t) , . . . , x̃TN (t)

]T
. Then the dynamics of the observation

error system is ˙̃x (t) = (IN ⊗ (A− FC)) x̃ (t), which is globally
asymptotically stable if and only if the matrix A− FC is Hurwitz.

Let the gain matrix K = R−1BTP , where P = PT � 0 is the
unique solution of ARE (3) for appropriately chosen R = RT � 0
and Q = QT � 0. Let x̂, e, ê be the concatenated vectors of x̂i, ei, êi,
respectively. Then, the dynamics of the observer (4) can be rewritten
as

˙̂x(t) = (IN ⊗A) x̂(t)−
(
cL⊗BR−1BTP

)
(x̂(t) + e(t))

−
(
cIN ⊗BR−1BTP

)
ê(t) + (IN ⊗ FC) x̃(t).

(11)

Let ξi(t) = x̂i(t)− x̂1(t),∀i and the disagreement vector ξ(t) =[
ξT1 (t) , ξT2−N (t)

]T
, where ξ2−N (t)

∆
=
[
ξT2 (t) , . . . , ξTN (t)

]T ∈

R(N−1)n. It follows that ξ1(t) ≡ 0, and the vectors ξ2−N (t) satisfy

ξ̇2−N (t) =(IN−1 ⊗A− cL̃⊗BR−1BTP )ξ2−N (t)

−
(
cL̃W ⊗BR−1BTP

)
e(t)

−
(
cW ⊗BR−1BTP

)
ê(t) + (W ⊗ FC) x̃(t)

∆
=Πξ2−N (t)−G1e(t)−G2ê(t) +G3x̃(t),

(12)

where Π = IN−1 ⊗ A − cL̃ ⊗ BR−1BTP , G1 =
cL̃W ⊗BR−1BTP , G2 = cW ⊗BR−1BTP , G3 = W ⊗ FC,
W = [−1N−1, IN−1] ∈ R(N−1)×N and L̃ is defined in (1). It can
be seen that the observer (11) achieves consensus, if and only if
limt→∞ ξ2−N (t) = 0.

Since Assumption 1 holds, it follows from Lemma 1 that L̃ ∈
R(N−1)×(N−1) is a full-rank matrix. Moreover, the eigenvalues of L̃
have positive real parts. Choosing the coupling gain c > 1/(2λR), it
is proven in [23] that the matrix Π is Hurwitz. Thus, there exists a
positive definite matrix P̄ = P̄T that satisfies the Lyapunov condition
P̄Π + ΠT P̄ = −Q̄ for any given Q̄ = Q̄T � 0.

Now, we are ready to define the controller update time sequence.
The controller update time instants T ik for each agent i are given by

T ik+1 = inf
{
t > T ik : g (êi (t) , zi(t), t) ≥ 0

}
, (13)

where

g (êi (t) , zi (t) , t) = ‖êi(t)‖ −
(
θγ ‖zi(t)‖+ ηe−αt

)
(14)

with constants 0 ≤ θ < 1, γ = λmin

(
Q̄
)
/(2(l̂ + N

√
l̂)
∥∥P̄G2

∥∥),
η > 0, l̂ = maxi {di} ≤ N−1 and α is defined in (7). The condition
g (êi (t) , zi(t), t) ≥ 0 is called the control function. Without loss of
generality, we assume T i0 = 0,∀i.

From the definition of zi(t) and êi(t), one can see that only the
discrete communication time instants and the states transmitted at
these communication time instants (determined by the communication
function (7) of the agent itself and its neighbors) are required to im-
plement the control function (14). When the controller measurement
error êi exceeds a certain threshold, that is, g

(
êi(T

i
k), zi(T

i
k), t

)
≥ 0,

an event is triggered for agent i. Agent i updates its controller using
the latest communication instants and the latest received states of
itself and its neighbors. Meanwhile, the controller measurement error
êi is reset to zero.

Remark 2: The communication function f(t, ei(t)) ≥ 0 can
be seen as a trigger for communication and the control function
g (êi (t) , zi(t), t) ≥ 0 can be seen as a trigger for controller update.
They work asynchronously. Note that no communication is required
at the controller update time instants for each agent, which is different
from the previous ETC strategies, where each agent updates its
controller and communicates with its neighbors at the same time.

Remark 3: It is worth to mention that except for the controller
update time instants, the control function g (êi (t) , zi(t), t) will also
be reset at the communication instants of itself and its neighbors.
Therefore, g (êi (t) , zi(t), t) can be discontinuous within two neigh-
boring controller update instants, which brings additional difficulty in
proving the exclusion of Zeno behavior. Furthermore, different from
the control function proposed in [10], [17], in this paper, an extra
term ηe−αt is introduced such that Zeno triggering is excluded.

C. Convergence result

Definition 1: The consensus of the closed loop MAS (2), (4)
is said to be achieved asymptotically, if and only if for any
initial condition, lim

t→∞
‖x̂i (t)− x̂j (t)‖ = 0, ∀ (i, j) ∈ E and

lim
t→∞

‖xi(t)− x̂i(t)‖ = 0, ∀i.
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Now, we are in the position to give the following result.
Theorem 1: Consider the MAS (2) with the observer (4), where

the matrix F is chosen such that the matrix (A − FC) is Hurwitz.
Let controller be given in (8), where the coupling gain satisfies c >
1/(2λR). Suppose Assumptions 1-3 hold and that the communication
function (7) and the control function (14) are applied with 0 < α <
min{((1− θ)λmin(Q̄)−a)/2λmax(P̄ ),−maxiRe (λi (A− FC))},
where 0 < a < (1 − θ)λmin

(
Q̄
)

is a positive constant that can
be chosen arbitrarily small. Then, the consensus of the closed loop
MAS (2), (4) is achieved asymptotically. Furthermore, Zeno behavior
is excluded.
Proof. Consider the following Lyapunov function candidate V (t) =
ξ2−N (t)T (t)P̄ ξ2−N (t). Differentiating V (t) along the trajectories of
(12), one has

V̇ (t) =− ξT2−N (t)Q̄ξ2−N (t)− 2ξT2−N (t)P̄G1e(t)

− 2ξT2−N (t)P̄G2ê(t) + 2ξT2−N (t)P̄G3x̃(t).
(15)

According to (6), one has ‖ei(t)‖ ≤ I0e
−αt, ∀i, and thus

‖e(t)‖ ≤
√
NI0e

−αt. Besides, for agent i, an event for controller
update is triggered at T ik+1 when g (êi (t) , zi(t)) ≥ 0. Thus, one has
g (êi (t) , zi(t)) < 0 for t ∈ [T ik, T

i
k+1). According to the definition

of zi(t), one has

‖zi (t)‖ =
∥∥∥ ∑
j∈Ni

(ζi(t)− ζij(t))
∥∥∥

≤
∥∥∥ ∑
j∈Ni

((x̂i(t)− x̂1(t))− (x̂j(t)− x̂1(t)))
∥∥∥

+
∥∥∥ ∑
j∈Ni

(ei(t)− ej(t))
∥∥∥

≤
∑
j∈Ni

(‖ξi(t)‖+ ‖ξj(t)‖) +
∑
j∈Ni

(‖ei(t)‖+ ‖ej(t)‖).

(16)
Letting γ̂ = λmin

(
Q̄
)
/(2
∥∥P̄G2

∥∥), one further has

‖ê (t)‖ ≤
N∑
i=1

(
θγ ‖zi(t)‖+ ηe−αt

)
≤θγ̂ (‖ξ(t)‖+ ‖e(t)‖) +Nηe−αt

≤θγ̂ ‖ξ2−N (t)‖+ (θγ̂I0 + η)Ne−αt.

(17)

Using the inequality 2xy ≤ ax2 + 1/ay2, ∀a > 0 several times,
(15) can then be rewritten as

V̇ (t) ≤− λmin

(
Q̄
)
‖ξ2−N (t)‖2 + 2 ‖ξ2−N (t)‖

∥∥P̄G1

∥∥ ‖e (t)‖
+ 2 ‖ξ2−N (t)‖

∥∥P̄G2

∥∥ ‖ê (t)‖+ 2 ‖ξ2−N (t)‖
∥∥P̄G3

∥∥ ‖x̃ (t)‖
≤ −

(
(1− θ)λmin

(
Q̄
)
− a
)
‖ξ2−N (t)‖2

+
2

a

(∥∥P̄G1

∥∥ I0 +
∥∥P̄G2

∥∥ (θγ̂I0 + η)
)2
N2e−2αt

+
2

a
‖PG3‖2 ‖x̃ (t)‖2

≤− 2β1V (t) + β2e
−2αt + β3 ‖x̃ (t)‖2 ,

(18)
where β1 =

(
(1− θ)λmin

(
Q̄
)
− a
)
/2λmax

(
P̄
)
, β2 =

2
(∥∥P̄G1

∥∥ I0 +
∥∥P̄G2

∥∥ (θγ̂I0 + η)
)2
N2/a and β3 = 2‖PG3‖2/a.

Choosing a < (1 − θ)λmin

(
Q̄
)
, β1 is positive. Based on the

comparison theorem in [25] and (18), one can get that the solution
of V (t) satisfies

V (t) ≤e−2β1tV (0) +

∫ t

0

e−2β1(t−s)(β2e
−2αs + β3‖x̃(s)‖2)ds.

Define Ĉ = A − FC and let PĈ and P−1

Ĉ
be the matrices such

that P−1

Ĉ
ĈPĈ = JĈ , where JĈ is the Jordan canonical form of the

matrix Ĉ. Then, it follows from Lemma 2 that for 0 ≤ s ≤ t,∥∥∥e−2β1(t−s)(β2e
−2αs + β3‖x̃(s)‖2)

∥∥∥ ≤ β2e
−2β1(t−s)e−2αs

+ β3

(
cĈ ‖PĈ‖

∥∥P−1

Ĉ

∥∥ ‖x̃ (0)‖
)2
e−2β1(t−s)e2a

Ĉ
s,

(19)
where maxi Re(λi(Ĉ)) < aĈ < 0, cĈ is a positive constant with
respect to Ĉ. Let a1 = V (0) + a2 + a3, a2 = β2/ |2α− 2β1|
and a3 = β3(cĈ‖PĈ‖‖P

−1

Ĉ
‖ ‖x̃ (0)‖)2/ |2aĈ + 2β1|, then one

can further have V (t) ≤ a1e
−2β1t + a2e

−2αt + a3e
2a
Ĉ
t. Since

β1 > 0, α > 0 and aĈ < 0, one has limt→∞V (t) = 0. From
the definition of V , one can see that V (t) = 0 if and only if
‖ξ2−N (t)‖ = 0, which is equivalent to ‖x̂i(t)−x̂j(t)‖ = 0,∀(i, j) ∈
E . Besides, one has limt→∞ ‖x̃(t)‖ = 0, which is equivalent to
limt→∞ ‖xi(t)− x̂i(t)‖ = 0, ∀i. Therefore, consensus of the closed
loop MAS (2), (4) is achieved asymptotically.

In the following, we will show that Zeno behavior is excluded.
Firstly, the communication function (7) is analysed.

From the definition of ξ(t), one has ‖ξ (t)‖ = ‖ξ2−N (t)‖ ≤√
V (t)/λmin

(
P̄
)

= b1e
−β1t + b2e

−αt + b3e
a
Ĉ
t, where b1 =√

a1/λmin

(
P̄
)
, b2 =

√
a2/λmin

(
P̄
)

and b3 =
√
a3/λmin

(
P̄
)
.

Let u(t) be the column stack vector of ui(t). Then one has

‖(IN ⊗B)u (t)‖ ≤
∥∥∥(cL⊗BR−1BTP )(x̂ (t) + e (t))

∥∥∥
+
∥∥∥cIN ⊗BR−1BTP

∥∥∥ ‖ê(t)‖
≤c ‖L‖

∥∥∥BR−1BTP
∥∥∥ (‖ξ (t)‖+ ‖e (t)‖)

+ c
∥∥∥BR−1BTP

∥∥∥ ‖ê(t)‖
≤d1e

−β1t + d2e
−αt + d3e

a
Ĉ
t

(20)

where d1 = c(‖L‖+ θγ)
∥∥BR−1BTP

∥∥ b1, d2 =

c
(
‖L‖ I0 + (θγI0 + η)

∥∥BR−1BTP
∥∥)√N + d1b2/b1

and d3 = c(‖L‖+ θγ)
∥∥BR−1BTP

∥∥ b3. Furthermore,

∀t ∈ [tiσi , t
i
σi+1), one has ėi (t) = Ae

A(t−tiσi )x̂i(t
i
σi) −

(Ax̂i (t) +Bui (t) + F (yi (t)− Cx̂i (t))) = Aei (t)−Bui (t)−
FCx̃i (t) and ‖ui(t)‖ ≤ ‖u(t)‖. Thus, one has ‖ėi(t)‖ ≤
k1e
−β1t + k2e

−αt + k3e
a
Ĉ
t, where k1 = d1, k2 = d2 + ‖A‖ I0,

k3 = d3 + cĈ‖PĈ‖‖P
−1

Ĉ
‖‖FC‖‖x̃i (0)‖. Denote the

latest communication time of agent i by t̂∗i , then the next
communication time will not occur before ‖ei (t)‖ = I0e

−αt.
Thus, a lower bound on the inter-communication time of the
agent i,∀i is given by τi = t − t̂∗i that solves the equation
(k1e

−β1 t̂∗i + k2e
−αt̂∗i + k3e

a
Ĉ
t̂∗i )τi = I0e

−αt, which is equivalent
to (

k1e
(−β1+α)t̂∗i + k2 + k3e

(aĈ+α)t̂∗i
)
τi = I0e

−ατi . (21)

Since β1 = ((1 − θ)λmin(Q̄) − a)/2λmax(P̄ ), one has α <
min{β1,−maxiRe(λi(Ĉ))}, then there exists a positive constant
α < β1 and −maxiRe(λi(Ĉ)) > −aĈ > α > 0. Thus, it is
concluded that the solution τi of (21) is greater or equal to τ∗,
which is given by (k1 + k2 + k3) τ∗ = I0e

−ατ∗ for all agent i,
which is strictly positive. Therefore, Zeno behavior is excluded for
the communication function (7).

Next, the control function (14) is analysed. Note that the control
function g (êi (t) , zi(t), t) is not necessary continuous within two
neighboring controller update instants (as stated in Remark 3).
Define t̂iσ̂i = ∪

j∈N+
i
tjσj , σ̂i ∈ Z as the increasing sequence

of communication time instants of agent i and its neighbors, i.e.,
0 = t̂i0 < t̂i1 < t̂i2 < · · · ,∀i. Let T̂ i

k̂
= t̂iσ̂i ∪ T

i
k, k̂ ∈ Z ,

where 0 = T̂ i0 < T̂ i1 < T̂ i2 < · · · , ∀i. Then the set {T̂ i
k̂
} can be

seen as the jumping set of function g (êi (t) , zi(t), t). Within two
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neighboring instants of T̂ i
k̂

, g (êi (t) , zi(t), t) is continuous. Define
τ ′i = T ik+1 − T ik as the time interval between two neighboring
controller update instants of agent i, then for each t ∈ [T ik, T

i
k+1),

i) If T ik ∈ {t̂iσ̂i} and T ik+1 ∈ {t̂iσ̂i}, one has τ ′i = T ik+1 − T ik ≥
t̂iσ̂i+1− t̂iσ̂i . Since Zeno behavior is excluded for the communication
function (6), one has that τ ′i is strictly positive in this case;

ii) If T ik ∈ {t̂iσ̂i}, T
i
k+1 /∈ {t̂iσ̂i}, there must exist a σ̂∗i ∈ Z

such that T ik+1 ∈ (tiσ̂∗
i
, tiσ̂∗

i +1). If tiσ̂∗
i
≥ t̂iσ̂i+1, one has τ ′i ≥

t̂iσ̂i+1 − t̂iσ̂i . Otherwise, tiσ̂∗
i

= t̂iσ̂i , which means T ik and T ik+1

are neighboring instants of T̂ i
k̂

, thus g (êi (t) , zi(t), t) is continuous
for t ∈ [T ik, T

i
k+1). Taking the derivative of êi(t) on t, one has

‖ ˙̂ei(t)‖ ≤ ‖Azi(t)‖ ≤ m1e
−β1t + m2e

−αt + m3e
a
Ĉ
t, where

m1 = ‖A‖ (l̂ + N
√
l̂)b1,m2 = ‖A‖ (l̂ + N

√
l̂)(b2 +

√
NI0) and

m3 = ‖A‖ (l̂ +N
√
l̂)b3. Besides, from (14), one observes that the

next controller update time will not occur before ‖êi (t)‖ = ηe−αt.
Similar to the following analysis of the communication function (7),
one can get that τ ′i , ∀i is greater than or equal to the solution τ̂∗ of
(m1 +m2 +m3) τ̂∗ = ηe−ατ̂

∗
, which is strictly positive;

iii) For the cases T ik /∈ {t̂iσ̂}, T ik+1 ∈ {t̂iσ̂} and T ik /∈ {t̂iσ̂}, T ik+1 /∈
{t̂iσ̂}, one can also get that τ ′i , ∀i is strictly positive similar to the
analysis of i) and ii).

Since there is a strictly positive lower bound on the neighboring
controller update time instants in all cases, one can conclude that
Zeno behavior is excluded for the control function (14). �

Remark 4: The observer given in (4) can only reconstruct the state
xi for each agent i asymptotically, and the convergence rate of the
observation error x̃i is constrained by A − FC. However, it was
shown in [26] that it is possible to reconstruct the state xi in finite-
time h > 0 if a finite-time observer (FTO) is utilized. As for the
robustness problem of the FTO given in [26], a possible modification
is that one can use the FTO first, such that the state xi can be
reconstruct in time h, and then switch to the observer (4).

IV. SIMULATION RESULTS

In this section, a numerical example is given to verify the theo-
retical results. A network of 6 agents with communication graph G
is shown in Fig. 2. One can calculate that λR = 1, then we choose
c = 1 > 1/(2λR). The initial state xi(0) of each agent i is chosen
randomly from the box [−5, 5]× [−5, 5], and the initial state of the
observer x̂i(0) of each agent i is chosen to be [0, 0]T , ∀i.

The system matrices are chosen as A = [−2, 1; 0.1, 0.2], B =
[0.8, 0.5]T and C = [1, 0]. Given Q = 5IN and R = 2IN , one can
get K = [0.6917, 1.8780] by solving the ARE (3). The feedback
gain matrix F is chosen as F = [−0.5, 2]T such that A − FC is
Hurwitz. Given Q̄ = 5I2N−2, then one can get λmax(P̄ ) = 6.7513
by solving the Lyapunov function ΠT P̄ + P̄Π = −Q̄. Choosing
θ = 0.4 and a = 0.001, one has β1 = 0.444. Then, we can choose
α = 0.4 < min{β1,−maxiRe (λi (A− FC))}.

The simulation results for the MAS (2), (4) with controller (8) are
shown in Figs. 3-5. The state trajectories are plotted in Fig. 3, where
xi1 and xi2 are the state components of agent i. The evolutions of
controller (8) for each agent i are plotted in Fig. 4. As an example,
the communication/controller update time instants of agent 1 (labeled
as t1σ/T 1

k ) and the inter-communication/controller update interval of
agent 1 (labeled as ∆(t1σ)/∆(T 1

k )) is presented in Fig. 5. One can
see that Zeno behavior is excluded for both the communication and
controller update. In Fig. 6, the state trajectories under the controller
(2) proposed in [18] are depicted, and the evolutions of controller (2)
are plotted in Fig. 7.

TABLE I summarises the simulation results for the controller
(8) and the controller (2) of [18]. The amount of communication
times and controller update times within the simulation time intervals

2 3 4 5

1 6

Fig. 2: Communication graph among the agents.

[0, 10], [0, 20] and [0, 30] are given for each agent and the overall
communication times are calculated. Moreover, the minimum inter-
communication time (MIC) and the minimum inter-controller update
time (MICU) are also stated for each agent (since the controller
proposed in [18] is updated continuously, no UT or MICU is given,
and thus the improvement in our case is straightforward). One can
see that during the time interval [0, 10], the overall communication
times for the two controllers are the same. During the time intervals
[0, 20] and [0, 30], the overall communication times of controller
(8) are slightly more than that of controller (2) proposed in [18].
Therefore, it is concluded that the proposed distributed ETCC strategy
reduces significantly the controller update times without significantly
increasing the communication times.
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Fig. 3: The evolution of xi1, xi2 under controller (8).
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Fig. 4: The evolution of controller (8).
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Fig. 5: The communication/controller update time instants of agent
1.
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TABLE I: The amount of CT/UT and the MIC/MICU

CT/MIC CT/MIC [18] CT/MIC CT/MIC [18] CT/MIC CT/MIC [18] UT/MICU UT/MICU UT/MICU
Time Interval [0, 10] [0, 10] [0, 20] [0, 20] [0, 30] [0, 30] [0, 10] [0, 20] [0, 30]

Agent 1 23/0.15 23/0.14 36/0.15 35/0.14 44/0.15 46/0.14 73/0.02 106/0.02 129/0.02
Agent 2 22/0.17 22/0.17 34/0.17 30/0.17 41/0.17 37/0.17 26/0.06 40/0.06 52/0.06
Agent 3 28/0.13 28/0.13 38/0.13 38/0.13 45/0.13 45/0.13 56/0.02 81/0.02 97/0.02
Agent 4 18/0.26 18/0.25 23/0.26 25/0.25 32/0.26 29/0.25 25/0.06 39/0.04 50/0.04
Agent 5 11/0.34 12/0.40 21/0.34 20/0.40 30/0.34 29/0.40 25/0.12 36/0.12 49/0.12
Agent 6 16/0.21 15/0.25 28/0.21 22/0.25 40/0.21 30/0.25 19/0.22 36/0.07 50/0.07

Overall CT 118 118 180 170 232 216 - - -
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Fig. 6: The evolution of xi1, xi2 under controller (2) proposed in
[18].
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Fig. 7: The evolution of controller (2) proposed in [18].

V. CONCLUSION

In this note, the distributed ETCC of linear MAS was investigated
under tactile communication. Firstly, in the communication side, an
event-triggered data reduction scheme was proposed for each agent.
Then, in the control side, a distributed event-triggered controller was
implemented to each agent to further reduce the controller update. It
was proven that the consensus of the closed loop MAS is achieved
asymptotically. It was also shown that the proposed ETCC strategy
is capable of reducing both the frequency of communication and
controller update as well as excluding Zeno behaviour. In the future,
more general systems, such as nonlinear systems, and communication
constraints, such as quantization, disturbance and packet loss should
be taken into account.
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