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Abstract
This paper describes a framework for automatically generating optimal action-level behavior for a team of robots
based on Temporal Logic mission specifications under resource constraints. The proposed approach optimally
allocates separable tasks to available robots, without requiring a-priori an explicit representation of the tasks or the
computation of all task execution costs. Instead, we propose an approach for identifying sub-tasks in an automaton
representation of the mission specification and for simultaneously allocating the tasks and planning their execution. The
proposed framework avoids the need of computing a combinatorial number of possible assignment costs, where each
computation itself requires solving a complex planning problem. This can improve computational efficiency compared
to classical assignment solutions, in particular for on-demand missions where task costs are unknown in advance. We
demonstrate the applicability of the approach with multiple robots in an existing office environment and evaluate its
performance in several case study scenarios.
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1 Introduction
High-level specifications of goals and rules allow robotic
systems to automatically generate behaviors that are
guaranteed to be correct. As for example summarized by
Belta et al. (2007), this simplifies behavior design by shifting
the focus away from explicitly programming execution plans
in order to reach a goal. Instead, the goal itself is specified
and required actions can be planned by the robotic system.
For example, Lacerda et al. (2014), Amato et al. (2015),
and Lahijanian et al. (2016) demonstrate the successful
application of different planning methods to a range of
various robotic systems.

Linear Temporal Logic (LTL) provides a useful formalism
for such high-level specifications, see Baier and Katoen
(2008). Specifically, LTL not only allows a user to specify
a Boolean goal condition, evaluated at a single point in
time, but also to specify temporal relationships that are
evaluated over the full sequence of actions. This is a far
from trivial extension to standard high-level specifications,
making them applicable for highly sophisticated robotic
applications Kress-Gazit et al. (2009). At the same time, the
goal can be provided in a user-friendly and efficient way.
An LTL specification is already a more compact formulation
than describing a specific task as a transition system or a
similar model. Even more, LTL itself can, for example, be
generated from structured English Kress-Gazit et al. (2008),
Autili et al. (2015). Combining these properties constitutes
LTL a suitable formalism to specify on-demand tasks for a
deployed robotic system.

In many applications, a robotic system benefits from using
not only one, but rather multiple robots to carry out the
required tasks. See for example Ma et al. (2017) for a
discussion of research directions in the area of multi-robot

path finding. While a multi-robot system is typically more
efficient, planning behaviors to fulfill complex tasks as well
as assigning them to the individual robots is computationally
hard, see Gerkey and Matarić (2004).

The complexity of planning for multi-robot systems, as
for example detailed by Durfee and Zilberstein (2013),
mainly results from two problem properties. First, the state
space of a multi-robot system grows exponentially in the
number of robots. Second, not only actions need to be
planned, but also allocation of parts of the mission needs to
be considered. These two problems have traditionally been
considered independently.

We propose here an approach termed Simultaneous Task
Allocation and Planning (STAP). The central aspect of STAP
is to construct a team model which is not only used to plan
execution, but also contains choices for decomposing the
mission and allocating the decomposed parts to different
robots. Consequently, it is possible to utilize the interplay of
allocation and planning, which bears the potential to improve
the efficiency of finding an optimal solution. This approach
is primarily well-suited in cases where task execution plans
cannot be computed in advance, as it is for example the case
for LTL-based planning of on-demand missions.

STAP is motivated by service robot use cases, e.g., in an
office environment. Typical use cases include transportation
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of documents and supplies, service tasks like emptying paper
bins, and various assistance tasks. Specifically, we assume
that a general model of the system, such as a topological
map of the environment and internal states of the robots,
exists. A mission specification may be given to the system
at any time with the aim of using the available robots to
satisfy the specification in the shortest possible time. In order
to improve long-term performance of the system, as well
as to handle more types of missions, continuous resource
constraints and requirements have to be considered. We
use LTL for the mission specifications in order to express
more complex, temporally extended requirements on the
synthesized behaviors as discussed previously. Throughout
this paper, we consider the use case of emptying paper bins
as an illustrative example for explaining the technical details.

The efficiency of STAP requires a set of assumptions
which are primarily motivated by the service robot use
case. We assume here that actions are deterministic. This
is justified since the environment is known and local
recoveries can be executed to ensure the success of an action.
Furthermore, we assume a central planning server since, on
the one hand, the robots need to communicate with a central
server anyway when ready for a new mission and, on the
other hand, a central server can usually have much more
computational power than a set of mobile robots. Finally,
we only allow finite LTL goal specifications, which more
intuitively reflect the notion of mission completion.

1.1 Related Work
In the multi-agent literature, several approaches exist to
efficiently and optimally allocate a set of known tasks to a
set of agents, as for example summarized by Burkard and
Cela (1999), Korsah et al. (2013), Pentico (2007), Yan et al.
(2013). A widely-used method for planning task allocation
is to construct a Mixed-Integer Linear Program, for example
as proposed by Gombolay et al. (2013). Another popular
method for task allocation is a market-based approach. For
instance, Zlot and Stentz (2005) formulate tasks as trees
where subtasks can be contracted to different agents. In
contrast, Agarwal et al. (2014) propose an evolutionary
algorithm to optimize allocation of a set of tasks to robots
with different capabilities. Based on the vehicle routing
problem (VRP), Karaman and Frazzoli (2008) propose an
approach to allocate a set of spacial tasks to agents for a
fragment of Metric Temporal Logic specifications. Turpin
et al. (2015) approximate optimal solutions to the VRP for
a min-max objective function.

The above approaches assume that the cost or utility
for executing one task with a particular agent is known in
advance. This is a potential limitation when task execution
needs to be planned as well. Each cost calculation is a
planning problem itself in order to find the optimal task
execution. This can be inefficient since most of these plans
are not executed in the end.

Another aspect is that the decomposition of a goal
specification into multiple tasks is not necessarily explicitly
given. Guo and Dimarogonas (2015), for example, assume
task specifications given explicitly to the single agents.
Especially when planning for cost-optimal execution, it is
a prerequisite that all options to decompose a specification
are known. In our previous work, Schillinger et al. (2016a),

we propose an approach for automatically identifying all
possible decomposition choices of a specification into
independent tasks.

There exist other approaches in the direction of STAP.
Chen et al. (2012), Ulusoy et al. (2013) construct a team
model and use the formalism of trace-closed languages to
identify the individual tasks by projecting the solution onto
each of the agents. Nikou et al. (2016) augment agent-
specific goals with a global goal specification to be satisfied
by all agents. These approaches construct a product model
of the team which has two relevant drawbacks. First, the
team model size grows exponentially with the number
of agents and second, actions of the agents need to be
synchronized during execution. Tumova and Dimarogonas
(2016) propose the construction of a reduced product model
where only cooperative actions need to be synchronized
under the assumption that task allocation is already known.
Nissim and Brafman (2014) present an efficient approach
to solve multi-agent planning problems based on the MA-
STRIPS formulation in Brafman and Domshlak (2008) by
a distributed, privacy-preserving version of the heuristic
forward search based on Helmert (2006).

The specific problem characteristics of interest are
summarized by the following three aspects based on the
target use cases. First, we assume that mission specifications
are provided as LTL formulas and only assume finite
LTL specifications like co-safe LTL, Kupferman and Vardi
(2001), or LTLf , De Giacomo and Vardi (2013), which is
sufficient for the multi-robot applications in hand. Second,
we explicitly consider required resources and resource
consumption of actions. Shiroma and Campos (2009)
consider shared resources such as limited communication
bandwidth, but do not model resource consumption. Irnich
and Desaulniers (2005) address resource constraints for
general shortest path problems. In the case of uncertain
action outcomes, de Nijs et al. (2017) provide guarantees
on the satisfaction of resource constraints. In the context
of planning surveillance tasks given as temporal logic
specifications, Leahy et al. (2016) explicitly consider battery
constraints and include charging actions in the model
definition. Third, by modeling costs as the required execution
time, the goal is to minimize the maximum of agent costs
instead of their sum like most of the existing approaches do.
This can be addressed by multi-objective optimization, see
for example Gandibleux et al. (2006) or Paixão and Santos
(2013), where the cost of each agent is considered as one
objective as proposed in our previous work Schillinger et al.
(2017).

1.2 Contributions
The theoretical contributions of this paper are as follows. (1)
We propose an approach for Simultaneous Task Allocation
and Planning (STAP) in order to combine the planning
of tasks with their allocation to agents. Our results show
that this leads to a more efficient solution than ignoring
their interplay and threating them as separate problems.
(2) We integrate previous results regarding automated LTL
decomposition as well as resource-constrained multi-agent
planning into a single STAP framework in order to more
efficiently handle a team size larger than two or three
robots. (3) We evaluate relevant aspects of the planning
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performance on real-world scenarios to provide an insight
into the characteristics of the problems and demonstrate
practical applicability.

The previous results referred to in contribution (2)
specifically concern our results in Schillinger et al. (2016a)
on the decomposition of LTL specifications, which we
integrate for the case that only a single mission specification
is given. This extends our approach presented here to cases
where no set of independent tasks is explicitly defined.
Furthermore, we extend our approach in Schillinger et al.
(2017) on resource-constrained multi-agent planning to
utilize the specific structure of the team model and to support
resource constraints as part of the LTL specification.

The rest of this paper is organized as follows. Section
2 recapitulates the formal basis for LTL specifications
including notation and semantics. Section 3 discusses the
decomposition of LTL missions. Section 4 presents the
construction of the team model based on decomposition
choices and integrates resources into the model. Section 5
addresses the planning algorithm for our proposed STAP
approach and discusses its properties. Section 6 provides an
insight into the ROS implementation which is used for the
system. Section 7 presents an existing office environment and
multiple typical scenarios which we discuss to evaluate the
properties of the proposed STAP framework.

2 Preliminaries
In the following, we provide an overview of the concepts
which form the basis for our presented work. Based on these
concepts, goal specifications and the system model can be
expressed.

2.1 LTL Semantics
Linear Temporal Logic (LTL) is a mathematical specification
logic which is able to capture temporal relationships.
Originally resulting from the field of model checking and
verification, see Baier and Katoen (2008), LTL applied to
robotic behavior planning provides a formalism to specify
the expected behavior in an unambiguous way. As such, an
LTL specification can be used to describe the result of an
expected behavior, while the way to achieve this result is
automatically derived by the system.

An LTL formula φ is defined over a set of atomic
propositions π ∈ Π, which can be true > or false ⊥. The
syntax

φ := π | ¬φ1 | φ1 ∧ φ2 | ©φ1 | φ1 U φ2 | φ1 R φ2 (1)

contains the Boolean operators ¬ “not” and ∧ “and”, as
well as the temporal operators © “next”, U “until”, and R
“release”. To express temporal relationships, the semantics
of the formula φ are defined over a sequence σ : N→ 2Π and
σ(t) ⊆ Π at time t contains all atomic propositions which are
true. In particular, the semantics of the satisfaction relation
� for the above operators and a sequence σ are recursively
defined as follows.

• σ(t) � π iff π ∈ σ(t)

• σ(t) � ¬φ1 iff σ(t) 2 φ1

• σ(t) � φ1 ∧ φ2 iff σ(t) � φ1 and σ(t) � φ2

• σ(t) �©φ1 iff σ(t+ 1) � φ1

• σ(t) � φ1 U φ2 iff ∃t2 ≥ t such that σ(t2) � φ2 and
∀t1 ∈ [t, t2) it holds that σ(t1) � φ1

• σ(t) � φ1 R φ2 iff t1 =∞ or ∃t1 ≥ t such that
σ(t1) � φ1 and ∀t2 ∈ [t, t1) it holds that σ(t2) � φ2

In addition, the following derived operators are defined to
extend the above operators.

• “or”: φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)

• “implies”: φ1 =⇒ φ2 := ¬φ1 ∨ φ2

• “eventually”: ♦φ1 := > U φ1

• “always”: �φ1 := ⊥ R φ1

A special case of the satisfaction relation σ � φ where
σ has length one and φ only contains Boolean operators is
called Boolean satisfaction.

In general, a sequence σ might need to be infinite
in order to satisfy a formula. For example, consider
the formula φosc = ♦π1 ∧�(π1 =⇒ ♦π2) ∧�(π2 =⇒
♦π1) ∧�¬(π1 ∧ π2). This formula describes an oscillation
between π1 and π2 and consequently, cannot be satisfied by
any finite sequence.

In the case that there exists a finite sequence which
satisfies an LTL formula, this formula is called finite. There
are several fragments and interpretations of LTL, e.g., co-
safe LTL by Kupferman and Vardi (2001) and LTLf by
De Giacomo and Vardi (2013), which ensure that specified
LTL formulas are finite. In the following, we only address
finite LTL formulas since this is sufficient for our considered
use cases.

Example 1 (LTL Mission Specification). Consider the
scenario of emptying a paper bin next to an office desk. We
define the set of atomic propositions Π to mark locations of
interest and denote robot states as summarized in Table 1.
Based on these propositions, an LTL mission specification
can be formulated as follows:

φ = ♦(desk ∧ default
∧©((carrybin U dispose) ∧ ♦default))

∧ ♦(desk ∧ emptybin ∧©(desk ∧ default))
∧�(carrybin =⇒ ¬public)

(2)

The first line requires the robot to be next to the desk while
not carrying anything. As denoted by the eventually operator

Proposition Description

desk Location where the bin should be collected.
service Location where garbage can be disposed.
storage Location where empty bins might be stored.
public Location with public access.
default Normal robot state, not carrying anything.
carrybin Robot carrying a full paper bin.
emptybin Robot equipped with an empty paper bin.
dispose Robot successfully disposed garbage.

Table 1. Propositions Π = {desk, . . . , dispose} as used for the
examples throughout the paper.
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q0

q1 q2q3

q4

>

def ∧ desk

cbin ∧ ¬(def ∧ disp)
disp ∧ def

cbin ∧ def ∧ ¬disp

disp ∧ ¬def

>

disp

cbin ∧ ¬disp

def¬def

Figure 1. Example NFA for the formula φ1 = ♦(desk ∧ default ∧©((carrybin U dispose) ∧ ♦default)). The propositions are
abbreviated for improved illustration. The automaton has been constructed by using Spot (https://spot.lrde.epita.fr).

♦, this might happen at any time, but is required in order to
fulfill φ. The second line represents the process of emptying
the bin and is required to happen next when being at the desk,
as denoted by the next operator©. The process is described
as carrying the bin until garbage has been disposed and
eventually putting the bin away again to reach the default
state. In the third line, it is additionally specified that an
empty paper bin should be placed next to the desk. Note that
this part is, for example, fulfilled by returning the emptied
bin back to the desk in order to put it away as required in the
second line. Finally, a constraint is specified in the fourth line
which requires the robot to always avoid public areas while
carrying a bin.

A sequence σ to satisfy φ is, for example, given by

σ = {default}{public, default}{desk, default}
{desk, carrybin}{carrybin}{service, dispose}
{emptybin}{desk, emptybin}{desk, default}.

Note that, although we defined in Table 1 that garbage is
disposed at service locations, this is not specified by φ and
thus, not required for fulfilling it. 3

2.2 LTL Automaton
An important and useful property of LTL specifications
is the fact that they can be translated into an equivalent
automaton representation of the specification. In this context,
equivalence is to be understood as identifying the same
sequences σ to satisfy the respective specification. First,
we define the automaton to be constructed as for example
described by Baier and Katoen (2008).

Definition 1. NFA. A nondeterministic finite automaton is
given as the tuple F := (Q,Q0, α, δ, F ) consisting of
(1) a set of states Q,
(2) a set of initial states Q0 ⊆ Q,
(3) a set of Boolean formulas α over π ∈ Π,
(4) transition conditions δ : Q×Q→ α,
(5) a set of accepting (final) states F ⊆ Q.

Note that our notation of the transition relation is non-
standard in order to simplify notation throughout the paper.
For two states qi, qj ∈ Q, we denote the absence of a
transition by δ(qi, qj) := ⊥. Accordingly, there exists a
transition if δ(qi, qj) 6= ⊥ and the boolean function δ(qi, qj)
denotes the transition condition.

A sequence σ over propositions describes a sequence of
states q ∈ Q, called a run ρ : N ∪ {0} → Q. A run ρ is called

feasible if it starts in an initial state ρ(0) = q0 with q0 ∈ Q0

and if all transition conditions are satisfied along the run
σ(t) � δ(ρ(t− 1), ρ(t)) for all t where � denotes Boolean
satisfaction as defined above. A run ρ is called accepting if it
is feasible and ends in an accepting state qn ∈ F .

If σ does not describe a feasible run, we say σ violates the
LTL specification. If σ describes an accepting run, we say
σ satisfies the LTL specification. Given by the construction
of F from an LTL specification φ, it can be shown that σ
indeed describes an accepting run if and only if σ � φ, see
for example Baier and Katoen (2008). In the case that σ
describes a feasible but not an accepting run, it does not
satisfy the LTL specification. But under the assumption that
F does not contain dead ends except for accepting states, σ
forms a prefix of an accepting run and can be extended to a
sequence satisfying the specification. Thus, we refer to this
case by saying that σ partially satisfies φ.

Example 2 (Automaton Representation). Figure 1 depicts
the NFAF equivalent to the first part of the LTL specification
φ from Example 1 given by φ1 = ♦(desk ∧ default ∧
©((carrybin U dispose) ∧ ♦default)). Considering again
the sequence σ as given in Example 1, a run ρ in
F is given by ρ = q0q0q0q1q1q1q4q4q4q2. Some of the
states in ρ are repeated since the transition conditions to
other states are not immediately satisfied. For example,
σ(5) = {carrybin} 2 dispose ∧ ¬default = δ(q1, q4), but
still σ(5) � δ(q1, q1) = δ(ρ(4), ρ(5)) such that φ1 is not
violated at t = 5. 3

An NFA not only provides an illustrative way of checking
if the corresponding LTL formula is fulfilled, but also
indicates possible alternative sequences to fulfill the formula.
In the following, we will refer to the set of alternative
accepting sequences as strategies.

3 Mission Specification

We propose an approach for Simultaneous Task Allocation
and Planning (STAP) in order to increase efficiency of
synthesizing the behavior for a group of agents from a
mission specification. Specifically, we assume a missionM,
given as a Linear Temporal Logic (LTL) specification φ,
and present an approach to allocate independent parts, called
tasks Ti, of the mission to the available agents at the same
time as planning how the respective agents should execute
their potentially allocated parts.

A mission M may be given as a set of tasks M :=
{T1, . . . , Tn}, called a decomposition. M can as well be
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given as an LTL formula φ or equivalently expressed as an
NFA F . Similarly, a task Ti can be specified by an LTL
formula φ(i) or an NFA F (i). In the rest of this section, we
investigate the relationship between φ (or F) and φ(i) (or
F (i)).

Specifically, a decompositionM = {T1, . . . , Tn} implies
two decomposition properties to be fulfilled by all of the
tasks:

• Independence – (Non-)execution of one task Ti must
not violate another task Tj .

• Completeness – Completion of all tasks T1, . . . , Tn
implies completion of the missionM.

While the second property is rather intuitive, the first one
is motivated by the fact that an independently acting agent
cannot rely on what others do and especially, without any
coordination, execution cannot assumed to be synchronized
between the agents.

Using the terminology introduced in Section 2.2, the
above properties can be expressed by saying that any strategy
for a strict subset of tasks T⊂ ⊂ {T1, . . . , Tn}, i.e., satisfying
φ(i) for all tasks Ti ∈ T⊂, partially satisfies φ. A strategy for
the full set of tasksM = {T1, . . . , Tn} satisfies φ.

Consequently, completing a set of tasks can be associated
with reaching a certain state in the mission NFAF . However,
not every state implies completion of a set of tasks when
requiring the above properties. For this reason, we define
a decomposition set of states as follows and say that
decomposition at state q is possible if and only if q is in the
decomposition set.

Definition 2. Decomposition Set. The decomposition set
D ⊆ Q of the NFA F contains all states q which can be
associated with completing a set of tasks such that these tasks
are a subset of the decomposition T1, . . . , Tn.

Based on this decomposition set, the final planning model
can be augmented to contain all possible decomposition
choices. This can then be used for efficiently planning the
optimal decomposition and corresponding allocation of tasks
to agents at the same time as planning action sequences to
execute the mission.

The specific construction of D is discussed in the
following two subsections for two different cases. First, we
assume that a set of LTL tasks T1, . . . , Tn which definesM
is explicitly given and show how to use simultaneous task
allocation and planning instead of planning all allocation
options separately. Second, we show how simultaneous
task allocation and planning can even be used in the case
that no set of tasks is given, but only the single LTL
mission specification φ. In this case, the decomposition set
is automatically derived directly from φ.

3.1 Explicit Tasks
First, we assume the simplified case that a set of tasks
T1, . . . , Tn is explicitly given. Then, we can construct a
product of the NFAs F (1), . . . ,F (n) from tasks T1, . . . , Tn.
Note that a product of NFAs is the equivalent automaton of
the conjunction of their LTL formulas φ = φ(1) ∧ . . . ∧ φ(n).
Consequently, the decomposition properties are guaranteed
by constructing the NFA product.

Definition 3. NFA Product. The product of two NFAs F =
F (i) ⊗F (j) := (Q,Q0, α, δ, F ) is constructed as
(1) a set of states Q = Q(i) ×Q(j),
(2) a set of initial statesQ0 = {(qi, qj) ∈ Q : qi ∈ Q(i)

0 , qj ∈
Q

(j)
0 },

(3) a set of Boolean formulas α = {ai ∧ aj : ai ∈ α(i), aj ∈
α(j)},
(4) transition conditions δ : Q×Q→ α defined as below,
(5) a set of accepting states F = {(qi, qj) ∈ Q : qi ∈
F (i), qj ∈ F (j)}.

The transition conditions of the product F need to capture
the conditions of both NFAs F (i), F (j) and thus, are
given by δ : ((qs

i , q
s
j), (q

t
i , q

t
j)) 7→ δ(i)(qs

i , q
t
i) ∧ δ(j)(qs

j , q
t
j).

Specifically, a transition in F requires that there is a
transition in both included NFAs, since otherwise, δ(i) = ⊥
implies that δ = ⊥.

Furthermore, note that a product of multiple NFAs can be
constructed by applying Definition 3 iteratively. In this case,
for simplicity of notation, we refer to a state as the n-tuple
q := (q1, . . . , qn) ∈ Q for qi being the state component of
NFA F (i).

Finally, the decomposition set D from Definition 2 can be
constructed as follows:

D := {q ∈ Q : qi ∈ Q(i)
0 ∪ F (i),∀qi}. (3)

According to Equation (3), decomposition at a state is
possible if and only if all tasks are either not yet started or
already finished. Essentially, this prevents splitting of single
tasks and preserves them as indivisible units, but enables to
assign different tasks to different agents.

3.2 Automated Decomposition
In many applications, the set of tasks T1, . . . , Tn is either
not explicitly given or can be partitioned further. Therefore,
we describe here a method to automatically compute D
from a single LTL mission specification φ. This method
is based on previous results presented in Schillinger et al.
(2016a). We summarize its application here, but refer to the
related reference for further details and proofs regarding LTL
decomposition.

The automated decomposition is essentially the opposite
direction of the case described in the previous section
and gives a non-trivial solution, i.e., more than one
task, if φ implicitly contains parts which can be
executed independently. Consider the following example for
illustration of a decomposition into independent parts.

Example 3 (Decomposition). Assume a mission M
given by the specification φ as introduced in Example 1.
If executed by a single robot, the most efficient way to
complete the mission might be to return the emptied bin to
the desk. However, as discussed before, this is not explicitly
required by the specification. When given to a team of at
least two robots, one robot can pick up the bin and empty
it, while another robot already brings an empty bin to the
desk. Consequently, the mission M can be understood as
consisting of two independent tasks. First, as task T1, the
garbage in the full bin needs to be disposed and second,
as task T2, an empty bin needs to be provided at the desk.
Clearly both tasks need to be completed in order to fulfill
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M. But their execution does not depend on each other and it
is in fact possible to complete T2 before T1, even for a single
robot. 3

The decomposition properties, independence and com-
pleteness, are captured by the following definition.

Definition 4. LTL Decomposition (Schillinger et al.
(2016a)). Let φ(i) with i ∈ {1, ..., n} be a set of finite LTL
specifications for the tasks Ti and σi denote any sequence
such that σi � φ(i). These tasks are called a decomposition
of the mission M with the finite LTL specification φ if and
only if:

σj1 ...σji ...σjn � φ

for all permutations of ji ∈ {1, ..., n} and all respective
sequences σi.

The decomposition properties can then be aligned with
Definition 4 as follows.

Lemma 1. Decomposition Properties. Tasks T1, . . . , Tn
denoting a decomposition according to Definition 4 fulfill the
decomposition properties independence and completeness
regardingM.

Proof. Assume there would be a task Ti depending on
a previous execution of Tj , then the condition in Definition
4 would be violated and Ti would not be part of a
decomposition. The same holds true when Ti depends on
non-execution of Tj . Similarly, if execution of all tasks
T1, . . . , Tn would not fulfillM, then the sequence σ1 . . . σn
would not satisfy φ as required by Definition 4. �

In order to construct the decomposition setD, it is possible
to find so-called essential sequences, basically the sequences
in the NFA with minimal propositions, and relate states q ∈
Q to decomposition choices according to Definition 4.

Definition 5. Essential Sequence (Schillinger et al. (2016a)).
A sequence σ is called essential for an NFA F if and only if
it describes a run ρ in F and σ(t) \ {π} 2 δ(ρ(t− 1), ρ(t))
for all t and propositions π ∈ σ(t), i.e., σ contains only the
required propositions.

In practice, it is rather intuitive to construct an essential
sequence, especially if representing the transition conditions
δ in the NFA in disjunctive normal form (DNF). For example
considering the NFA in Figure 1, only the self-transition at
state q1 is not in DNF and can be represented equivalently
as cbin ∧ ¬def ∨ cbin ∧ ¬disp. If transition conditions are
given in DNF, an essential sequence can be constructed
by adding all propositions of one conjunctive clause to the
sequence. For example, an essential sequence from q0 to q1

would be σ = {def, desk}.
Based on the notion of an essential sequence, the

decomposition set D can finally be constructed as shown by
the following Theorem.

Theorem 1. Decomposability (Schillinger et al. (2016a)).
Let q ∈ Q be a state in the NFA F constructed fromM, and
σ = σ1σ2 be an essential sequence such that σ1 describes a
run from an initial state to q and σ2 describes a run from q to
an accepting state of F . Then, q ∈ D if and only if σ̂ = σ2σ1

describes an accepting run in F .

Note that initial and accepting states are trivially contained
in the decomposition set. This reflects the decomposition

into one part consisting of doing nothing and the other part
of doing the whole mission, indicating that the mission is
not split. In the following, we denote these trivial states by
Qtriv := Q0 ∪ F and say that a mission is decomposable
only if D \Qtriv 6= ∅.

Example 4 (Non-Decomposability). First, only assume
the part φ1, as defined in Example 2, of the specification
φ. It covers the part where a bin should be picked up and
emptied. Although this task covers first picking up the bin
and second, emptying it, these two parts cannot be separated
into independent tasks because it is not possible to empty the
bin without picking it up before.

In order to check this intuition with Theorem 1 and
determine the decomposition set, we need to construct an
essential sequence for each of the states in the NFA of φ1

(see Figure 1) and expect that D \Qtriv = ∅.
q1: The essential sequence σ = σ1σ2 is given by σ1 =
{def, desk} to reach q1 and σ2 = {disp, def} to
continue from q1. The permuted sequence σ2σ1 gives
the run q0q0q1, resulting in σ2σ1 2 φ1. Consequently,
q1 is not in D.

This process is repeated for the two remaining states.
q3: σ = σ1σ2 with σ1 = {def, desk}{cbin, def,¬disp}

and σ2 = {disp}. σ2σ1 2 φ1 with run q0q0q1q3.

q4: σ = σ1σ2 with σ1 = {def, desk}{disp,¬def} and
σ2 = {def}. σ2σ1 2 φ1 with run q0q0q1q4.

Consequently, we get that D \Qtriv = ∅, i.e., the specifica-
tion φ1 is not decomposable. 3

In contrast, the whole mission specification φ is expected
to be decomposable as discussed previously in Example 3.
The following example shows a case where it is possible to
decompose φ.

Example 5 (Decomposability). For space reasons,
we skip a visualization of the full NFA of φ, but
consider the following case for a possible decomposition
at a state q. The essential sequence σ = σ1σ2 with
σ1 = {def, desk,¬cbin}{¬cbin, disp}{def,¬cbin} and
σ2 = {desk, ebin,¬cbin}{def, desk,¬cbin} describes an
accepting run in the NFA and also σ2σ1 � φ. Consequently,
a decomposition is possible at the respective state and we
get q ∈ D. Illustratively speaking, a decomposition at this
specific q resembles the behavior discussed in Example 3
where one robot empties the full bin and another one brings
a new one independently. 3

The way how exactly a goal specification is formulated
can influence the decomposition set and consequently, the
tasks which are identified to be independent. While we defer
a discussion of this aspect to the end of this paper, note here
that the decomposition approach presented above operates
on the automaton representation of the formula. This relaxes
the dependency on the specific formulation as the automaton
corresponds more closely to the semantics of the goal.

4 Model Construction
Given an automaton which represents the mission specifi-
cation and where each state indicates if a split is possible
there as discussed in the previous section, we can construct
a full model of the system. In addition to the mission, this
model captures capabilities of the agents and thus, describes
possible action sequences to execute the mission.
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4.1 System Model
First, we start with modeling the individual components of
the system before we describe how to combine them to a
complete model. Since the LTL mission can be represented
as an automaton, it appears natural to model an agent as
an automaton as well. It is also often intuitive to model the
internal state and the actions of an agent as a state machine or
an abstraction of places in the environment as a topological
map.

Definition 6. Agent Model. An agent model is given as the
automaton A := (SA, s0,A, AA,Π, λ) consisting of
(1) a set of states SA,
(2) an initial state s0,A ∈ SA,
(3) a set of actions AA ⊆ SA × SA,
(4) a set of propositions Π,
(5) a labeling function λ : SA → 2Π.

Then, by combining this agent model automaton with the
NFA of the mission, a model can be constructed to capture
both the agent capabilities encoded in A and the mission
specification encoded in the NFA F .

Definition 7. Product Model. A product model is given by
P = F ⊗A := (SP , S0,P , AP) consisting of
(1) a set of states SP = Q× SA,
(2) a set of initial states S0,P = Q0 × {s0,A},
(3) a set of actions AP = {((qs, ss), (qt, st)) ∈ SP ×
SP : (ss, st) ∈ AA ∧ λ(ss) � δ(qs, qt)}.

The agent models can be different, each representing
the capabilities of the respective agent, while the NFA is
determined by a particular mission specification. As such, P
describes for each of the different agents how a given mission
can be executed by this agent or indicates that the mission
cannot be satisfied.

In order to combine multiple agents, a team model can be
constructed from the individual product models. While there
are different ways of defining this combination, we choose
an approach based on the decomposition set discussed in
the previous section. Individual agents are assumed to act
independently and based on the decomposition set, special
transitions indicate the options to split a mission at some
states and allocate the rest to a different agent. Consequently,
the resulting team model can be used for simultaneous task
allocation and planning.

Definition 8. Team Model. The team model automaton G
is a union of the N local product models P(r) with r ∈
{1, ..., N} and given by G := (SG , S0,G , FG , AG) consisting
of
(1) a set of states SG = {(r, q, s) : r ∈ {1, ..., N}, (q, s) ∈
S

(r)
P },

(2) a set of initial states S0,G = {(r, q, s) ∈ SG : r = 1}
(3) a set of final states FG = {(r, q, s) ∈ SG : q ∈ F},
(4) a set of actions AG =

⋃
r A

(r)
P ∪ ζ which include switch

transitions ζ as defined below.

In Definition 8, P(r) is the product automaton correspond-
ing to agent r according to Definition 7. A switch transition
is only present at a state s ∈ SG ifM can be decomposed at
s according to the following conditions.

P1

P2

P3

Figure 2. Structure of G for three agents. It has one initial state
(bottom left corner) and three final states (right side). Between
the agent automata, directed switch transitions to the next agent
connect states of the decomposition set.

Definition 9. Switch Transition. The set of switch
transitions in G is given by ζ ⊂ SG × SG . A transition ς =
((rs, qs, ss), (rt, qt, st)) belongs to ζ if and only if it
(i) connects different agents: rs 6= rt,
(ii) preserves the NFA progress: qs = qt,
(iii) points to the next agent: rt = rs + 1,
(iv) points to an initial agent state: st = s

(rt)
0,A ,

(v) represents a decomposition choice: qs ∈ D.

Note that staying in one state of the NFA as specified in
condition (ii) requires that qs has a self-transition and that the
respective condition is fulfilled. An example for the structure
of the team model G is depicted in Figure 2.

Finally, an action sequence β := s0a1s1 . . . ansn is
defined as a run in G such that si ∈ SG , and ai ∈ AG . In
order to distribute β among the involved agents, β(r)

P for
agent r can be formed by projecting β onto P(r). Note that,
due to the characteristics of G, subsequent actions in β either
refer to the same agent or are separated by a switch transition
ai = ςi ∈ ζ. In the second case, si−1 is the final state of one
agent and si the initial state of another one. These properties
of G are more closely discussed in the following.

4.2 Model Properties
The team model G as defined above has a set of relevant
properties which are discussed in the following. Specifically,
these properties are required to ensure that the planning
algorithm, presented in the next section, is guaranteed to find
the optimal allocation of the given LTL mission specification
and the optimal sequence of actions for each agent to fulfill
the specification.

Lemma 2. Correctness. If there exists an action sequence
β = s0a1s1 . . . ansn in G such that s0 ∈ S0,G and sn ∈ FG ,
the corresponding mission specification φ is satisfied by β.

Proof. Due to the construction of G, every state s =
(r, q, sA) ∈ SG has a component q ∈ Q in the NFA F
constructed from φ. Besides the switch transitions, which do
not change the NFA component, but only model considering
a different agent, no new transitions are added to G.
Consequently, s0 is projected onto q0 ∈ Q0, sn onto qn ∈ F ,
and any ai ∈ β is projected onto an existing transition in
F . Thus, the projected β forms an accepting run in F and
consequently, satisfies the mission specification φ. �

In the case that Lemma 2 holds for an action sequence β,
we call β a satisfying action sequence or, more specifically,
a solution to the mission M which given by the mission
specification φ. As will be shown in the next Lemma, such a
solution can be distributed to different agents.
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Lemma 3. Independence. Assume that the solution β =
β(1)ςβ(2) in G to a decomposable mission φ(1) ∧ φ(2) := φ
is allocated to two different agents. Then, both agents can
execute β(1), β(2) independently from each other.

Proof. The switch transition ς = ((rs, qs, ss), (rt, qt, st))
can only connect β(1) and β(2) if the respective NFA state
qs = qt ∈ D is in the decomposition set D. As shown for
the respective construction rules of the decomposition set in
Section 3, only states indicating a split into two independent
parts are in D and thus, φ can be written as φ(1) ∧ φ(2). �

By introducing a cost for actions to express the desirability
of a solution, it is possible to show that any preferred solution
can be constructed from the model G resulting from the
independence shown above.

Lemma 4. Completeness. Given any action sequence βopt

with minimal costs c∗, which satisfies an LTL mission φ with
respect to the system model and where actions ai ∈ βopt

are in an arbitrary permutation regarding the agents. Then,
there exists a β with ordered actions, i.e. ri ≤ ri+1, r ∈
{1, . . . , N} for ri referring to one of the N agents executing
action ai, such that its costs cβ = c∗ are optimal as well.

Proof. As shown in Lemma 3, different agents can execute
their parts independently from each other. Consequently,
actions ai, ai+1 ∈ βopt with ri 6= ri+1 can be swapped
without affecting the cost or correctness. Thus, it is possible
to swap actions in βopt with ri > ri+1 until the condition
ri ≤ ri+1 is satisfied for all actions. �

Furthermore, the team model has additional properties
which can be utilized for more efficient planning. In the
following, we discuss the most important one in preparation
for the planning algorithm presented in the next section.

Lemma 5. Ordered Sequence. For any action sequence β
with actions ai, ai+1 ∈ βopt resulting from the team model
G, it holds that ri ≤ ri+1, r ∈ {1, . . . , N} for ri referring to
one of the N agents executing action ai.

Proof. According to condition (iii) in Definition
9, it holds that rs < rt for all switch transitions ς =
((rs, qs, ss), (rt, qt, st)) ∈ ζ. Similarly, according to the
construction of G in Definition 8, all actions a ∈

⋃
r A

(r)
P

are associated with a single agent r. Consequently, ri ≤ ri+1

holds for all transitions AG =
⋃
r A

(r)
P ∪ ζ. �

Specifically, note that an immediate consequence of
Lemma 5 is that, starting in a state associated with agent r,
no state associated with an agent r′ < r can be reached by
any path in G.

4.3 Cost Representation
In order to select the optimal satisfying action sequence,
actions AG are associated with non-negative costs C : AG →
R≥0. A special case are the switch transitions ζ ⊂ AG and
we define C : ς 7→ 0 for all ς ∈ ζ. This reflects the fact that
switch transitions are purely virtual and will not appear in
any of the action sequences β(r)

P executed by the agents.
For modeling the multi-agent character of a cost, one

can think of extending C(a) for an action a ∈ AG to an
N dimensional vector ca ∈ RN≥0 where each agent r ∈
{1, . . . , N} represents one dimension. Since each action
with non-zero cost is associated with a particular agent by the

fact that AG \ ζ =
⋃
r A

(r)
P , we can define for each a ∈ AG

ca,i =

{
C(a) if i = r

0 otherwise
(4)

and cζ = 0. Consequently, the costs cβ ∈ RN≥0 of an action
sequence β are given by cβ =

∑
a∈β ca.

The Pareto front of all cost vectors cβ for satisfying action
sequences then forms the set of potential optimal solutions.
In order to prioritize these solutions, we define the overall
team cost κ : RN≥0 → R≥0 as

κ(cβ) = (1− ε) · ‖cβ‖∞ + ε · ‖cβ‖1. (5)

with ε ∈ (0, 1]. This reflects the objective to minimize the
maximal agent cost ‖cβ‖∞, e.g., minimizing the completion
time of the mission, with a regularization term ‖cβ‖1 to avoid
unnecessary actions of the agents.

However, based on Lemma 5 and given the definition
of κ in Equation (5), it is possible to choose a more
compact representation for cβ , in the following denoted by
ĉβ . Specifically, we utilize the fact that given a particular
agent r, the team cost κ of the action sequence β can already
be evaluated for all agents r′ < r since no action associated
with any r′ will occur in a continuation of β. Consequently,
it is sufficient to define ĉβ ∈ R3

≥0 irrespectively of the team
size N as a three-dimensional cost vector such that

ĉβ =

‖(cβ,1, . . . , cβ,r−1)T ‖∞
‖(cβ,1, . . . , cβ,r−1)T ‖1

cβ,r

 . (6)

Accordingly, the team cost κ̂ : R3
≥0 → R≥0 is adjusted such

that

κ̂(ĉβ) =(1− ε) · ‖(ĉβ,1, ĉβ,3)T ‖∞
+ ε · ‖(ĉβ,2, ĉβ,3)T ‖1

(7)

with ĉβ,i denoting the i-th component of ĉβ . Not only
does this compact representation remove a dependency of
cβ on the team size N , it is also more efficient to use this
representation during planning. The reason for this efficiency
gain is that additional cost vectors are Pareto-dominated and
can thus be eliminated from the set of potential solutions
much earlier in the planning process.

4.4 Resource Representation
In addition to the LTL mission specification, which models
discrete constraints, it is often required to also consider
constraints of the agents in continuous domains, in the
following referred to as resource constraints. As resources,
we capture numerical domains which are not explicitly
modeled in the discrete state space SG of the system, but
might change as the consequence of executing an action a ∈
AG . This change is denoted by Γ: AG → RM where M is
the total amount of resource dimensions. In contrast to costs,
which can only be increased, resources can be modified in
both directions.

For an action sequence β, the resulting status of resources
γβ ∈ RM is given by

γβ = γ0 +
∑
a∈β

Γ(a) (8)
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where γ0 ∈ RM≥0 denotes the initial resources. We constrain
the set of satisfying action sequences to sequences β such
that at any state si ∈ β it holds for β′ = s0a1 . . . aisi that
γβ′,i > 0 for each component i ∈ {1, . . . ,M}.

Example 6 (Limited Battery). The assumption that the
robots only have a limited battery capacity can be modeled as
one resource constraint per robot. γβ,r provides a measure of
how much battery power is left for robot r and consequently,
γβ,r > 0 guarantees that the robots do not get depleted at
any time during the mission. Each robot has an initial battery
level γ0,r and each action a affects the battery level by Γ(a).
In particular, we set Γ(a) < 0 for all actions which consume
battery and Γ(a) > 0 for charging actions. 3

Note that modeling agent-specific resources as described
in the above example, while intuitive, again implies a
dependency of the resource vector γβ on the team size
N = M . Similar to changing the cost representation, we
can also model agent-specific resources in a more compact
way given Lemma 5. More precisely, it suffices to have a
single dimension γβ,i of γβ tracking the resource status.
Whenever a switch transitions ς = ((rs, qs, ss), (rt, qt, st))
is taken, γβ,i is set to the initial resource status γ0,i of agent
rt to which ς leads.

As mentioned before, we assume that resource constraints
are of the form γβ,i > 0. In the rest of this section, we present
several other types of constraints which can be reformulated
as γβ,i > 0 as well.

First, for completeness, recall the trivial relationships

γβ,i > c⇔ γβ,i − c > 0

γβ,i < 0⇔ −γβ,i > 0.

Also constraints of the form γβ,i ≥ 0 can be expressed. To
include the case of equality, one can add a small offset ε to
the resources and formulate it as strict inequality constraint.
A sufficiently small ε is derived as follows. Given by the
finiteness of the set of actions, there is a smallest possible
change of γβ,i for each resource, given by

γ∆,i = min
(aj ,ak)

|Γ(aj)i − Γ(ak)i| (9)

for actions aj , ak ∈ AG and resource modifiers Γ. Thus, it
suffices that ε ≤ γ∆,i and the constraint γβ,i ≥ 0 is implied
by γβ,i + ε > 0.

Interval constraints of the form γβ,i ∈ I = (c, C) can be
captured by the set of two inequality constraints γβ,i > c and
γβ,i < C. However, this would be inefficient in practice as it
introduces a potentially large set of Pareto optimal labels.
Instead, it is usually appropriate to prefer solutions further
away from the interval boundaries, given equally high costs,
as they are more likely to satisfy the interval constraint in the
future. Thus, interval constraints can be expressed as

γβ,i ∈ I ⇔ γβ,I −
C − c

2
> 0

where γβ,I =
∥∥C−c

2 + c− γβ,i
∥∥ denotes a distance measure

of γβ,i from the center of the interval I.

5 Action Planning
In this section, we present an approach for Simultaneous
Task Allocation and Planning (STAP) for the previously

defined model. Specifically, the goal is to solve the following
planning problem.

Problem 1. Simultaneous Task Allocation and Planning.
Let the models A(r) with r ∈ R of a multi-robot system R =
{1, . . . , N}, a cost function C, initial resources γ0 ∈ RM≥0,
and a goal specification φ to be achieved by the teamR. Find
an action sequence β(r) for all r ∈ R such that φ is satisfied
and the team cost κ̂ is minimized.

We represent φ as an LTL formula and construct the
team model G as defined in Section 4.1. In particular,
the underlying decomposition set D, which captures the
distributable tasks, is automatically determined as discussed
in Section 3.2. The team cost κ̂ is defined according to the
compact representation in Equation (7). It remains to find an
action sequence β in G which can be decomposed into β(r)

and distributed to all r ∈ R. Then, each robot r can execute
its respective β(r) independently of the others, as given by
Lemma 3.

The proposed planning algorithm is an extension of the
approach described in our previous work in Schillinger
et al. (2017), which is a label-setting approach based on
the Martins’ algorithm in Martins (1984). We extend our
previous work by explicitly considering the more efficient
cost representation as discussed in Section 4.3, i.e., we
integrate our particular formulation of the team model G,
and extend the expressiveness of resource constraints as
presented in the following Section.

A label-setting search algorithm can be thought of as
a multi-criteria generalization of the Dijkstra shortest path
search. But instead of operating on states with associated
costs, a label-setting algorithm constructs a set of labels for
each state. Each label of a state s ∈ SG is given by

l = (ĉβ , γβ , v, iv) (10)

and depends on the action sequence β leading to it where
ĉβ denotes its cost as defined in Equation (6) and γβ
the respective resource status as defined in Equation (8).
Integration of γβ into the labels is an extension of the
standard label-setting approach, but required to handle
resource constraints. v ∈ SG is the predecessor state in β and
iv ∈ N the index of the respective predecessor label.

The construction of a set of labels for each state s ∈ SG
is basically an extension of SG to a higher dimensional,
infinitely large label space LG . Each label l ∈ LG,s ⊂ LG
of state s instantiates one possible resource configuration
in the continuous domain of γ and transitions between the
labels are described by their predecessor relations. In the
following, we denote by LG,s the set of instantiated, i.e.,
feasible, labels at state s and by LG =

⋃
s∈SG LG,s ⊂ LG the

set of all feasible labels.

5.1 Resource Propositions
Considering the extension of the state space SG to the
label space LG opens a more expressive perspective on the
resource constraints defined in Section 4.4. In fact, it is
possible to model a resource constraint as a proposition

πi := γβ,i > 0. (11)

In the state space SG , the constraint γβ,i > 0 depends
on the complete action sequence β, which specifies the
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resource modifications following from the included actions.
In contrast, this constraint only depends on a single label l
in the label space LG with a specific γl,i = γβ,i. Thus, the
resource proposition πi is either true or false for a certain
element of the space LG .

Following this idea, the resource constraints can directly
be included in the LTL mission specification by the extended
formulation φ ∧� (

∧
i πi), stating that all constraints always

have to hold. However, based on conventional LTL semantics
as summarized in Section 2.1 now interpreted over the label
space LG , resource propositions πi can be used as part of the
mission specification φ the same way as atomic propositions
π ∈ Π. In this way, complex resource constraints can be
expressed. Some particularly useful examples are ♦�πi (“at
some point, reach and keep a certain threshold for resource
i”), ¬πi =⇒ ♦φj (“violation of resource constraint i
requires to execute φj as compensation”), or πi U φj
(“respect resource constraint i until satisfaction of φj”).

Remark. In the latter case of the above examples, πi :=
ti − γl,i > 0 could represent a resource like time. Then, the
expression can be interpreted as “satisfy φj before time ti”.
This highlights the close connection of interpreting LTL over
a more complex space like LG with existing temporal logics
like MITL, see Alur et al. (1996), and STL, see Maler and
Nickovic (2004), over a state space SG . However, a more
extensive comparison with these logics is out of the scope
of this paper and will be subject to future work.

Until now, only agent-specific resources have been
considered. However, for some scenarios, it is helpful to
also model agent-independent, global resource constraints.
Consider for example the scenario that some supplies need
to be refilled. The most straight-forward way would be
to specify φ = ♦πi with πi := γβ,i − cthresh ≥ 0 for some
resource threshold cthresh. In this case, γβ,i is a global
resource.

Since, by construction of the team model G, we assume
the agents to act independently, it is not immediately clear
how to consider global resources. Nevertheless, it is possible
to model global resources in the following special cases and
we limit usage of global resources to these cases.

Lemma 6. Global Resources. Consider the global resource
γβ,i and assume that all of its modifications Γ(a)i for a ∈
AG are non-positive. Then, the LTL specifications ♦¬πi
and �πi, including their Boolean combinations, can be
expressed for πi := γβ,i > 0.

Proof. For monotonically decreasing resources γβ,i, it is
apparent that the proposition γβ,i > 0 either does not change
its truth value, or there exists exactly one transition from
true to false. Consequently, �πi is fulfilled in the former
case, ♦¬πi in the latter case. In the case that there is a
transition, this transition exists independently of the order in
which the resource modifications Γ(a)i are applied due to
monotonicity. �

5.2 Planning Algorithm
An outline of our proposed approach for constrained optimal
STAP is given by Algorithm 1. The purpose of the algorithm
is to find the label lfin of an accepting state with minimal
team cost κ̂(ĉ(l)). Since each label l specifies its predecessor
label, the action sequence β leading to l can be reconstructed

Algorithm 1 Constrained Optimal STAP
Input: Team model G, team cost function κ̂, resources γ0

Output: Optimal final label lfin to construct actions βfin

Notation Remarks:
l = (ĉ(l), γ(l), v, iv) ∈ LG – label, see Equation (10)
Lt,s (Lp,s) – set of temporary (permanent) labels, s ∈ SG
l <P ` – short notation for (ĉ(l),−γ(l)) <P (ĉ(`),−γ(`))
∆(a, γ) – indicates if γ > 0 holds for a, see Equation (14)

1: Lt,v ← {(0, γ0,∅,∅)},∀v ∈ S0,G
2: Lt,s ← ∅,∀s ∈ SG \ S0,G
3: Lp,s ← ∅,∀s ∈ SG
4: while ∀s ∈ SG : Lt,s 6= ∅ do
I Find label l with lowest costs and make it permanent
5: (s, l)← argmins∈SG ,l∈Lt,s

{κ̂(ĉ(l))}
6: Lt,s ← Lt,s \ {l}
7: Lp,s ← Lp,s ∪ {l}
I Terminate search if any final state is reached
8: if s ∈ FG then return lfin ← l . Best found first

I Calculate labels for all successors v of s
9: for all v ∈ SG : a = (s, v) ∈ AG do

10: ĉnew ← updateCost(a, ĉ(l)) . Equation (12)
11: γnew ← updateRess(a, γ(l)) . Equation (13)
12: `← (ĉnew, γnew, s, is) with is = card(Lp,s)

I Only add and keep non-dominated temporary labels
13: if ∆(a, γnew) ∧ (@l ∈ Lt,v ∪ Lp,v : l ≤P `) then
14: Lt,v ← Lt,v \ {l ∈ Lt,v : ` <P l}
15: Lt,v ← Lt,v ∪ {`}
16: return lfin ← ∅ . No final state reachable

and l denotes the costs and resource status when executing
β. Consequently, finding lfin is equivalent to finding the
respective action sequence βfin which leads to an accepting
state and thus, satisfies the given mission.

In order to find lfin, a reachable set of temporary labels
Lt,s is constructed for each state and a set of permanent
labels Lp,s denotes Pareto-optimal labels at s. As usual
for a label-setting approach, only optimal labels are made
permanent and consequently, the temporary label with
minimal team cost is selected in each iteration (line 5). This
requires non-negative action costs in order to guarantee that
no label with lower team cost will be added to the set of
temporary labels in later iterations.

For each selected label l, a set of consecutive labels is
constructed by extending the action sequence associated with
l by all available actions (line 9) and adding the resulting
labels to the reachable set (line 15). To improve efficiency,
only actions resulting in Pareto-optimal labels at their target
state are added. Since these labels are only in the reachable
set instead of the permanent set, it can be the case that a better
label is found later during planning before the label is made
permanent. Consequently, when adding a new temporary
label, existing temporary labels are again checked for Pareto-
optimality (line 14).

Depending on whether a certain action a =
((rs, qs, ss), (rt, qt, st)) ∈ AG is a switch transition, the
costs of the label ĉnew after action execution are updated
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based on the costs ĉ(l) of the current label l.

ĉnew :=


‖(ĉ

(l)
1 , ĉ

(l)
3 )T ‖∞

‖(ĉ(l)2 , ĉ
(l)
3 )T ‖1

0

 if a ∈ ζ

ĉ(l) + (0, 0, C(a))T otherwise

(12)

In the case a ∈ ζ, i.e., that a is a switch transition, the
maximal and summed costs are updated and the new agent
rt is initialized with zero cost by setting the third component
ĉnew,3 = 0.

Similarly, resources γnew are updated as follows based on
γ(l).

γnew :=


(
γ

(l)
global

γ0,rt

)
if a ∈ ζ

γ(l) + Γ(a) otherwise

(13)

where γ(l)
global is the part of γ(l) denoting global, i.e., agent-

independent, resources and γ0,rt are the initial resources of
agent rt, the agent associated with the target state of a.

Furthermore, selecting the available actions requires to
ensure that the new resource status satisfies all constraints,
which can be encoded in the LTL mission specification
as discussed above. For this purpose, we define ∆: AG ×
RM → B with B := {>,⊥} as an extension of the transition
function δ of an NFA F such that

∆: (a, γ) 7→ λ(ss) ∪Πγ � δ(qs, qt) (14)

for a = ((rs, qs, ss), (rt, qt, st)) and Πγ is the set of all
propositions πi according to Equation (11). Illustratively
speaking, ∆ extends the set of state propositions as defined
by the proposition labeling function λ of the agent model A
by the set of all resource propositions based on γ and only
permits a transition if this extended set fulfills the transition
condition δ of F .

In addition to not considering actions which would violate
the resource constraints, only actions leading to labels with
minimal cost will be considered as continuations of an action
sequence. The operator <P denotes a “less than”-relation
in the Pareto sense, i.e., (a1, . . . , an)T <P (b1, . . . , bn)T ⇔
a 6= b ∧ ai ≤ bi,∀i ∈ {1, . . . , n}. The operator ≤P relaxes
this relation and also includes equality a = b. Consequently,
a label ` is only added to the set of temporary labels if it is
non-dominated (line 13), meaning that there does not exist
another label l at the same state such that (ĉ(l),−γ(l)) ≤P

(ĉ(`),−γ(`)).

5.3 Planning Properties
In the following, we will more closely investigate the
required assumptions on the model G and the costs C for
Algorithm 1 to terminate.

First, since Algorithm 1 is a label-setting approach, it is
necessary that the temporary labels l ∈ Lt :=

⋃
sinSG

Lt,s

selected in line 5 are traversed in the correct, i.e., non-
decreasing, order.

Lemma 7. Label Ordering. Given any two labels l, ` ∈ LG
such that κ̂(ĉ(l)) < κ̂(ĉ(`)). Then, ` ∈ Lp =⇒ l ∈ Lp with
the set of permanent labels Lp defined as Lp :=

⋃
s∈SG Lp,s.

We briefly sketch the proof of the Lemma 7 here and refer
the interested reader to Schillinger et al. (2017), Lemmas 1
and 5, where formal proofs of the required properties are
provided.

Proof. (sketch) It can be shown that the above order-
ing holds if κ̂ fulfills the following two properties: domi-
nance, ĉ(l) <P ĉ

(`) =⇒ κ̂(ĉ(l)) < κ̂(ĉ(`)), and monotonic-
ity, κ̂(ĉ(l)) ≤ κ̂(ĉ(`)). κ, as defined here in Equation (5),
fulfills these properties. Finally, it can be shown that κ(c) =
κ̂(ĉ) holds for the team model G. �

As a consequence of Lemma 7, note that the iterations
of the while-loop (line 4) in Algorithm 1 can be seen as
increasing a cost threshold, which provides at any time a
lower bound on the optimal feasible value κ∗ := κ̂(ĉ(l

∗
fin)).

This interpretation is expressed by the function κLB : N→ R
where κLB(i) := mins∈SG ,l∈Lt,s{κ̂(ĉ(l))} denotes the lower
cost bound after i iterations (c.f. line 5). Then, Lemma 7
states that κLB is non-decreasing.

In order to investigate which assumptions are required
to ensure that Algorithm 1 terminates, first assume that an
optimal solution β∗fin with cost κ∗ exists, i.e., Problem 1 is
solvable. It remains to show that there exists an i∗ such that
κLB(i∗) = κ∗.

Lemma 8. Zero-Cost Cycles. Assume there exists a β∗fin

with cost κ∗. Then, κLB(i) < κ∗ for all i only if the planning
model G contains cycles with zero cost.

Proof. Assume that β∗fin is not found, i.e., there exists an
i such that κLB(j) ≤ κLB(i) < κ∗ for all j > i. Since κLB

is non-decreasing by Lemma 7, equality κLB(j) = κLB(i)
needs to hold. This means, after i iterations, all actions must
have zero costs. Since j ∈ N is not bounded above, a cycle
formed by actions which all have zero costs needs to exist.�

Note that the existence of zero-cost cycles is only a
necessary, but not a sufficient condition for non-termination.
In fact, if a zero-cost cycle is only reachable with a cost κ̂ >
κ∗, Algorithm 1 will not reach this cycle before termination.
Furthermore, as given in line 13 of Algorithm 1, a zero-
cost cycle is only considered by the planner if it increases
resources such that the label after traversing the cycle is non-
dominated.

Usually, it is not known in advance if a solution β∗fin exists.
Considering now the case that no solution exists for Problem
1, we get from line 4 in Algorithm 1 that the set of temporary
labels Lt as defined above needs to become empty in order
to terminate the algorithm.

Lemma 9. Bounded Resources. Assume there exists an
upper bound γmax ∈ RM≥0 on the resources γ such that γi ∈
[0, γmax,i] for all resources i ∈ {1, . . . ,M}. Then, the set of
feasible labels LG ⊂ LG is finite.

Proof. First, recall thatLG is defined asLG =
⋃
s∈SG LG,s

where the set of states SG is finite. As shown above
in Equation (9), given by the finite set of actions AG
and consequently, the finite amount of possible resource
modifiers Γ, there is a minimal resource difference γ∆,i for
each resource dimension i ∈ {1, . . . ,M} with which a state
can be reached. Consequently, given an upper bound γmax

on resources, the cardinality of LG is bounded by |LG | ≤

|SG |
M∏
i=1

γmax,i

γ∆,i
and thus, LG is finite. �
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Bounding the resources is only required in the case that no
solution exists since otherwise, the solution will eventually
be found. However, requiring such an upper bound, which
is usually not a problem in practice, also has implications in
the case that a solution exists. As discussed before, a zero-
cost cycle is only considered by the planner if it improves
resources. Now, given by Lemma 9, resources can only be
improved a finite amount of times. Thus, κLB(i) will always
converge to κ∗ if the resources are bounded and κ∗, denoting
the lowest cost of any feasible solution, exists.

The above results are summarized in the following
proposition.

Proposition 1. Algorithm 1 solves Problem 1 in the sense
that it provides the optimal solution β∗fin if one exists
and terminates with an empty result otherwise under the
assumption that
(1) all action costs are non-negative: C(a) > 0,∀a ∈ AG ,
(2) there exists an upper bound γmax ∈ RM≥0 on resources:
γi ∈ [0, γmax,i],∀i ∈ {1, . . . ,M}.

5.4 Planning Complexity
As shown in the proof of Lemma 9, an upper bound on
cardinality of the label space LG is given by

|LG | ≤ |SG |
M∏
i=1

γmax,i

γ∆,i
(15)

with |SG | =
N∑
r=1
|S(r)
P | = |Q|

N∑
r=1
|S(r)
A | where N is the

number of agents, Q the state space of the NFA and S
(r)
A

the state space of the respective agent model of agent r. This
is only an upper bound on |LG | since not all theoretically
possible labels are necessarily reachable depending on the
available actions.

The amount of actions in the team model G including
switch transitions is given by

|AG | = |ζ|+
N∑
r=1

|A(r)
P | (16)

with |ζ| = (N − 1) · |D| since for each state in the
decomposition set D, one switch transition to the initial
state of the next agent is constructed. The set of actions
A

(r)
P of each agent r is bounded by |A(r)

P | ≤ |Q|2 · |A
(r)
A |.

The factor |Q|2 results from the fact that each action in the
mission-independent agent model A can, in theory, connect
any two states of the mission NFA. However, this is only
an upper bound since numerous of the theoretically possible
transitions need not to be considered, as they are constantly
false or would violate the constraints.

6 System Implementation
In the following, we explain a ROS implementation of our
presented STAP approach. The framework accepts a mission
specification as LTL formula and automates all required
steps to fulfill the given specification. This includes not
only mission decomposition, model construction, and action
planning, but also autonomous execution of the generated
actions by all involved robots.

6.1 Model Definition
Before being able to accept an LTL formula, the software
framework requires a model of the system for which a plan
should be derived. As opposed to a specific LTL mission,
such a model definition is specified once before deploying
the robots and then remains unchanged. The current state
of the robots in this model and their available resources
are determined online by the system and are updated
appropriately.

In our implementation, the required model definitions are
given as text files in the YAML1 format and are manually
defined, for example by using available tools like a map
editor. The following models are required for a specific
system before being deployed.

Topological map – Associates regions and points of
interest (together referred to as nodes) with location
information and discretizes the environment. Each node is
labeled with a set of propositions which hold true there. For
example, desks are labeled to identify to whom they belong.
Furthermore, each node defines a list of edges to indicate
possible navigation actions to neighboring nodes.

Robot models – Similar to the topological map, a
transition system models the robot’s capabilities such that
transitions from a state describe possible actions. For
example, a bin can be picked up in the default state of the
robot and results in changing the robot state to carrying.

Resource definitions – Defines which resource variables
γ0 are available, for example robot-specific resources such
as their battery level or robot-independent resources such as
paper supplies in the printer room or coffee in the kitchen. In
addition, technical properties such as a dependency on action
costs can be specified. For example, it can be defined that the
battery level decreases depending on the costs of an action.

Both the topological map, which can be different for each
robot, and one of the robot models form the agent model A
of the respective robot as given in Definition 6 and provide
actions costs as required for Problem 1. A is given by the
product of the two transition systems with the additional
constraints that each action can specify conditions for being
applicable. For example, a charging action can be restricted
to locations labeled as charging station.

Together with an LTL formula as mission specification, of
which many different ones can be received after the system
has been deployed, the provided model description forms the
required input to Problem 1.

6.2 Software Framework
The approach described in this paper has been implemented
in ROS for both evaluating it in simulation and running
it on a real multi-robot system. Robots register themselves
at the central synthesis server when available for executing
missions and provide their agent model based on the above
mentioned YAML files.

The synthesis server listens to a ROS topic for new
mission requests in the form of a string message containing
the LTL formula. When a new mission specification is
received, the server plans for the currently available team
and distributes the resulting action sequences to all involved
robots. We implemented the ROS system as a multi-master
setup where each robot runs on its own ROS network and
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Figure 3. Topological map of the environment to represent navigation actions, while nodes are labeled with atomic propositions.
Six robots R1,...,R6 are available in the marked locations. The background shows the map of an existing Bosch office environment,
recorded with a usual SLAM procedure. Annotations refer to the case study scenario.

only communicates with the synthesis server to notify it
about availability and to receive its generated action plan.

For translating the given LTL formula into an automaton,
we use the tool Spot2 Duret-Lutz et al. (2016). To integrate
it with the planning framework, we added a ROS action
interface which accepts an LTL formula string as input and
returns a description of the automaton in the standard HOA3

format. Consequently, also other LTL to NFA translators can
be used if they offer such an interface.

In order to execute the action sequence found by the
planner, we use the behavior framework FlexBE4 Schillinger
et al. (2016b). FlexBE’s graphical editor can be used to
define the specific robot capabilities, such as navigation to
a waypoint or picking up a bin. These capabilities, including
their parameterizations, are then annotated to transitions in
the topological map and the robot model in order to provide
the implementation for these abstract actions. Since also
the FlexBE editor itself provides an interface for behavior
synthesis, we provide an offline synthesis option to integrate
with the editor and automate development of more complex
behaviors, which can in turn be manually adjusted and used
itself as capabilities.

7 Evaluation
We focus the evaluation on investigating different aspects
of our proposed STAP approach in order to better conclude
on its planning properties. After defining the system we use
throughout this evaluation, a case study scenario is presented
in detail before discussing further exemplary scenarios. The
system model is defined broadly enough to incorporate all of
the four discussed scenarios in order to represent a realistic
use case in the demonstrated environment. This certainly
increases planning complexity for the individual scenarios,
but illustrates the flexibility of executing various types of
missions as instructed by different LTL specifications.

7.1 System Definition
In order to illustrate the application of our proposed planning
framework, we define an environment based on an existing

Bosch office. The topological map of the office environment
is depicted in Figure 3 and is the same for all robots. Costs
are defined as the approximate travel times with the only
exception that the costs for edges drawn bold are lower by a
certain factor, i.e., navigation in the corridor is preferred. The
basis for this map is an office floor accommodating around
one hundred employees and including several meeting
rooms. Two of the meeting rooms, located at the top right
and top left of the map, have been declared as storage rooms
including charging stations for the robots.

Points of interest in the map are labeled with atomic
propositions according to Table 2. The desk spaces
d1, . . . , d14 indicate the particular locations of all desk areas.
Located near the center of the map are a kitchen and a printer
room, which will be used more extensively in some of the
evaluation scenarios.

Figure 4 illustrates the robot capabilities as defined in
the robot model. For simplicity, we assume for now that all
robots have the same model, although this is not required.
The central state in the model is the default state. From there,
the robot can switch to its different operation modes such as

Proposition Description

d1, . . . , d14 Desk areas 1 to 14.
m1, . . . ,m6 Meeting rooms 1 to 6.
c Locations of charging stations.
sk Storage for kitchen supplies.
sp Storage for office/printer supplies.
k Coffee kitchen.
p Printer room.
g Garbage room, g := service ∧ storage.
e Elevators.
guiding The robot guides a person.
carrying A document or anything similar is carried.
docked The robot is docked in a charging station.
camera The camera of the robot is turned on.

Table 2. Overview of propositions used in the given scenario.
This list complements the propositions defined in Table 1.
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Figure 4. Location-independent states of a robot.
Self-transitions at states denote actions which do not change
the state of the robot. However, actions can still have effects on
resources (effects are not depicted here).

visitor guidance or floor cleaning. If docked in a charging
station, an action to charge the battery of the robot becomes
available.

Of particular interest for the case study is the lower part
of Figure 4, illustrating the capability of the robot to carry
and empty paper bins. Specifically, the robot cannot be
in multiple states at the same time and consequently, by
labeling the states with their respective propositions as listed
in Tables 1 and 2, it is specified that default and carrybin
cannot be true at the same time.

While in the default state, the robot can pick up or deliver
supplies like paper or coffee. This does not change the
operation mode under the assumption that the robot can carry
multiple supplies, but affects the robot-specific resource
status. For example, picking up a paper pack increases the
number of packs carried by the robot by one and is only
possible below a certain capacity. Similarly, delivering this
paper at the printer room decreases the resources of the robot,
but increases the paper supplies of the printer.

Finally, a summary of the resource definitions is given
by Table 3. For each of the resource dimensions, we prefer
larger values in order to reflect the benefit of spending
the costs for, e.g., picking up an object. Furthermore,
we specify a proportional cost dependency of γbattery. In
addition, battery consumption of actions can also be defined
individually as for any other resource. For example, the
charging action increases the battery level despite the fact
that it has non-negative costs. Also, all of the resource
dimensions have an upper bound as given by Table 3.
On the one hand, this reflects a limited capacity of these
resources and on the other hand, this ensures termination of
the planning process as given by Lemma 9.

Resource Description

γcoffee ∈ [0, 1] Amount of coffee carried.
γpaper ∈ [0, 2] Amount of paper packs carried.
γbattery ∈ [0, 100] Battery level (in percent).
γkitchen ∈ [0, 1] Amount of coffee in the kitchen.
γprinter ∈ [0, 3] Amount of paper packs at the printer.

Table 3. Resource variables used for planning. The first three
rows are robot-specific, the rest are global resources.

7.2 Scenarios
Based on the defined environment, the system is ready to
accept goal specifications. The following exemplary scenario
definitions specify what is required as an input to the robot
system after it has been configured as described in the
previous subsection. In particular, the goal needs to be stated
as an LTL formula to resemble a desired result of the robot
operation for which a behavior should be planned. Also, the
initial configuration of the system needs to be determined in
order to correctly initialize the planner.

We restate Equation (2) again for reference as the first
scenario and set desk := d5.

Scenario 1 (Case Study). “Empty a paper bin at d5. Avoid
the public area while carrying a bin.”

φbin = ♦(desk ∧ default
∧©((carrybin U dispose) ∧ ♦default))
∧ ♦(desk ∧ emptybin ∧©(desk ∧ default))
∧�(carrybin =⇒ ¬public)

Initial configuration:

S1a – All six robots available, no resources considered.

S1b – Only R5 is available, no resources considered.

S1c – Only R1 is available, no resources considered.

Note that we select d5 in this example as the most
illustrative desk since, from looking at the map in Figure 3,
the shortest direct path between d5 and the garbage disposal
location g would go through the public area. Consequently,
we expect the robots to take a detour while carrying a full
bin in order to satisfy the additional constraint. In contrast,

Figure 5. Localization recordings of simulating φbin with (top)
all robots, (mid) only R5, (bottom) only R1 available.
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we would expect the robots to cross this public area when
providing the empty bin to d5 since then, it is on the shortest
path and not restricted.

Figure 5 (top) shows the robot paths for executing
the resulting plan for satisfying the mission in scenario
configuration S1a. The specification φbin is decomposed by
the STAP planner and allocated to two different robots. R5,
which is close to the desk d5, picks up the full bin while at the
same time R2 already delivers a new empty bin to the desk.
In contrast, when only R5 would be available as depicted
in Figure 5 (mid), the robot needs to return the empty bin
to the desk by itself. As a third variation shown in Figure 5
(bottom), we assume that only R1 is available. In this case,
R1 first delivers the empty bin before it picks up the full bin
and finally disposes the garbage.

For a more detailed evaluation of the planning perfor-
mance, specification expressiveness, and the flexibility in
terms of scenario variations, we additionally use the follow-
ing mission specifications. These specifications are chosen to
represent missions which will typically be executed by a fleet
of indoor service robots.

Scenario 2 (Supplies). “Refill supplies at the printer room
and the kitchen, ensure that sufficient battery is available.”

φsupplies = ♦(γprinter ≥ 2) ∧ ♦(γkitchen ≥ 1)

∧�(γbattery > 20)

Initial configuration:

S2a – All six robots available, each robot has full battery.
Supplies are both empty.

S2b – Like S2a, but R5 starts with reduced battery
γ0,battery = 60.

S2c – Like S2b, but R2 also starts with reduced battery
γ0,battery = 70.

S2d – Like S2c, but R4 also starts with reduced battery
γ0,battery = 60.

This scenario represents a common use case where the
robots are required to refill some supplies. The additional
battery constraint ensures long-term usage and forces the
robots to charge if they run out of battery. For better
illustration, we assume that actions have a higher battery
consumption than usual.

Scenario 3 (Printer). “Distribute printed copies of a
document to the desks d10, d7, d5, and avoid public areas
while carrying the document. Make sure that there is
sufficient paper left at the printer.”

φprinter = ♦(p ∧ carry U (d10 ∧©¬carry))

∧ ♦(p ∧ carry U (d7 ∧©¬carry))

∧ ♦(p ∧ carry U (d5 ∧©¬carry))

∧�(carry =⇒ ¬public)
∧ ♦(γprinter > 0)

Initial configuration:

S3a – All six robots available, no paper left at the printer.

We assume that each robot can only serve one desk at
a time, which is defined by the requirement that the carry
state needs to be left at each desk. This scenario is primarily
used for comparison between STAP and a classic allocation
approach for which the costs of task combinations need to be
calculated first.

Scenario 4 (Video). “Take a photo in the meeting rooms
m1,m4, andm6. Furthermore, deliver a document from desk
d5 to d3 and guide a person waiting at desk d11 to meeting
room m6. The camera has to be turned off for privacy
reasons while not in meeting rooms and the document is
internal such that it should not be delivered through any
public areas.”

φvideo = ♦(m1 ∧ photo) ∧ ♦(m4 ∧ photo)
∧ ♦(m6 ∧ photo)
∧�(¬meeting =⇒ ¬camera)

∧ ♦(d5 ∧ carry U (d3 ∧©¬carry))

∧�(carry =⇒ ¬public)
∧ ♦(d11 ∧ guide U (m6 ∧©¬guide))

meeting := m1 ∨ . . . ∨m6

Initial configuration:

S4a – All six robots available, no resources considered.

S4b – Only R1 and R2 available, no resources consid-
ered.

The last scenario consists of a composition of different
tasks to represent a more complex mission. For further
illustration, we provide a video showing the execution of
configuration S4b of this scenario on the real system given
by Extension 1.

7.3 Discussion
Table 4 provides an overview of the complexity of the
planning algorithm for some of the scenario variations. For
all of the considered scenarios, the amount of explored
labels is orders of magnitude less than the worst-case label
space complexity. Consequently, these problems can be
solved in reasonable time. For example, scenario S2a only
requires approximately 3.1× 104 iterations as opposed to

S1a S2a S4a S4b

explored labels 7519 30 835 47 233 36 530
label cardinality 3.2×104 5.6×109 3.7×105 1.2×105

non-dom. actions 8264 40 919 54 099 40 408
dominated actions 17 032 71 278 95 078 55 753
switch transitions 3872 24 192 27 651 2892

planning time (s) 2.7 16.5 194.7 113.1

Table 4. Overview of labels explored before finding the solution
(required iterations of Algorithm 1), worst-case cardinality of the
label space (given by Equation 15), considered non-dominated
actions (passing line 13 of Algorithm 1), considered dominated
actions (not added due to line 13 of Algorithm 1), considered
switch transitions (both added and dominated), approximate
planning time in seconds (measured on an Intel R© Xeon R©

E5-1620 v3, single-thread).
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Figure 6. Distribution of the states having a certain amount of permanent labels after planning. Scenario S2a has additional 769
states with more than 12 labels and at most 68 labels per state, S3a has 253 states with more than 12 labels and at most 29 labels
per state.

around 5.6× 109 iterations when assuming γ∆,battery =
0.01, which is the case for the presented experiments. This
can be explained by the following two reasons. First, only a
small subset of the theoretically possible labels are actually
feasible in the model by following the available actions
and second, a significant amount of actions is identified as
dominated such that no suboptimal labels are added.

Furthermore, note the qualitative difference of the scenario
variations S4a and S4b regarding the switch transitions. In
S4b with only two robots available, most of the planning time
is spent on finding rather long action sequences to satisfy
combinations of the tasks. In contrast, when all six robots are
available as in S4a, more planning time is used on allocation
of the single tasks. In fact, the longest action sequences for
individual robots considered during planning of S4a have less
than half of the cost compared to the result of S4b.

Figure 6 shows the distribution of the amount of states
which have a certain amount of permanent labels after
termination of Algorithm 1. Most of the states only have
a few Pareto-optimal labels after planning, mainly resulting
from different task allocation options. For example, scenario
S4b does not consider resources, but still has states with
more than one label. In contrast, scenario S2a has a mission
which is much simpler, but primarily requires to plan for
resources. Taking a closer look at the label distribution, it
turns out that especially the states around docking stations
where the robots can charge their battery have the most
labels. This appears reasonable since charging has costs,
but also improves the battery resource, resulting in a more
diverse Pareto front. Regardless of the scenario, a significant

S2a S2b S2c S2d

R1 49.4 49.4 49.4 49.4
R2 0.0 50.9 0.0 0.0
R3 0.0 0.0 0.0 0.0
R4 47.7 47.7 51.7 57.7
R5 48.9 0.0 0.0 58.9
R6 0.0 0.0 0.0 0.0

Table 5. Cost vectors of the optimal solutions for all variations
of scenario 2. Zero cost for a robot indicates that this robot does
not participate in executing the mission.

fraction of states has zero labels, indicating that these states
did not need to be considered during planning.

For scenario 2, we vary the initial configuration to
investigate how the STAP planner adjusts its solution. The
resulting cost vectors are summarized in Table 5. First, in
scenario S2a, the mission is solved by R1 refilling the coffee
and R4 and R5 each picking up a paper pack at the storage
near room m2. Note that we set the cost of both picking
up paper and delivering it to 2.0 each. Consequently, letting
either R4 or R5 take both paper packs would result in a higher
team cost.

As a first variation, we change the initial battery level
of R5 to a value low enough such that it is not sufficient
to stay above 20% as required by the constraint. Now, the
solution found by the planner uses R2 instead to pick up
the second paper pack at the storage near room m1, which
is still cheaper than letting R4 carry the paper alone. For
S2c, we also reduce the initial battery of R2 below the level
sufficient for this mission and now, R4 is indeed assigned
with picking up both paper packs on its own. Finally, also
the initial battery for R4 is reduced in S2d. Since R3 and R6
are far away from any storage location, it is now cheaper to
let both R4 and R5 briefly charge their battery in order to
complete the mission.

In order to compare simultaneous task allocation and
planning (STAP) with a classical approach of planning
task costs first and then using a task assignment algorithm
(COMB), we compare both approaches for scenario 3.
For a better comparison, we only consider the planning

S3a S4a

STAP for team 61 776 47 233

COMB for R1 351 937 82 315
COMB for R2 273 181 82 232
COMB for R3 228 825 80 224
COMB for R4 164 516 67 838
COMB for R5 193 792 68 032
COMB for R6 139 309 73 186

Table 6. Explored labels (required iterations of Algorithm 1) for
a comparison of STAP with planning all task combinations
explicitly for the individual robots.
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Figure 7. Average planning time (in seconds) for S1a (top) and
S2a (bottom) with different team sizes. For each planning run,
the respective number of robots was instantiated at random
positions (uniformly distributed) in the default state and with
random battery values (uniformly distributed in the range
[50,100]). Error bars indicate the range within one standard
deviation. Shown as dashed line is a linear approximation.

part of COMB and assume that the assignment problem
afterwards is trivial given its small size. Table 6 provides an
overview of the required planner iterations where the number
for planning all combinations is given by the sum of the
individual planning runs. Even under the assumption that the
robots can plan their task costs in parallel, the maximum
across the single robots is already significantly higher than
STAP for the whole team in both cases.

Figure 7 shows the scalability of STAP to a larger team,
up to one hundred robots. As can be seen, the planning
time scales roughly linearly in practice with an increase of
approximately 0.58 seconds (Scenario S1a) or 3.69 seconds
(Scenario S2a) per additional robot. For Scenario S2a, the
variability of the required planning time is relatively high,
indicating a significant dependency of the planning time
on the initial conditions. For example, finding the optimal
solution for 50 robots can take longer than for 100 while
still being within one standard deviation from the average. A
reason for this observation might be that S2a highly depends
on the battery level of the robots, including planning of
which to charge, while S1a does not consider resources.

In addition to the initial conditions of the robots, also
other aspects can influence the planning performance. For
example, the way how a goal specification is formulated
can make a difference. Translation of the specification
into an automaton relaxes the dependency on the specific
formulation of the goal as long as it expresses an
equivalent specification. But still, even semantically different
specifications can lead to the same results. This is primarily
due to the limitations of the modeled system, introducing
additional implicit constraints which are not necessarily
reflected in the formal specification.

Another influence factor for the planning performance is
the kind of considered resource constraints. For example,
the battery level is highly correlated with costs when
executing actions which consume battery as well as increase

costs. However, it is inversely proportional for charging
actions which increase the battery level at the same time
as increasing costs, resulting in significantly more Pareto-
optimal labels. This has been noted in the discussion of
Figure 6, where results show that the states with most labels
are close to charging stations.

Finally, we would like to emphasize that planning time and
model complexity highly depend on the abstraction level of
actions, such as the density of waypoints in the topological
map. Also, having a general model of the system such that
the model is usable for a large variety of missions, as done
in the approach of this paper, is clearly more expressive and
complex than having only a subset of actions depending on a
specific mission.

8 Conclusion
We introduce a problem category called Simultaneous Task
Allocation and Planning (STAP) to address a limitation
of classical task assignment problems typical for multi-
robot systems: when planning the robot behaviors to execute
given tasks, each combination of tasks needs to be planned
explicitly for each of the robots in order to calculate their
costs. Instead, we propose to construct a team model in order
to combine planning and allocation in a single step.

Furthermore, we present a specific STAP approach for
planning optimal behaviors from finite Linear Temporal
Logic specifications under resource constraints. For this
purpose, a specific team model is constructed to combine
planning of independent actions for the robots with
allocating parts of the mission to the individual robots. A
multi-objective optimization planner then finds a plan to
solve the mission with minimal team costs defined as the
maximal robot cost.

The approach is evaluated and discussed based on
exemplary scenarios in an existing office environment in
order to investigate its practical applicability. Our results
show that simultaneous task allocation and planning is more
efficient than explicitly calculating the unknown costs of all
task combinations in advance when dealing with complex
mission goals like temporal logic specifications.

In fact, many service robot systems also in other envi-
ronments, e.g., hotels or hospitals, and also robot systems
in other domains like indoor logistics, manufacturing, or
domestic applications can be modeled and instructed in a
similar way. The presented STAP approach and the the-
oretical results are equally well applicable to these other
application domains.

Future work is dedicated to extending the idea of STAP
to more multi-agent problem classes in order to improve the
efficiency with which they can be solved. Especially relaxing
the assumption that actions are deterministic leads to further
research questions of robustly allocating tasks which are
only fulfilled with a certain probability. A generalization
of the proposed decomposition approach to infinite LTL
specifications is also of great interest.
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Notes

1. The definition for the YAML format can be found at http:
//www.yaml.org/start.html

2. Spot is a library for LTL and model checking, see http:

//spot.lrde.epita.fr

3. The definition for the HOA format can be found at http:
//adl.github.io/hoaf

4. FlexBE is a user-friendly behavior engine for ROS, see http:
//flexbe.github.io
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