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Robust self-triggered MPC with adaptive prediction
horizon for perturbed nonlinear systems
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Abstract—This paper proposes a robust self-triggered model
predictive control (MPC) with an adaptive prediction horizon
scheme for constrained nonlinear discrete-time systems subject
to additive disturbances. At each triggering instant, the controller
provides an optimal control sequence by solving an optimal
control problem (OCP), and at the same time, determines the
next triggering time and prediction horizon. By implementing
the algorithm, the average sampling frequency is reduced and
the prediction horizon is adaptively decreased as the system state
approaches a terminal region. Meanwhile, an upper bound of
performance loss is guaranteed when compared with a nominal
periodic sampling MPC. Feasibility of the OCP and stability of
the closed-loop system are established. Simulation results verify
the effectiveness of the scheme.

Index Terms—Self-triggered control, model predictive control
(MPC), adaptive prediction horizon, nonlinear systems.

I. INTRODUCTION

MODEL predictive control (MPC) has the advantages
of explicitly handling input and state constraints and

optimizing the performance [1]. Generally, traditional MPC
requires a quite heavy computation, especially for nonlinear
systems, to solve an optimization control problem (OCP) at
each step. This may prevent its application to “fast” systems
such as unmanned ground vehicles, quadrotors and servo
systems, etc. Therefore the design of MPC with reduced
computational load is an urgent demand for its application.

Event-triggered and self-triggered MPC are studied in [2]–
[6] which aim at achieving a better trade-off between system
performance and resource saving. For instance, an event-
triggered MPC for continuous-time nonlinear systems with
constraints is developed in [2] based on Lyapunov theory.
By checking the deviation between the actual state and the
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predicted one, an event-triggered mechanism is developed
in [3] to reduce the update rate. The authors of [4] introduce a
self-triggered strategy for linear systems based on performance
levels described by a quadratic discounted cost. A robust self-
triggered tube-based MPC is proposed in [5], in which a
parameter is introduced into the cost function allowing a trade-
off between the performance and the sampling rate. A self-
triggered MPC for nonlinear input-affine networked systems is
studied in [6] by selecting sampling intervals adaptively. The
optimal control trajectory is discretized into several control
samples such that the control signal can be transmitted over
the network. The difference between event-triggered and self-
triggered MPC lies in that event-triggered MPC requires con-
stant measurement of the current states, while in self-triggered
MPC, the next update time is computed at the previous one.
Therefore, the self-triggered mechanism has the advantage of
requiring less states information, whereas it is susceptible to
uncertainties and requires more computations when compared
to the event-triggered control scheme [5].

The approaches discussed above are able to alleviate the
computation burden, but it only through the reduction in the
frequency of solving the OCP. The computational complexity
at each update remains high, because the prediction horizon is
usually a fixed constant. In this paper, we develop a robust self-
triggered MPC with an adaptive prediction horizon scheme to
relieve the heavy computation burden for disturbed discrete-
time nonlinear systems. On the one hand, the update time is
computed in a self-triggered fashion to reduce the frequen-
cy of solving the OCP. On the other hand, the prediction
horizon decreases adaptively as the system state approaches
a terminal region. This leads to the reduction of the OCP
dimension thereby reducing the computational complexity at
each sampling time. A similar idea on shrinking the prediction
horizon is employed in [7] for continuous-time systems, in
which the event-triggered condition is detected only at certain
time instants. Different from [7], we focus on discrete-time
nonlinear systems, use a self-triggered strategy and guarantee
a suboptimal performance. In addition, the prediction horizon
is decreased adaptively. These features may render the strategy
more suitable for practical applications. The main contribu-
tions of this paper are summarized as follows: 1) a novel
robust constraint tightening scheme for nonlinear discrete-time
systems is developed that guarantees robustness of MPC; 2)
a self-triggered mechanism and a prediction horizon update
strategy are presented which save the computing resources
in two ways: decreasing the frequency of solving the OCP,
and reducing the complexity of each OCP; and 3) recursive
feasibility and input-to-state stability (ISS) are established
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based on a dual-mode MPC strategy.
The remainder of this paper is organized as follows. Sec-

tion II contains notations and preliminary results. We formu-
late the control problem and control objective in Section III.
A robust self-triggered MPC with adaptive prediction horizon
scheme is developed in Section IV. In Section V, the efficiency
of the scheme is verified by a simulation example. Section VI
concludes the paper.

II. NOTATION AND PRELIMINARY

Let R and N denote the reals and nonnegative integers,
respectively. For some r1 ∈ R, n1, n2 ∈ N and n2 > n1, R>r1 ,
R≥r1 , N≥n1 , N≤n2 and N[n1,n2] denote the sets {r ∈ R|r >
r1}, {r ∈ R|r ≥ r1}, {n ∈ N|n ≥ n1}, {n ∈ N|n ≤ n2}
and {n ∈ N|n1 ≤ n ≤ n2}, respectively. For a matrix
M , its maximum and minimum eigenvalues are denoted by
λ̄(M) and λ(M), respectively. For a symmetric matrix P ,
P > 0 means that P is positive definite. For a vector x,
∥x∥ ,

√
xTx and ∥x∥P ,

√
xTPx with P > 0 represent

the Euclidean norm and P -norm, respectively. Given two sets
A and B, their Minkowski set addition and Pontryagin set
difference are denoted by A ⊕ B , {a + b | a ∈ A, b ∈ B}
and A⊖ B , {a | {a} ⊕ B ⊂ A}, respectively. A \ B denotes
the complementary set of B in A. sup·∈A{·} represents the
upper bound of the elements in A. The notations x(k + i|k)
and u(k+i|k), k, i ∈ N, indicate the state and input prediction
i steps ahead from the current time k, respectively.

Before proceeding, we introduce the discrete Gronwall-
Bellman-Ou-Iang-type inequality.

Lemma 1. (See [8]) Let S = {N≥m0 ×N≥n0}, µ : S → R>0,
b : S → R>0, and let ϕ : R>0 → R>0 be a continuous
nondecreasing function. For c ∈ R≥0, α ∈ R>0 and (m,n) ∈
S, if

µα(m,n) ≤ c+

m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ(µ(s, t)), (1)

then
µ(m,n) ≤ {Ψ−1

α [Ψα(c) +B(m,n)]} 1
α (2)

for all m ≤ m1 and n ≤ n1, where

Ψα(γ) =

∫ γ

1

ds

ϕ(s1/α)
, B(m,n) =

m−1∑
s=m0

n−1∑
t=n0

b(s, t), (3)

Ψ−1
α is the inverse of Ψα, and (m1, n1) ∈ S is chosen such

that Ψα(c)+B(m,n) is in the domain of Ψ−1
α for all m ≤ m1

and n ≤ n1.

III. PROBLEM SETUP

A. System definition

Consider a general nonlinear system described by the fol-
lowing difference equation:

x(k + 1) = f(x(k), u(k)) + w(k), x(0) = x0, (4)

where x(k) ∈ Rn, u(k) ∈ Rm and w(k) ∈ Rn are the system
state, control input and external disturbance, respectively. It is
assumed that the system is subject to the constraints

x(k) ∈ X, u(k) ∈ U, w(k) ∈ W, (5)

where X ⊂ Rn, U ⊂ Rm and W = {w ∈ Rn : ∥w∥ ≤ η}
with η ∈ R>0 are compact sets containing the origin as an
interior point. Furthermore, system (4) is assumed to satisfy
the following conditions:

Assumption 1. The function f(x(k), u(k)) : Rn×Rm → Rn,
with f(0,0) = 0, is locally Lipschitz continuous in x. Let
g(x(k), u(k)) = f(x(k), u(k)) − x(k), and assume that ℓ is
the Lipschitz constant of g(x(k), u(k)) with respect to x.

For expository reasons, we first define the nominal system
by neglecting the disturbance:

x̂(k + 1) = f(x̂(k), û(k)), (6)

where x̂(k) ∈ X and û(k) ∈ U. Let N ∈ N≥1 be the prediction
horizon. The cost function to be minimized online is given by

J(x̂(k), û(k), N) =
N−1∑
i=0

L(x̂(k + i|k), û(k + i|k))

+ VN (x̂(k +N |k)) (7)

with the stage cost L(x̂(k+i|k), û(k+i|k)) = ∥x̂(k+i|k)∥2Q+
∥û(k + i|k)∥2P and the terminal cost VN (x̂(k +N |k)), û(k +
N |k)) = ∥x̂(k + N |k)∥2R. Here, Q > 0, P > 0 and R > 0
are weighting matrices. Cost function (7) is a general form in
MPC, see [9], [11] for detailed explanation of its physical
meaning. To guarantee feasibility, the determination of the
weighting matrices P , Q and R should meet the following
assumption:

Assumption 2. There exist a set Xr ∈ X with the form of
Xr = {x̂ : VN (x̂) ≤ r2}, a matrix Φ > 0 and a local
stabilizing controller κ(x̂) ∈ U, such that, for all x̂(k) ∈ Xr,
by implementing the controller κ(x̂) it holds that

L(x̂(k), û(k)) ≥ ∥x̂(k)∥2Φ, (8)
VN (x̂(k + 1))− VN (x̂(k)) ≤ −L(x̂(k), κ(x̂(k))). (9)

It implies that Xr is a terminal region for system (6).

Remark 1. Assumptions 1 and 2 are fairly standard conditions
to guarantee stability and feasibility of system (6) under MPC.
How to choose a relatively weak conservative Lipschitz con-
stant has been discussed in [10]. Moreover, several approaches
to obtain the terminal region Xr and terminal controller κ(x̂)
have been proposed, such as by Jacobian linearization in [11],
[12] and by feedback linearization in [13].

B. Problem formulation

The standard MPC setups in [1] and [11] lead to the closed-
loop system (6) meeting the performance guarantees of the
form

L(x̂(k), û(k)) ≤ V (x̂(k))− V (x̂(k + 1)), (10)

where V (x̂(k)) is the optimal cost at x̂(k). However, the
standard MPC requires solving an OCP at each update instant,
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which may require quite heavy computation. Moreover, the
predictive horizon is usually a fixed constant. As a result, the
controller has to solve the OCP with the same computational
complexity at each step even when the system state gets close
to the terminal region or the origin. Motivated by this, our
control objective is to robustly stabilize system (4) to a set
containing the origin while satisfying constraints (5), and at
the same time, reducing the computation burden. In order to
achieve this goal, a dual-mode MPC (see [14]) is implemented.

Before the system state enters the terminal region, a self-
triggered MPC is adopted. Let kj ∈ N be the update
time, Nkj the prediction horizon at kj , and û∗(kj) =
{û∗(kj |kj), û∗(kj +1|kj), . . . , û∗(kj +Nkj −1|kj)} the opti-
mal control sequence by solving the OCP at kj . In system (4),
the control input is given by

u(k) = û∗(k|kj), k ∈ N[kj ,kj+1−1]. (11)

To reduce the frequency of solving the OCP, the update instant
should be determined in a self-triggered fashion, i.e.,

kj+1 = kj +m(x(kj)), k0 = 0, (12)

where m(·) : Rn → N≥1 denotes the inter-execution time.
Meanwhile, the prediction horizon will adaptively decrease
as the system state approaches the terminal region. This may
reduce the computational complexity of the OCP. Specifically,
the prediction horizon should be updated by

Nkj+1 = Nkj − n(x(kj)), N0 = Np, (13)

where n(·) : Rn → N represents the decreasing size of the
prediction horizon, and Np ∈ N≥1 is a given constant that
guarantees feasibility of the OCP at the initial time. For ease
of notation, we use mkj and nkj to denote m(x(kj)) and
n(x(kj)), respectively. In addition, a sub-optimal performance
kj+1∑
k=kj

L(x̂(k|kj), û(k|kj)) ≤ β(V (x(kj))−V (x(kj+1))) (14)

with β > 1 will be still guaranteed.
Once the system state in (4) enters the terminal region, the

controller will switch from solving the OCP to using κ(x).

IV. ROBUST SELF-TRIGGERED MPC SCHEME WITH AN
ADAPTIVE PREDICTION HORIZON

In this section, a self-triggered MPC scheme with an
adaptive prediction horizon is derived to robustly stabilize the
system. The prediction horizon adaptively decreases as the
system state approaches the terminal region, which will reduce
the dimension of the OCP thereby reducing the computational
complexity.

A. Optimization control problem

We first derive a difference bound between the nominal
system and the actual one by an m-step, m ∈ N≥1, open-
loop control sequence with the same initial condition. This
bound is provided by the following lemma.

Lemma 2. Denote an m-step control sequence as um =
{u(k), u(k+1), . . . , u(k+m−1)}. If the nominal system (6)

and the perturbed one (4) are controlled by this sequence
in an open-loop fashion enumerating from the same initial
state, i.e., x(k) = x̂(k), then the state error defined by
xe(k +m) = x(k +m)− x̂(k +m) is norm-bounded:

∥xe(k +m)∥R ≤ mηλ̄(
√
R) exp{ℓ(m− 1)}. (15)

The proof of Lemma 2 is provided in Appendix A.
Based on the result in Lemma 2, we define a set sequence

{Xe(m), m = 1, 2, . . . }, such that xe(k+m) ∈ Xe(m) where

Xe(m)=
{
x̃e : ∥x̃e∥R ≤ mηλ̄(

√
R) exp{ℓ(m− 1)}

}
. (16)

The OCP to be solved online is then formulated as follows.

OCP 1. At the update instant kj , find the optimal control
sequence û∗(kj) = {û∗(kj |kj), û∗(kj + 1|kj), . . . , û∗(kj +
Nkj − 1|kj)} and the optimal state sequence x̂∗(kj) =
{x̂∗(kj+1|kj), x̂∗(kj+2|kj), . . . , x̂∗(kj+Nkj |kj)} by solving
the following minimization problem:

û∗(kj) = arg min
û(kj)

J(x̂(kj), û(kj), Nkj ) (17)

s.t.

x̂(kj |kj) = x(kj),
x̂(kj+i+1|kj)=f(x̂(kj+i|kj), û(kj+i|kj)),
û(kj + i|kj) ∈ U,
x̂(kj + i|kj) ∈ X⊖ Xe(i),
x̂(kj +Nkj |kj) ∈ Xε,

(18)

where i ∈ N[0,Nkj
−1] and Xε = {x̂ : ∥x̂∥2R ≤ ε2}.

For OCP 1, we make the following mild assumption.

Assumption 3. OCP 1 is feasible at the initial time k0 and
Xr ⊂ X⊖ Xe(Np).

The establishment condition of Xr ⊂ X ⊖ Xe(Np) will be
discussed in Remark 3.

Remark 2. OCP 1 is a nonlinear programming problem,
which can be solved by several algorithms, for example
interior point approach [15], branch-and-bound optimization
[16] and trust region reflective algorithm [17].

B. Self-triggering mechanism and prediction horizon updating
strategy

In this subsection, we propose a self-triggering strategy and
a prediction horizon update strategy. The triggering time is
recursively calculated in terms of (12), and the open-loop
phase mkj is determined by the following condition:

mkj = min{m̂kj , m̌kj , Nkj} (19)

with

m̂kj =sup{mkj : mkjηλ̄(
√
R) exp{ℓ(Nkj−1)}≤r−ε}, (20)

m̌kj = sup
{
mkj : mkjηλ̄(

√
R) exp{ℓ(Nkj − 1)}(r + ε)

+

Nkj
−1∑

i=mkj

[m2
kj
η2λ̄2(

√
Q) exp{2ℓ(i− 1)}

+2mkjηλ̄(
√

Q) exp{ℓ(i− 1)}∥x̂∗(kj + i|kj)∥Q]

≤ σ

mkj
−1∑

i=0

(
∥x̂∗(kj + i|kj)∥2Q + ∥û∗((kj + i|kj)∥2P

) }
, (21)
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where σ ∈ (0, 1) is called performance factor. The prediction
horizon is updated in terms of (13) and is decreased by

nkj = min{mkj − 1, Nkj − N̂kj}, (22)

where

N̂kj = inf{i : x̂∗(kj + i|kj) ∈ Xε, i ∈ N[0,Nkj−1]}. (23)

The control sequence for the actual system over the interval
[kj , kj+1 − 1] is given by (11). The self-triggered MPC with
adaptive prediction horizon scheme is then summarized in
Algorithm 1.

Algorithm 1 Self-triggered MPC Scheme
1: while (1) do
2: if x(kj) ∈ Xε then
3: Use the controller κ(x) to stabilize the system;
4: else
5: Initialize the nominal system by x̂(kj) = x(kj);
6: Solve OCP 1 to obtain the optimal control se-

quence û∗(kj) as well as the state trajectory x̂∗(kj);
7: Determine the next triggering time kj+1 in terms

of (12) and update the next prediction horizon by (13);
8: Apply the first mkj control actions in û∗(kj) to

the actual system;
9: end if

10: Update the time instant kj+1 → kj , kj ∈ N≥1;
11: end while

The development of self-triggered mechanism and horizon
update strategy has physical meanings, and they are co-
designed rather than a simple combination. On the one hand,
increasing the open-loop control phase mkj may enlarge
the discrepancy between the predicted and the actual state
trajectories. Condition (20) provided an upper bound of the
discrepancy to guarantee recursive feasibility of the OCP.
Since the open-loop control in the presence of external dis-
turbances may deteriorate the convergence performance, (21)
is derived to guarantee the sub-optimal performance (14). On
the other hand, shrinking the prediction horizon may have
potential advantages in reducing the computational complexity.
However, a too short prediction horizon would not ensure
stability of the closed-loop system. Therefore, condition (23)
provides the minimum prediction horizon that can stabilize
the system. Moreover, the decreased size of the prediction
horizon should also be related to the open-loop phase, and the
relationships are 1 ≤ nkj ≤ mkj − 1 and 1 ≤ mkj ≤ Nkj .
Condition (22) implies that kj+1 + Nkj+1 ≥ kj + Nkj + 1.
Furthermore, a balance between the triggering frequency and
the optimal performance loss can be achieved by tuning the
performance factor σ. Larger σ can reduce the frequency of
solving the OCP 1 and slow down the horizon update rate.
Whereas smaller σ can ensure a better closed-loop perfor-
mance with a higher update frequency but slower changing
rate of the horizon. Fig. 1 shows the connections between
mkj , Nkj , N̂kj and Nkj +1. A more detailed analysis on (20)
and (22) will be discussed in the next subsection.

jk jj kk N+

1jk +

11 jj kk N
+

+
+

1 jj kk N
+
+

jk
m

jk
n

jk
N

1jk
N

+

The state enters the 

terminal region

ˆ
jj kk N+

Fig. 1. Relationships between mkj
, Nkj

, N̂kj
and Nkj+1

.

C. Analysis

In this section, we analyze recursive feasibility of OCP 1
and stability of the closed-loop system under Algorithm 1. The
following theorem shows recursive feasibility of OCP 1.

Theorem 1. Suppose that the triggering time and prediction
horizon are determined according to (19) and (22), respec-
tively. OCP 1 is recursively feasible if

(
1− λ(Φ)

λ̄(R)

)
r2 ≤ ε2

and η ≤ r−ε
λ̄(

√
R) exp{ℓ(Np−1)}

.

Recursive feasibility implies that the solution space of
OCP 1 is nonempty at each update time. For this, we
first assume that an optimal control sequence is obtained
at kj which is denoted by û∗(kj) = {û∗(kj |kj), û∗(kj +
1|kj), . . . , û∗(kj + Nkj − 1|kj)}. The next update time is
then determined by kj+1 = kj +mkj and the corresponding
prediction horizon is updated by Nkj+1 = Nkj − nkj . We
construct a control sequence at kj+1 as follows.

û(kj+1+i|kj+1)=

{
û∗(kj+1 + i|kj), i∈N[0,Nkj

−mkj
−1],

κ(x̂(kj+1 + i|kj)), i∈N[Nkj
−mkj

,Nkj+1
).

(24)
We will show that (24) is a feasible solution to OCP 1 while
satisfying all the constraints. Recursive feasibility of OCP 1 is
then obtained by induction. The detailed proof of Theorem 1
is reported in Appendix B.

Remark 3. By substituting the upper bound of η given by
Theorem 1 into (16), we have Xe(Np) ⊆ {x̃e : ∥x̃e∥R ≤
Np(r − ε)}. Therefore, X ⊃ {x̃ : ∥x̃∥R ≤ Np(r − ε) + r} is
a sufficient condition that guarantees Xr ⊂ X ⊖ Xe(Np) in
Assumption 3.

Theorem 1 guarantees that OCP 1 is recursively feasible un-
der some mild conditions. The following theorem establishes
stability of system (4) under Algorithm 1.

Theorem 2. If the state of system (4) starts from the set X\Xε,
then the system state under Algorithm 1 is guaranteed to enter
the robust terminal region Xε in finite time and to meet the
suboptimal performance guarantee in (14) with β = 1

1−σ . In
addition, the system is ISS after the state enters Xε.

The proof of Theorem 2 involves two steps. In the first step,
we assume that the system state starts from X \ Xε and will
enter Xε in finite time by examining optimal value of the cost
function. In the second step, the system will be proven to be
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Fig. 2. Control error and input levels by the NMPC and the proposed approach
with σ = 0.6. The proposed approach reaches a satisfying performance.

ISS by the terminal controller. The detailed proof is reported
in Appendix C.

V. SIMULATION EXAMPLE

In this section, we consider a position regulation problem
of a nonholonomic vehicle. Its nominal system is described
by the following dynamics: x(k + 1) = x(k) + δv(k) cos(θ(k))− δρω(k) sin(θ(k))

y(k + 1) = y(k) + δv(k) sin(θ(k)) + δρω(k) cos(θ(k))
θ(k + 1) = θ(k) + δω(k)

,

(25)
where x, y and θ are the system states, v and ω are the control
inputs representing the linear and angular velocities, respec-
tively, ρ is the wheel base and δ is the sampling period. Then
the system can be simply denoted as χ(k+1) = f(χ(k), u(k))
with χ = [x, y, θ]T and u = [v, ω]T. In the simulation, the
wheel base and sampling period are set to be ρ = 0.0267 m
and δ = 0.1 s, respectively. The input is constrained by
u ∈ {u : v

a +
ω
b ≤ 1} with a = 0.13 m/s and b = 4.8598 rad/s.

We assume that the disturbance on system (25) is bounded
by η = 0.001. We only consider the position regulation
regardless of the orientation according to the design procedure
in [18]. Then the weighting matrices in the cost function are
set to be Q = diag{0.06, 0.06}, P = diag{0.002, 0.002} and
R = diag{0.1, 0.1}. The terminal controller is given as{

v(k) = α1[−x(k) cos(θ(k))− y(k) sin(θ(k))]
ω(k) = α2[x(k) sin(θ(k))− y(k) cos(θ(k))]/ρ

, (26)

where α1 = α2 = 0.6. The terminal region parameters are
then given by r = 0.0175 and ε = 0.0128.

To show the efficiency of the proposed scheme, we compare
our results with nominal MPC (NMPC) in [13], i.e., using
periodic sampling. We use distance

√
x2 + y2 and control

input constraints index |v|
a + |ω|

b to evaluate the control error
and the control input levels. Fig. 2 shows the control error
and control input levels by NMPC and the proposed self-
triggered MPC with σ = 0.6. It can be observed that the states
by NMPC and self-triggered MPC with bounded uncertainties
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Fig. 3. Triggering times and prediction horizons by the NMPC and the
proposed approach with σ = 0.4, σ = 0.6 and σ = 0.8, respectively.
The frequency of solving the OCP is reduced and the prediction horizon is
decreasing as the system state is converging.
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Fig. 4. The optimization times at each triggering instant by the NMPC and
the proposed approach with σ = 0.4, σ = 0.6 and σ = 0.8, respectively.
The solver time is decreasing indicating that the computational complexity of
the OCP is reduced by our approach.

converge to a neighbourhood of the origin, and the trajectories
are almost the same. From the control input constraint index
curve, we note that the control signals of NMPC are more
smooth than the ones by self-triggered MPC. This is caused
by the disturbances accumulation. Nevertheless, the input
constraints are still ensured by the proposed scheme.

Next, we study how the parameter σ in (21) affects the
triggering time and prediction horizon. For this goal, we
set the performance factor to be σ = 0.4, σ = 0.6 and
σ = 0.8 to observe the inter-execution time and the prediction
horizon. Fig. 3 shows the triggering times (steps) by self-
triggered MPC with different performance factors as well as
by periodic NMPC. It can be seen that the inter-execution time
increases as σ is increasing, and the triggering time approaches
periodic sampling as σ gets close to zero. Meanwhile, the
prediction horizon decreases as time goes by, which implies
that the complexity of OCP 1 reduces since the number of
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TABLE I
THE TOTAL OPTIMIZATION TIMES BY NPMC AND SELF-TRIGGERED MPC WITH ADAPTIVE PREDICTION HORIZON

Strategies NMPC Self-triggered MPC with adaptive prediction horizon
Parameters δ = 0.1s δ = 0.1s, σ = 0.4 δ = 0.1s, σ = 0.6 δ = 0.1s, σ = 0.8

Total optimization times (ms) 3466 714 409 335
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Fig. 5. Upper bounds of the cost by the NMPC and the proposed approach
with σ = 0.4, σ = 0.6 and σ = 0.8, respectively. These are lower bounded
by the cost of the NMPC for the nominal system. The increase of σ may
enlarge the upper bound of the cost indicating that large σ may degrade
performance.

decision variables as well as the constraints decrease. This
feature may facilitate practical application. It can also be
seen that in all cases the triggering time becomes periodic
at the end. This is because the system state has entered Xε

and the controller has switched to κ(x) which is a periodic
sampling control. Moreover, we use the optimization time to
evaluate the computational complexity at each step. Fig. 4
shows the optimization times by NMPC and the proposed
approach with different values of σ. In comparison to NMPC,
the optimization time in each step is decreasing, indicating the
reduction of computational complexity. The total optimization
times are provided in Table I, which imply the computational
benefit of the proposed approach. The cost upper bounds are
depicted in Fig. 5, which verifies the suboptimal performance
guarantee given by (14) with β = 1

1−σ . This also indicates
that the increase of σ may deteriorate the performance.

VI. CONCLUSION

We have proposed a robust self-triggered MPC with adap-
tive prediction horizon that robustly stabilizes the system while
ensuring a suboptimal convergence performance. By designing
a self-triggering mechanism and the prediction horizon update
strategy, the average frequency of solving the OCP is reduced,
and at the same time, the dimensionality of the OCP at each
step is decreasing as the system state approaching the terminal
region. This reduces the computational burden in the whole
time-domain as well as the computational complexity at each
update time. Rigorous analysis of recursive feasibility of the
OCP and stability of the closed-loop system is conducted. Fi-

nally, a simulation example is provided to show the theoretical
results.

APPENDIX A
PROOF OF LEMMA 2

Proof. For the nominal system (6), we have the following
recursive relations

x̂(k + i+ 1)− x̂(k + i) = g(x̂(k + i), u(k + i)), (27)

where i ∈ N[0,m−1] and g(x̂(k + i), u(k + i)) = f(x̂(k +
i), u(k + i)) − x̂(k + i). Summing up (27) from i = 0 to
i = m implies

x̂(k +m) = x̂(k) +
m−1∑
i=0

g(x̂(k + i), u(k + i)). (28)

Similarly, for the perturbed system (4), we have

x(k+m) = x(k)+
m−1∑
i=0

[g(x(k+i), u(k+i))+w(k+i)]. (29)

From (28) and (29), the state error can be written as

∥xe(k +m)∥R = ∥x(k +m)− x̂(k +m)∥R

= ∥x(k)+
m−1∑
i=0

[g(x(k + i), u(k + i)) + w(k + i)]

− x̂(k)−
m−1∑
i=0

g(x̂(k + i), u(k + i))∥R

≤ mηλ̄(
√
R) +

m−1∑
i=1

ℓ∥xe(k + i)∥R, (30)

where the condition x(k) = x̂(k) and the Lipschiz condition
in Assumption 1 are used. If we apply Lemma 1 to (30) by
letting µ(m, 1) = ∥xe(k+m)∥R, α = 1, m0 = 1, n = n0+1,
b(s, t) = ℓ and ϕ(µ) = µ, result (15) is straightforward.

APPENDIX B
PROOF OF THEOREM 1

Proof. At kj , assume that an optimal control sequence is
given by û∗(kj) = {û∗(kj |kj), û∗(kj + 1|kj), . . . , û∗(kj +
Nkj − 1|kj)}. The first mkj control actions in û∗(kj), i.e.,
{û∗(kj |kj), û∗(kj+1|kj), . . . , û∗(kj+mkj −1|kj)}, are used
to control the actual system. The open-loop control may lead to
an error between the predicted and the actual state trajectories.
It follows from Lemma 2 that this error is bounded by

∥x(kj+1)− x̂∗(kj+1|kj)∥R ≤ mkjηλ̄(
√
R) ·exp{ℓ(mkj −1)}.

(31)
At time kj+1, we construct a feasible solution as (24). Apply-
ing the control sequence û(kj+1 + i|kj+1) = û∗(kj+1 + i|kj)
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over the interval [kj+1, kj +Nkj − 1], the difference between
the actual state and its prediction satisfies

∥x̂(kj+1 + i|kj+1)− x̂∗(kj+1 + i|kj)∥R

≤ ∥
i−1∑
s=0

g(x̂(kj+1 + s|kj+1), û
∗(kj+1 + s|kj))

−
i−1∑
s=0

g(x̂∗(kj+1 + s|kj), û∗(kj+1 + s|kj))∥R

+ ∥x̂(kj+1|kj+1)− x̂∗(kj+1|kj)∥R

≤
i−1∑
s=0

ℓ∥x̂(kj+1 + s|kj+1)− x̂∗(kj+1 + s|kj)∥R

+ ∥x̂(kj+1|kj+1)− x̂∗(kj+1|kj)∥R, (32)

where the Lipschitz condition in Assumption 1 is used. Sub-
stituting x̂(kj+1|kj+1) = x(kj+1) and (31) into (32) yields

∥x̂(kj+1 + i|kj+1)− x̂∗(kj+1 + i|kj)∥R

≤
i−1∑
s=0

ℓ∥x̂(kj+1 + s|kj+1)− x̂∗(kj+1 + s|kj)∥R

+mkjηλ̄(
√
R) exp{ℓ(mkj − 1)}. (33)

It then follows from Lemma 1 that

∥x̂(kj+1 + i|kj+1)− x̂∗(kj+1 + i|kj)∥R
≤ mkjηλ̄(

√
R) exp{ℓ(i+mkj − 1)}. (34)

Since η ≤ r−ε
λ̄(

√
R) exp{ℓ(Np−1)} , there always exist mkj ∈

N[1,Np] and i ∈ N[0,Nkj
−mkj

] such that mkjηλ̄(
√
R) exp{ℓ(i+

mkj−1)} ≤ r−ε holds. Therefore, substituting i = Nkj−mkj

into (34) and using the triangle inequality and (20), we get

∥x̂(kj + Nkj |kj+1)∥R ≤ ∥x̂∗(kj + Nkj |kj)∥R + r − ε.

Due to ∥x̂∗(kj +Nkj |kj)∥R ≤ ε, we obtain

∥x̂(kj +Nkj |kj+1)∥R ≤ r, (35)

which implies x̂(kj + Nkj |kj+1) ∈ Xr. From Assumption 2,
there exists a controller κ(x̂) that can stabilize the nominal
system and guarantee performance (9). Thus, utilizing the
controller κ(x̂(kj+1 + i|kj)) for i∈N[Nkj

−mkj
,Nkj+1

−1] yields

VN (x̂(kj +Nkj + 1|kj+1))− VN (x̂(kj +Nkj |kj+1))

≤ −∥x̂(kj +Nkj |kj+1)∥2Φ, (36)

which implies

∥x̂(kj +Nkj + 1|kj+1)∥2R

≤
(
1− λ(Φ)

λ̄(R)

)
∥x̂(kj +Nkj |kj+1)∥2R. (37)

Here λ(Φ)

λ̄(R)
< 1 is guaranteed by the controller κ(x̂). At time

kj+1 +Nkj+1 , it holds that

∥x̂(kj+1 +Nkj+1 |kj+1)∥2R

≤
(
1− λ(Φ)

λ̄(R)

)(Nkj+1
+mkj

−Nkj
)

∥x̂(kj +Nkj |kj+1)∥2R.

Since 1− λ(Φ)

λ̄(R)
≤ ε2

r2 and Nkj+1 +mkj −Nkj ≥ 1, we get

∥x̂(kj +Nkj + 1|kj+1)∥2R ≤ ε2, (38)

i.e., x̂(kj + Nkj + 1|kj+1) ∈ Xε. Now we have proved that
the constructed control sequence (24) is able to drive the state
into Xε over the prediction horizon Nkj+1 .

Next, we show that input constraint and state constraint
in (18) are guaranteed. From (24), the input constraint sat-
isfaction is obvious. Thus, we only prove the satisfaction of
state constraint. From (34), for i ∈ N[0,Nkj

−mkj
−1], we have

∥x̂(kj+1 + i|kj+1)∥R ≤ ∥x̂∗(kj+1 + i|kj)∥R
+mkj

ηλ̄(
√
R) exp{ℓ(i+mkj

− 1)}. (39)

Since x̂∗(kj+1 + i|kj) ∈ X⊖ Xe(i+mkj ), thus

x̂(kj+1 + i|kj+1) ∈ X⊖ Xe(i+mkj )

⊕mkjηλ̄(
√
R) exp{ℓ(i+mkj − 1)}

∈ X⊖ Xe(i), i ∈ N[0,Nkj
−mkj

−1]. (40)

For i ∈ N[Nkj
−mkj

,Nkj+1
−1], the controller is switched to

κ(x̂(kj+1 + i|kj)), thus Xr is invariant. Since Nkj+1 ≤ Np

and Xr ∈ X⊖Xe(Np), x̂(kj+1+i|kj+1) ∈ X⊖Xe(i) is always
satisfied. This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Proof. First assume that the system state starts from a point
x0 ∈ X \ Xε. Define a Lyapunov function as

V (kj) = J(x̂∗(kj), û
∗(kj), Nkj ). (41)

The difference of the Lyapunov function between the two
successive instants kj+1 and kj satisfies

V (kj+1)− V (kj)

≤ J(x̂(kj+1), û(kj+1), Nkj+1)− J(x̂∗(kj), û
∗(kj), Nkj )

, ∆V1 +∆V2 +∆V3, (42)

where ∆V1=−
∑mkj

−1

i=0

(
∥x̂∗(kj+i|kj)∥2Q+∥û∗((kj+i|kj)∥2P

)
,

∆V2 =
∑Nkj

−1

i=mkj
(∥x̂(kj + i|kj+1)∥2Q − ∥x̂∗(kj + i|kj)∥2Q),

∆V3 =
∑Nkj+1

+mkj
−1

i=Nkj
(∥x̂(kj + i|kj+1)∥2Q + ∥û(kj +

i|kj+1)∥2P )+∥x̂(kj+1+Nkj+1 |kj+1)∥2R−∥x̂∗(kj+Nkj |kj)∥2R.
For ∆V2, using the result in (34) by replacing R with Q,

we have

∆V2 =

Nkj
−1∑

i=mkj

(∥x̂(kj + i|kj+1)∥Q − ∥x̂∗(kj + i|kj)∥Q)

× (∥x̂(kj + i|kj+1)∥Q + ∥x̂∗(kj + i|kj)∥Q)

≤
Nkj

−1∑
i=mkj

[m2
kj
η2λ̄2(

√
Q) exp{2ℓ(i− 1)}

+ 2mkjηλ̄(
√
Q) exp{ℓ(i− 1)}∥x̂∗(kj + i|kj)∥Q]. (43)
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Then consider ∆V3, which can be rewritten as

∆V3 =

Nkj+1
+mkj

−1∑
i=Nkj

(∥x̂(kj+i|kj+1)∥2Q+∥û(kj+i|kj+1)∥2P )

+ ∥x̂(kj+1 +Nkj+1 |kj+1)∥2R − ∥x̂(kj +Nkj |kj+1)∥2R
+ ∥x̂(kj +Nkj |kj+1)∥2R − ∥x̂∗(kj +Nkj |kj)∥2R. (44)

By virtue of (9), we have the following relationships:

∥x̂(kj+1+Nkj+1 |kj+1)∥2R−∥x̂(kj+1+Nkj+1−1|kj+1)∥2R
≤−∥x̂(kj+1+Nkj+1−1|kj+1)∥2Q−∥û(kj+1+Nkj+1−1|kj+1)∥2P ,

∥x̂(kj+1 +Nkj+1
−1|kj+1)∥2R−∥x̂(kj+1 +Nkj+1

−2|kj+1)∥2R
≤ −∥x̂(kj+1+Nkj+1−2|kj+1)∥2Q−∥û(kj+1+Nkj+1−2|kj+1)∥2P ,
. . .
∥x̂(kj +Nkj + 1|kj+1)∥2R − ∥x̂(kj +Nkj |kj+1)∥2R
≤ −∥x̂(kj +Nkj |kj+1)∥2Q − ∥û(kj +Nkj |kj+1)∥2P .

(45)
Summing up (45) yields

Nkj+1
+mkj

−1∑
i=Nkj

(∥x̂(kj + i|kj+1)∥2Q + ∥û(kj + i|kj+1)∥2P )

+ ∥x̂(kj+1+Nkj+1
|kj+1)∥2R−∥x̂(kj+Nkj

|kj+1)∥2R ≤ 0.
(46)

Substituting (46) into (44), we have

∆V3 ≤ ∥x̂(kj +Nkj |kj+1)∥2R − ∥x̂∗(kj +Nkj |kj)∥2R
≤ (∥x̂(kj +Nkj |kj+1)∥R − ∥x̂∗(kj +Nkj |kj)∥R)

×(∥x̂(kj +Nkj |kj+1)∥R + ∥x̂∗(kj +Nkj |kj)∥R)
≤ mkj

ηλ̄(
√
R) exp{ℓ(Nkj

− 1)}(r + ε). (47)

Combining (42) with (43) and (47) yields

V (kj+1)− V (kj)

≤ −
mkj

−1∑
i=0

(
∥x̂∗(kj + i|kj)∥2Q + ∥û∗((kj + i|kj)∥2P

)
+

Nkj
−1∑

i=mkj

[m2
kj
η2λ̄2(

√
Q) exp{2ℓ(i− 1)}

+ 2mkjηλ̄(
√
Q) exp{ℓ(i− 1)}∥x̂∗(kj + i|kj)∥Q]

+mkjηλ̄(
√
R) exp{ℓ(Nkj − 1)}(r + ε). (48)

Specifically, since self-triggered condition (21) is satisfied at
kj+1, it follows that

V (kj+1)− V (kj)

≤ (σ − 1)

mkj
−1∑

i=0

(
∥x̂∗(kj + i|kj)∥2Q + ∥û∗(kj + i|kj)∥2P

)
≤ (σ − 1)∥x̂∗(kj |kj)∥2Φ ≤ (σ − 1)

λ(Φ)

λ̄(R)
ε2. (49)

This guarantees the suboptimal performance in (14) with β =
1

1−σ . Moreover, by induction we get V (kj+1) ≤ V (0)− (j +

1)(1−σ)λ(Φ)

λ̄(R)
ε2. Therefore it can be concluded that the system

state will enter Xε in finite time by following the argument
in [14, Theorem 2].

When x ∈ Xε, the controller will be switched to κ(x).
Taking VN (x) as a Lyapunov function, we have

VN (x(k + 1))− VN (x(k))

≤ ∥f(x(k), κ(x(k))) + w(k)∥2R − ∥x(k)∥2R
≤ ∥f(x(k), κ(x(k)))∥2R − ∥x(k)∥2R

+ 2wTRf(x(k), κ(x(k)) + ∥w(k)∥2R

≤ −∥x(k)∥2Φ + 2ηε
λ̄(
√
R)

λ(
√
R)

+ λ̄(R)η2, (50)

which constitutes an ISS-Lyapunov function.
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