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Abstract— In this paper we analyze the equilibrium points
of a collaborative transportation task, composed of two un-
manned aerial vehicles and a payload - in this case, a bar.
Moreover, centralized and decentralized linear model predictive
controllers are designed, where the nonlinear dynamics are
linearized around the equilibrium points previously analyzed.
A comparison between the centralized and decentralized for-
mulations is provided, based on experimental results for both
setups, and considering the time to solution and performance
of each controller. Our findings provide new operational equi-
librium points that can be paired with predictive model-based
controllers for efficient operation.

I. INTRODUCTION

The maneuverability and freedom provided by unmanned
aerial vehicles (UAVs) are useful in a variety of applica-
tions. UAVs have already been used in search and rescue
missions [1], and in inspection and defect detection of solar
panels, bridges and building facades [2]–[4]. Another use
case for UAVs is payload transport. However, the geometry
and weight of the payload may often require the use of
more than one UAV to make transport possible, creating a
need for a controller structure with multi-agent capabilities.
Furthermore, the geometric constraints introduced by the
coupling between UAVs and payload, often result in complex
dynamics with intricate interaction forces, rendering the
control problem far from straightforward.

A common denominator for much of the previous work
on UAV payload transport is to either treat the payload as a
disturbance, or to find workarounds to bypass the need for
modeling its complete dynamics. In [5], robust MPC with
a disturbance term to account for the unknown dynamics of
the load is used, and therefore cannot offer optimality with
respect to its dynamics. In [6], a UAV–bar system (similar
to fig. 1) is approximated by two UAVs with separate point-
mass payloads, where each of the agents is controlled with an
LQR. Other approaches take into account the full dynamics
of the payload: in [7], [8] the authors design appropriate
PID-based control laws to stabilize the UAV–bar system,
accounting for a single equilibrium point; in [9], an offline
batch optimization routine taking into account the string ten-
sion forces is used to generate appropriate trajectories. These
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Fig. 1: The system under analysis in this work, where two UAVs
collaboratively transport a bar using cables.

approaches, however, lack look-ahead capabilities or online-
feedback, leading to non-optimal control inputs. Lastly, in
[10], open-loop control forces are designed as a function
of the object’s internal forces, given by end-effector sensor
readings. As these are open-loop forces, steady-state error is
present when no internal forces are measured.

In this work we propose Model Predictive Controllers
(MPCs) to control the UAV–bar system depicted in Fig. 1. In
this scenario, two UAVs collaboratively transport a cylindri-
cal payload and two MPC control methodologies are tested:
one centralized, and one decentralized. The centralized con-
troller bears resemblance to the one found in [11], but
instead of performing a numerical linearization step online,
the linearization is done analytically as part of the modeling
process, saving valuable computational time. The contribu-
tions are threefold: i) an analysis of the equilibrium points
of the system depicted in Fig. 1 is provided, leading to an
efficient formulation capable of being used in an online MPC
framework; ii) experimental results that showcase both the
centralized and decentralized control methodologies, based
on the equilibrium analysis results; iii) a comparative of the
results, particularly highlighting the differences between the
two control setups.

Notation: Small, bold letters represent vectors. Matrices
are denoted by bold, capital letters. Regular letters denote
scalars. ×a denotes the skew-symmetric matrix representa-
tion of a, and aT the transpose of a. Calligraphic letters
denote reference frames, and the basis vectors of a frame
A are denoted {ax,ay,az}. We denote by 0N ∈ RN the
column vector of all zeros. Rotation matrices from frames A
to B are defined as RA/B ∈ SO(3). Features represented in a
reference frame A are denoted as Aa. When the origin/target
frame is the inertial frame, we omit the corresponding letter.
Sets are defined using capital sans-serif letters, e.g., A.
The weighted vector norm

√
xTAx is denoted ‖x‖A. The



indexed letters s(·), c(·), and t(·) denote the trigonometric
functions sin(·), cos(·), and tan(·), respectively.

II. BACKGROUND

In this section we provide the necessary background
knowledge for the paper.

A. UAV with Single Load

Let {E} and {B} denote an inertial frame, and UAV body
frame, respectively, where the frame {B} is attached and
kept fixed to the UAV center of mass (CoM) as in Fig. 2.
Let the positions p and pp, the velocities v and vp, and
the masses m and mp, correspond to those of the UAV
and the payload, respectively. Moreover, let g be the gravity
constant, Θ be the Euler angles of the UAV body w.r.t. {E},
J its positive definite inertia matrix and ωB its body angular
rates. Although the forces and moments that the UAV is
able to generate are effects of the combination of the thrusts
generated by each propeller, a frequently used technique
is to combine these thrusts into a single thrust (here Ft),
and a torque vector (here τB) [12], [13]. This technique is
motivated by that each pair (Ft, τB), uniquely defines the
thrust of each propeller [13]. Then, the equations of motion
of the UAV-payload system can be found using the Newton-
Euler approach, resulting in

ṗ = v (1a)

v̇ = m−1(FtRez −mgez − Tn) (1b)

Θ̇ = H Bω, (1c)
Bω̇ = J−1

(Bτ − B×ωJ Bω
)

(1d)
ṗp = vp (1e)

v̇p = m−1p (Tn−mpgez) (1f)

where l is the cable length, n = l−1(p − pp) is the cable
direction vector, R is the Z-Y-X Rotation matrix, T is the
absolute tension force in the cable attached to the payload
[14, eq. (5)] and H the attitude Jacobian that translates body
rates to Euler angles [15]. These are given by

R(φ, θ, ψ) =

[
cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

]
, (2)

T = mp(mp +m)−1
(
FtRez · n +ml−1‖v − vp‖2

)
,

(3)

H =

[
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
, (4)

where the angles φ, θ, and ψ are referred to as roll, pitch,
and yaw, respectively.

B. UAVs with bar

We now consider a system where a rigid bar is tethered
to two UAVs by cables, as illustrated in Fig. 1. Each UAV
is given a corresponding body frame {Bi}, i = 1, 2, that is
attached to the UAV CoM, and to where it is assumed that
the cables are attached. The bar, however, is chosen to be
modeled solely with respect to the inertial frame {E}. The
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Fig. 2: A UAV with payload attached, and an associated body frame
{B} located at a position p with respect to the inertial frame {E}.

state variables introduced in the previous section are also
given subindices, so that, e.g., p1 is the position of UAV 1.
The subindex b is used for quantities relating to the bar.

Each cable is of length l1 and l2, respectively, where the
subindex is given depending on to which UAV the cable is
directly attached to. We denote by mb the mass of the bar,
and di the distance between the bar CoM and the end of the
bar to which cable i is attached. Thus, the total length of the
bar is (d1 +d2). Furthermore we define nb as the unit vector
parallel with the bar’s symmetry axis, pointing towards the
attachment of cable 2. Each cable direction is, in this case,
given by ni = l−1i (pi − (pb + (−1)idinb)), i = 1, 2.

Using the same Newton-Euler approach as for the single
UAV case results in the following set of equations

ṗi = vi i = 1, 2, b (5a)

v̇i = m−1i (FiRΘiez −migez − Tini) i = 1, 2 (5b)

Θ̇i = HΘi

Bωi i = 1, 2 (5c)
Bω̇i = J−1i

(Bτ i − B×ωiJi Bωi) i = 1, 2 (5d)

v̇b = m−1b (T1n1 + T2n2 −mbgez) (5e)

Θ̇b = H
{E}
Θb
ωb (5f)

ω̇b = J−1b ×nb(d2T2n2 − d1T1n1) (5g)

where RΘi
, HΘi

are found by making the substitutions φ←
φi, θ ← θi, and ψ ← ψi in (2) and (4), respectively. The
matrix H

{E}
Θb

, relates angular velocities in the inertial frame
to Euler-angle rates and has the form

H
{E}
Θb

=

[
cψb/cθb sψb/cθb 0
−sψb cψb 0
cψbtθb sψbtθb 1

]
. (6)

Equation (5g) is valid under the assumption that nb ·ωb = 0,
and Jb can in this case be chosen to be the scalar correspond-
ing to the moment of inertia in the axes perpendicular to nb.

To reduce the model complexity, each cable is modeled as
a massless, rigid, and rotational link, which means that the
following constraint∥∥pi − (pb + (−1)idinb)

∥∥ = li, i = 1, 2 (7)

holds, and the forces T1, T2 take the form[
T1
T2

]
= M−1λ, (8)

for a matrix M ∈ R2×2, and a vector λ ∈ R2, both being
functions of the state and input. For an explicit expression,
see [16].
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Fig. 3: Definition of the angles θf and θl. The system is assumed
symmetric with respect to the center of the bar. The variable θl
corresponds to the angle between the cable and inertial Z-axis, while
θf corresponds to the angle between the thrust Fi being applied on
the cable and the inertial Z-axis.

III. EQUILIBRIUM POINTS FOR THE UAV–BAR SYSTEM

A result of this work corresponds to the analysis of the
equilibrium points of the system depicted in Fig. 1.

Assumption 1. Consider the system (5), where the variables
T1 and T2 are defined according to (8). It is assumed that
the system is symmetric with d1 = d2 =: db, l1 = l2 =: l,
and m1 = m2 =: muav. It is also assumed that the bar is
parallel with ex, and that it is placed with its center of mass
in the origin.

Under these conditions, it is possible to obtain a set of
equilibrium points, as shown in Proposition 1.

Proposition 1. Let Assumption 1 hold. Then the equilibrium
points of (5) can be defined in closed form with respect to
θf and θl, where θl corresponds to the angle between the
cable and inertial Z-axis and θf corresponds to the angle
between the thrust Fi being applied on the cable and the
inertial Z-axis, according to feq(θf , θl) = 0, where

feq(θf , θl) =

(
sθfMg

2cθf
−

mbgc(θf−θl)sθlM

2cθf
(
2muavcθl

2 +mb
))2

+

+

(
mbg

2
−

mbgc(θf−θl)cθlM

2cθf
(
2muavcθl

2 +mb
))2

,

(9)

with M := mb + 2muav.

Proof. Consider the parametrization variables θf and θl as in
Fig. 3, the thrust forces as f i = F · (sin θf · (−1)i, 0, cos θf ),
i = 1, 2, and the string tension forces as ti = T · (sin θl ·
(−1)i, 0, cos θl), i = 1, 2. This restricts the UAV positions,
so that pi = ((db+l sin θl)·(−1)i, 0, cos θl), i = 1, 2. For the
vertical equilibrium of the system, we need (f1 + f2) · ez =
2F cos θf = g(mb + 2muav), which gives

F = gM(2 cos θf )−1 (10)

Similarly, for the lateral equilibrium (f i − ti) · ex = 0, i =
1, 2, must hold, but the symmetry given by Assumption 1
and the definition of θf , θl implies that this can be reduced
to the single equation

F sin θf − T sin θl = 0. (11)

The string tension force T can be taken from (8) (by
symmetry, T1 = T2), giving T =

mbg cos(θf−θl)(mb+2muav)
2 cos(θf )(2muavcos2(θl)+mb)

after substituting F using (10). Finally for the bar to be in
equilibrium, it is necessary that the string tensions’ vertical
components are equal to the weight of the bar, i.e.,

T cos θl −
mbg

2
= 0. (12)

Note that, the lateral equilibrium is fulfilled automatically
due to symmetry. The result now follows from the squared
sum of (11) and (12), giving feq(θf , θl) = 0.

Out of all solutions, the trivial solution θf = θl = 0
constitutes the most efficient equilibrium point as the thrust
direction is then completely aligned with the direction of
gravity. The other equilibria, however, remain interesting in
situations where the space in the z-direction is limited, and
also enables the possibility of raising the bar while the z-
position of the UAVs remains relatively intact (or lowering
the UAVs while the bar remains in position.)

IV. CENTRALIZED CONTROLLER

This controller makes use of the model derived in
Section II-B. To reduce the system complexity and
consequently the MPC solving time we make use of
a linearized version of (5), leaving the yaw of each
rigid body as a parameter that is set at each sampling
time. As linearization point, any of the equilibria
defined by the solution to (9) can be chosen, as long
as Assumption 1 holds. While the bar can assume an
arbitrary position pb, the positions of the UAVs are decided
explicitly based on the yaw and the position of the bar
if the system is to remain in the chosen equilibrium
position. Consequently, the equilibrium state is given by
xeq = (x

(b)
eq ,x

(1)
eq ,x

(2)
eq ), where x

(b)
eq = (pb,05, ψ

(b)
0 ,03),

x
(i)
eq = (pi,04, (−1)i−1θf , ψ

(i)
0 ,03), i = 1, 2, and

pi = pb + ((−1)i−1(di + lisθl) sinψ
(b)
0 , (−1)i(di +

lisθl) cosψ
(b)
0 , licθl), i = 1, 2. The corresponding input

equilibrium is given by the conditions of force and moment
equilibria which result in ueq = (F

(1)
eq , Bτ

(1)
eq , F

(2)
eq , Bτ

(2)
eq ),

where Bτ (1)
eq = Bτ

(2)
eq = 03, and F

(i)
eq = gM/(2cθf ).

The resulting linearized system equations can be
written as ẋlin(t) := Ac∆x(t) + Bc∆u(t), where
Ac = ∂ẋ/∂x

∣∣
x=xeq

, Bc = ∂ẋ/∂u
∣∣
x=xeq

, ∆x := x−xeq,
and ∆u := u − ueq. The standard zero-order hold (ZOH)
discretization of ẋlin would result in many higher order terms
of the parameters ψ(b)

0 , ψ(1)
0 , and ψ(2)

0 , and we therefore use
a first order approximation x[k + 1] = A∆x[k] + B∆u[k],
where A = I + Ach, B = Bch, and h is the sampling time.

Finally the MPC optimization problem is given by

min
{u[i]}N−1i=0

N−1∑
k=0

(
‖∆x[k]‖2Q + ‖∆u[k]‖2RMPC

)
+ ‖∆x[N ]‖2QN

s.t. x[k + 1] = Ax[k] + Bu[k], (MPC)
x[k] ∈ X, k = 0, . . . , N − 1,

u[k] ∈ U, k = 0, . . . , N − 1,

x[N ] ∈ XN ,

x[0] := x(ts)

for each sampling time ts, and where the
full state vector x ∈ R36 is ordered x =
(pb,vb,Θb,ωb,p1,v1,Θ1,ω1,p2,v2,Θ2,ω2), the



matrices Q, QN , RMPC are user-designed positive
definite weighting matrices, and the constraint sets X,
XN , U define the state, terminal state and control input
constraints. The solution to (MPC) will be a set of vectors
{u[i]}N−1i=0 , out of which only the first, u[0] =: u∗, will be
applied.

V. DECENTRALIZED CONTROLLER

In this section, we aim to decentralize the controller struc-
ture defined in the previous section. While there could be
many benefits of a decentralization, the main point of interest
within this work is to investigate how this decentralization
affects the MPC solving time and the overall performance
of the closed-loop system.

Since the UAVs are dynamically coupled by the cable
tension force T , the original system cannot be decentralized
without modifications. For this reason, the UAV–bar system
is approximated further by instead considering it as two
independent UAVs with payloads. Hence, the endpoints of
the bar are tracked, and their position and velocity considered
as the positions and velocities of imaginary payloads attached
to each UAV by cables. The weight given to each (imaginary)
payload is set to the same weight the bar would apply to the
cable in the U-shaped equilibrium pose where n1 = n2 = ez
and nb · ez = 0, which would be equal to mb/2 in a
symmetric setup, but more generally

m(i)
p := mbd

−1
i (d1 + d2)−1d2d1, (13)

Using the model description in Section II-A, the model used
in the controller of UAV i is then found by updating mp

using (13) in (1f) and (3), followed by a linearization and
discretization as explained in Section IV. Once the models
are derived, an MPC can be designed for each UAV as in
(MPC). In other words, each UAV (with payload) defines its
own MPC optimization problem, each of which can be solved
independently, making this a decentralized setup. We have
chosen the ordering of the state vector of UAV i, xi ∈ R18,
as xi = (pi,vi,Θi,ωi,pp,vp).

VI. EXPERIMENTAL SETUP

Two Storm SRD370 quadrotors equipped with onboard
mRo Pixracer flight control units (FCUs) flashed with
PX4 firmware version 1.10.1, were connected with a
host computer (Intel i7-6700@3.4GHz, 8 threads; 32 GB
DDR4@2133 MHz) over Wi-Fi and communicated using
the MAVLink (https://mavlink.io) messaging pro-
tocol. The host computer used MAVLink accompanied with
MAVROS, which enabled the translation of Robot Operating
System (ROS) messages to the relevant MAVLink messages.
A motion capture system (Qualisys) was used for receiving
state estimates. Fig. 4 provides a schematic of the network.

Both MPCs were implemented as a ROS node and the
optimal control problems formulated in CasADi [17] and
solved using the HPMPC solver. The parameters of the cen-
tralized MPC were set as seen in Table I, and the decentral-
ized MPC as in Table II for both UAVs. For both controllers
the input constraints U were set in order to guarantee a

FCUFCU

UDP UDP

ASUS RT-AX88U

TCP

Motion Capture

Dell OptiPlex 7040

Storm SRD370 Storm SRD370

Fig. 4: An illustration of the experimental setup where solid
(dashed) lines represent wired (wireless) connections.

TABLE I: Parameter settings the centralized MPC.

Q diag(Q′b,Q
′
UAVs,Q

′
UAVs)

Q′b diag(50, 50, 50, 50, 50, 50, 10, 10, 10, 1, 1, 5)
Q′UAVs diag(30, 30, 30, 30, 30, 30, 10, 10, 20, 10, 10, 100)
RMPC diag(1, 100, 100, 50, 1, 100, 100, 50)
QN 100Q
h 0.02 s
N 30

positive thrust (Fi > 0) and such that the torque magnitudes
were less than or equal to one (‖τB,i‖∞ ≤ 1 N m). Initial
benchmarks of the CPU time required by the MPCs, gave
results averaging sligthly below 10 ms, and thus the sampling
time h was set to 20 ms to allow for occasional CPU time
increases.

The experiments were performed at the 6 × 6 × 3 m3

arena at the KTH Smart Mobility Lab, where both con-
trollers were setup to track four setpoints in sequence.
As payload, a hollow bar weighing 0.39 kg and of length
1.47 m was used, and the Storm SRD370s were modeled
as having masses mi = 1.15 kg, and moments of inertia
Ji = diag(0.0348, 0.0459, 0.0977) kg m2. During initial tests
of the decentralized MPC setup it was discovered that the
assumption that the bar was homogenous with a CoM in the
center of its extension along the axis of symmetry was not
accurate enough. Instead, d1 and d2 were re-identified and
found to be d1 = 70.5 cm and d2 = 76.5 cm, and the values
of m(i)

p were updated according to (13).

VII. RESULTS

In this section we analyze the results obtained by im-
plementing the controllers in Sections IV and V to a real
system. An accompanying video showcases the experiments.
Before setting up the experimental platform, both controllers
were tested in a Gazebo simulation environment running
the PX4 software in the loop (SITL) using the following
setpoints (fig. 5): first the bar is rotated 90 degrees around
its centerpoint, while UAV 1 also rotates an equal amount.
Then the bar is translated a distance of one meter while

TABLE II: Parameter settings for the decentralized MPCs.

Q diag(Q′UAV,Q
′
p)

Q′UAVs diag(20, 20, 20, 30, 30, 30, 10, 10, 30, 10, 10, 30)
Q′p diag(20, 20, 20, 1, 1, 1)
RMPC diag(1, 100, 100, 100)
QN 50Q
h 0.02 s
N 30

https://mavlink.io
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Fig. 5: Images of the setpoints used in a preliminary simulation
using the PX4 SITL.

both UAVs rotate 90 degrees. After returning back to the
original position, the system is then set to the equilibrium
point described by θf = 0.1183, θl = π/4 (this is a solution
to (9) for muav = 1.52 kg, mb = 0.41 kg, and g = 9.81 m/s2)
before finally assuming the initial configuration.

A. Centralized MPC

Figs. 6a and 6b show the position and orientation of all
rigid bodies, as well as the reference signals (in dashed lines).
Figs. 7a and 7b show the resulting optimal control signals.
The overall behaviour of the controller is consistent with
initial simulation results (left out for brevity): the system
is able to track all setpoints, both in terms of position and
orientation. In Fig. 7a it can be noted that the thrust of UAV
1 seems to be of consistently larger magnitude than that of
UAV 2, which is inline with the non-symmetric placement
of the bars CoM discussed in Section VI.

B. Decentralized MPC

Fig. 6c shows position of all rigid bodies, as well as the
reference signals (in dashed lines); however, as the bar cen-
terpoint was no longer being tracked, its estimated position
was calculated as pb = p

(1)
p + 2−1(d1 + d2)(p

(2)
p − p(1)p ).

Fig. 6d shows the orientations of the UAVs, as well as the
estimated yaw angle of the bar, calculated by arctan2(y

(2)
p −

y
(1)
p , x

(2)
p − x(1)p ), where x(i)p , y(i)p are the x and y positions

of payload i, and arctan2 : R2 → (−π, π] is the function
commonly found in many programming languages which,
in contrast to arctan, returns values in the range (−π, π].
Figs. 7c and 7d show the resulting optimal control signals,
where it should be noted that the relatively large difference
between the thrust signals of UAV 1 and 2 likely stems from
the differences in m(i)

p (eq. (13)) as discussed in Section VI.

C. Comparison

Fig. 8 shows errors and magnitudes that will aid in the
comparison: Fig. 8a the L2-norm of UAV 1’s error in position
(top) and orientation (bottom); Fig. 8b the thrust magnitude
(top) and the L2-norm of the torques; Fig. 8c the absolute
error in all three dimensions of the bar centerpoint position
(top) and the error in yaw orientation (bottom). Starting

TABLE III: Statistics of the error in bar centerpoint x-position.

Mean Std. dev.

Centralized MPC −0.055 14 m 0.058 46 m
Decentralized MPC 0.234 68 m 0.125 54 m

with Fig. 8a, we notice that the position errors of the UAV
are close to identical. In the case of the orientation, the
decentralized setup achieves a faster convergence time, which
is likely a result of the difference in tuning. The results
in Fig. 8b do not indicate any clear differences between
the two setups, apart from the temporary increase in torque
magnitude for the centralized setup occurring between sec.
10–15. Since this event coincides with UAV 1 being rotated
−90◦, this could eventually be caused by a failure to attach
the cables to the UAV CoM, thereby introducing rotational
forces not part of the system model. The noise-affected
appearance of the input signals could be attributed to that:
i) the velocity estimate is noisy; ii) the transfer of the input
from the MPC to the vehicle is sub-optimal, resulting in
overshoots that the MPC has to compensate for. Fig. 8c,
in contrast, displays a notable difference between the two
setups: in the decentralized (dashed) case, the position and
yaw angle error seem to have a more oscillatory character,
and the yaw error convergence between sec. 27–35, is slower.
To quantify this we use the error in the x-position as a
proxy, and calculate the arithmetic mean and sample standard
deviation for the two cases. Note that perfect tracking would
be equivalent to both these quantities being zero. Results
are given in Table III and give the decentralized MPC a
mean approximately four times further away from zero,
and a two times higher standard deviation compared to the
centralized MPC. Another important comparison factor is the
CPU time: during the experiments a time average of 2.8 ms,
and 7.0 ms is achieved for the decentralized and centralized
case, respectively. The decentralized MPC was thus found to
have a 2.5 times faster execution time.

A conclusion can then be drawn: a centralized approach
where the dynamics of the bar are incorporated results in
better tracking of the bar, but comes at the cost of increased
computational time and lack of redundancy. However, there
are also characteristics, inherent to each setup, that should
be considered in the choice between a centralized and a
decentralized setup. By decentralizing the control problem,
a higher resilience towards system failure is achieved, since
the failure of one agent does not necessarily mean the failure
of the rest. Possibly, the closed-loop performance of the
decentralized setup could be improved by incorporating more
feedback into the model. As an example, the relative distance
between UAVs could be tracked and fed into the controller.

VIII. CONCLUSIONS AND FUTURE WORK

The aim of this work was to investigate the effectiveness
and performance of model predictive controllers when ap-
plied to the case of collaborative payload transport using
UAVs. For this purpose, two different MPCs were proposed
and designed: a centralized, and a decentralized. Both con-
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Fig. 6: Experimental results showing position and orientation of both UAVs and bar for the: (a), (b) centralized MPC; (c), (d) decentralized
MPC. Dashed lines denote the reference signal.
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Fig. 7: Experimental results showing thrust and torques of both UAVs for the: (a), (b) centralized MPC; (c), (d) decentralized MPC.

(a) (b) (c)

Fig. 8: Plots showing the experimental results in terms of: (a) UAV 1 error; (b) input magnitude; (c) bar error. Dashed lines denote results
from the decentralized setup.

trollers were set up on an experimental platform where they
successfully were able to track a number of setpoints. The
centralized MPC gave better tracking of the bar, but had
a higher CPU time than the decentralized. Both controllers
seemed to perform equally in terms of UAV tracking.

This work demonstrated that MPC can be utilized to
successfully control a UAV–bar system. Future work includes
the consideration of imperfect state estimation, as well as
systems with more UAVs and more complicated payload
geometries. Although a decentralized attempt was done in
this work, the performance could likely be improved by
further investigation into e.g., if there are any quantities that
should be transmitted between agents, and/or looking at if it
is possible to incorporate more of the dynamics caused by
the cable tension without adding to the model complexity.
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