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Technology, Malvinas väg 10, SE-10044, Stockholm, Sweden

Abstract

Control systems that satisfy temporal logic specifications have become increasingly popular due to their applicability to robotic
systems. Existing control methods, however, are computationally demanding, especially when the problem size becomes too
large. In this paper, a robust and computationally efficient model predictive control framework for signal temporal logic
specifications is proposed. We introduce discrete average space robustness, a novel quantitative semantic for signal temporal
logic, that is directly incorporated into the cost function of the model predictive controller. The optimization problem entailed
in this framework can be written as a convex quadratic program when no disjunctions are considered and results in a robust
satisfaction of the specification. Furthermore, we define the predicate robustness degree as a new robustness notion. Simulations
of a multi-agent system subject to complex specifications demonstrate the efficacy of the proposed method.
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1 Introduction

Formal verification and model checking with specifica-
tions in temporal logics [2] have extensively been stud-
ied during the last decade. The dynamical system un-
der consideration is abstracted into a finite state tran-
sition system, whereas the specification is translated
into a language equivalent büchi automaton. These two
representations are then used to systematically check
whether or not the specification is satisfied. Conversely,
formal methods-based control tries to find control in-
puts such that the dynamical system satisfies the speci-
fication. Formal methods-based control has been inves-
tigated with linear temporal logic (LTL) [8,12,7,3] and
metric interval temporal logic (MITL) [19]. LTL and
MITL formulas are used to express the system specifica-
tions and can be translated into büchi automata [28,18],
which allows the calculation of a product automaton
with the finite state transition system. Using Dijkstra or
a depth-first search algorithm, a suitable discrete run,
satisfying the specification, can be found.
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Signal temporal logic (STL) was introduced in [17]
within the context of monitoring temporal properties
of continuous-time signals for continuous and hybrid
systems. The authors in [17] propose temporal property
monitors that check these in STL expressed proper-
ties. For instance, for continuous and hybrid control
systems it is of great interest to check whether or not
the controller satisfies the control specification. STL
encompasses a quantitative notion of time and space.
The latter property has been used to introduce space
robustness (SR) [6], a quantitative semantic stating how
robustly a formula is satisfied. SR is a special case of the
robust semantics in [9] for MITL where it was shown
that the robust semantics are an under-approximation
of the robustness degree. The robustness degree hence
indicates how much a signal can be perturbed by noise
before changing the truth value of the specification.
Consequently, it is possible to use STL to measure how
robustly and hence how well a specification is satisfied.
This is in contrast to LTL where only a boolean satis-
faction is given. STL was used for control by means of
model predictive control (MPC) in [22] where SR is in-
corporated into a mixed integer linear program, which
is computationally expensive. Robust extensions of this
approach have been reported in [23,25,10]. Additional
quantitative semantics have recently been presented.
The authors in [6] not only define space robustness,
but also time robustness and a combination of both. A
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measure based on the weighted edit distance has been
proposed in [14], while [5] equips quantitative STL se-
mantics with the possibility to freeze operators. The
connection between linear, time-invariant filtering and
quantitative semantics has been made in [24]. The quan-
titative semantics in [1], called averaged STL, extend
the semantics in [6] by so called averaged operators that
average SR over certain time intervals, which naturally
leads to space and time robustness. We remark that
averaged STL has a similar name to what we define as
discrete average space robustness; however, these se-
mantics have fundamental differences. LTL robustness
has been considered in [27].

The main motivation of this paper is the lack of compu-
tationally efficient algorithms for formal methods-based
control, especially for systems with fast dynamics where
computation time is a critical resource. The contribu-
tions of this paper are as follows: we first introduce dis-
crete average space robustness (DASR) as new quantita-
tive semantics over discrete-time signals for STL. DASR
semantics are computationally more tractable than SR,
but are not an under-approximation of the robustness
degree; however, we account for this drawback by in-
cluding additional constraints into our proposed control
strategy. Second, we introduce the notion of the pred-
icate robustness degree and show in an example that
DASR, used in an optimization framework, results in
a higher predicate robustness degree than SR. Third, a
simplified version of DASR is directly incorporated into
the cost function of a MPC framework for a fragment of
STL formulas. We show that the encapsulated optimiza-
tion problem can be written as a convex quadratic pro-
gram. Current approaches as in [25,22,23] end up with
mixed integer linear programs that become inherently
nonconvex if SR is maximized. We directly maximize ro-
bustness in a computationally efficient manner. Previous
results of our work have been published in [15]. This pa-
per extends [15] by giving geometrical robustness inter-
pretations in terms of hyperplanes and introducing the
predicate robustness degree. We motivate why DASR is
a good choice for control and explain the k1 calculation
for the simplified version of DASR that is missing in [15].

Section 2 introduces notation and preliminaries, while
Section 3 defines discrete average space robustness. Sec-
tion 4 states the formal problem, while Section 5 presents
the proposed solution. Simulations are given in Section 6,
followed by an outlook and conclusions in Section 7.

2 Preliminaries and Notation

Scalars are denoted by lowercase, non-bold letters x.
Column vectors are lowercase, bold letters x and matri-
ces are denoted by uppercase, non-bold letters X. The
n-th row of X will be represented by X(n, :) and sim-
ilarly X(:, n) represents the n-th column of X. The n-
dimensional vector space over the real numbers R is Rn,

whereas N, R≥0, and R>0 are the sets of natural, non-
negative, and positive real numbers, respectively. True
and false are denoted by > and ⊥, while ⊗ denotes
the Kronecker product; 1N and 0N are column vec-
tors containing N ones and zeros, respectively, whereas
0n,n denotes an n × n matrix consisting of zeros. Let

‖x‖2M := xTMx. For two sets X and Y, the set-valued
map F : X ⇒ Y maps each x ∈ X to a set F (x) ⊆ Y.

2.1 Signals and Systems

Consider the discrete-time, linear system

x(k + 1) := Ax(k) +Bu(k) (1)

where A ∈ Rn×n, B ∈ Rn×m. Assume that (1) has been
obtained by sampling a continuous-time system with the
sampling function τ : N → R≥0 where τ(0) := 0. In
this paper, periodically sampled systems are considered
where τ(k) := kT with T being the sampling period. For
readability reasons, the abbreviation τk := τ(k) is used.
For a given continuous-time interval [a, b] with a, b ∈
R≥0 and a ≤ b, define the corresponding discrete-time
counterpart as the set

Ω(a, b) := {k ∈ N|a ≤ τ(k) ≤ b}. (2)

Remark 1 The definition of Ω(a, b) allows to impose
continuous-time specifications on discrete-time systems.

2.2 Signal Temporal Logic

Signal temporal logic (STL) consists of predicates µ that
are obtained after evaluation of a predicate function f :
Rn → R. In particular, for ξ ∈ Rn, let

µ :=

{
> if f(ξ) ≥ 0

⊥ if f(ξ) < 0.
(3)

Let now x : N→ Rn be a discrete-time signal and possi-
bly a solution to (1), then f(x(k)) determines the truth
value of µ at time k. LetNµ indicate the number of pred-
icates under consideration and let the set of predicates
be P := {µ1, µ2, · · · , µNµ}; µi ∈ P at time k is evalu-
ated as in (3) by fi(x(k)), which is abbreviated by

zi(k) := fi(x(k)) ∀i ∈ {1, 2, · · · , Nµ}

for readability reasons. The predicate vector z(k), gath-
ering all predicate functions zi(k), is then defined as

z(k) :=
[
z1(k) . . . zNµ(k)

]T
. (4)

If, for all i ∈ {1, . . . , Nµ}, zi(k) := fi(x(k)) is affine in
x(k), the predicate functions can be combined with the
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system in (1) to obtain a compact linear form. Define

z(k) :=
[
z1(k) . . . zNµ(k)

]T
:= Cx(k) + c, (5)

where C ∈ RNµ×n and c ∈ RNµ encode the predicates
under consideration. Using the prediction horizon N ,

let zst :=
[
z(k0 + 1)

T
z(k0 + 2)

T
. . . z(k0 +N)

T
]T

and ust :=
[
u(k0)

T
u(k0 + 1)

T
. . . u(k0 +N − 1)

T
]T

to denote predicates and inputs at different times with
respect to the initial time k0, respectively. Inserting the
solution x of (1) with initial time k0 into (5), we get

zst := H1x(k0) +H2ust + 1N ⊗ c, (6)

where H1 and H2 follow recursively by (1) and (5).

Considering µ ∈ P, the STL syntax is now given by

φ ::= > | µ | ¬φ | φ ∧ ψ | φU[a,b] ψ ,

where φ, ψ are STL formulas. The STL semantics have
been defined over continuous-time signals [17,6]. Infer-
ring satisfaction of a formula defined over continuous-
time signals by considering discrete-time signals has
been addressed in [9, Section 4] and is possible under
some conditions on τ and x. We define the semantics
for STL over discrete-time signals by minor changes in
the definitions of [17,6], hence resembling the discrete
definitions in [9, Section 3]. The satisfaction relation
(x, k) |= φ denotes if the signal x satisfies φ at time k.
Note the use of Ω(a, b) from (2) and recall τk := τ(k).

Definition 1 Given µi ∈ P, STL formulas φ and ψ,
and a signal x, the STL semantics [6,22] are defined as:

(x, k) |= µi ⇔ fi(x(k)) ≥ 0

(x, k) |= ¬φ ⇔ ¬((x, k) |= φ)

(x, k) |= φ ∧ ψ ⇔ (x, k) |= φ ∧ (x, k) |= ψ

(x, k) |= φU[a,b] ψ ⇔ ∃k1 ∈ Ω(τk + a, τk + b) s.t.

(x, k1) |= ψ ∧ ∀k2 ∈ Ω(τk, τk1
), (x, k2) |= φ

Disjunction-, eventually-, and always-operator are de-
rived as φ ∨ ψ := ¬(¬φ ∧ ¬ψ), F[a,b]φ := >U[a,b] φ, and
G[a,b]φ := ¬F[a,b]¬φ, respectively. The discrete length

hφd of a formula φ is defined in Definition 2 and can be
interpreted as the prediction horizon that is sufficient to

evaluate (x, k) |= φ. For instance, if hφd := 5, then hav-
ing knowledge of x(k′) for all k′ ∈ {k, k + 1, . . . , k + 5}
is sufficient to evaluate (x, k) |= φ.

Definition 2 The continuous formula length hφc is de-

fined as [17]: hµc := 0, h¬φc := hφc , h
φU[a,b] ψ
c := b +

max(hφc , h
ψ
c ), h

G[a,b]φ
c := h

F[a,b]φ
c := b + hφc , hφ∧ψc :=

hφ∨ψc := max(hφc , h
ψ
c ). The discrete formula length is

hφd := maxk∗∈Ω(0,hφc ) k
∗, i.e., hφd is the largest element in

Ω(0, hφc ).

2.3 Robustness Degree and Space Robustness

Robustness of a discrete-time signal x with respect to a
formula φ has been defined by the discrete-time robust-
ness degree, robustness degree for short, as how much the
signal x can be perturbed before the boolean evaluation
of (x, k) |= φ changes its truth value [9]. Let Lk(φ) :=
{x : N→ Rn|(x, k) |= φ} be the set of discrete-time sig-
nals that satisfy φ at time k. The closeness of two signals
x and x∗ is given by ρ(x,x∗) := supk∈N d

(
x(k),x∗(k)

)
where d is a metric assigning a distance in Rn; d can
be the Euclidean distance d(x(k),x∗(k)) := ‖x(k) −
x∗(k)‖. The distance of x to the set Lk(φ) is defined as

δk(x, φ) := inf
x∗∈cl(Lk(φ))

ρ(x,x∗),

where cl(Lk(φ)) denotes the closure of Lk(φ). The ro-
bustness degree is now given in Definition 3.

Definition 3 Given a formula φ and a signal x, the
robustness degree at time k is defined as [9, Definition 23]:

RDk(x, φ) :=

{
−δk(x, φ) if x /∈ Lk(φ)

δk(x,¬φ) if x ∈ Lk(φ)

Furthermore, there are quantitative semantics that state
how robustly φ is satisfied. Such quantitative semantics
are given by space robustness (SR)[6], which reasons over
continuous-time signals. A modified discrete-time ver-
sion, denoted by ρφ(x, k), is given in Definition 4, which
resembles the discrete-time robust semantics in [9, Defi-
nition 26]. SR is an under-approximation of the robust-
ness degree, i.e., −δk(x, φ) ≤ ρφ(x, k) ≤ δk(x,¬φ) [9,
Theorem 28] so that |ρφ(x, k)| ≤ |RDk(x, φ)|. Further-
more, (x, k) |= φ if ρφ(x, k) > 0 [9, Theorem 30].

Definition 4 Given µi ∈ P, STL formulas φ and ψ, and
a signal x, space robustness (SR) is defined as [6,22]:

ρµi(x, k) := fi(x(k)) = zi(k)

ρ¬φ(x, k) := −ρφ(x, k)

ρφ∧ψ(x, k) := min(ρφ(x, k), ρψ(x, k))

ρφ∨ψ(x, k) := max(ρφ(x, k), ρψ(x, k))

ρφU[a,b] ψ(x, k) := max
k1∈Ω(τk+a,τk+b)

min
(
ρψ(x, k1),

min
k2∈Ω(τk,τk1

)
ρφ(x, k2)

)
ρF[a,b]φ(x, k) := max

k1∈Ω(τk+a,τk+b)
ρφ(x, k1)

ρG[a,b]φ(x, k) := min
k2∈Ω(τk+a,τk+b)

ρφ(x, k2)
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3 Discrete Average Space Robustness and the
Predicate Robustness Degree

Discrete average space robustness is defined in Sec-
tion 3.1, while Section 3.2 investigates how robustness
is affected by changes in z(k). The results of Section 3.2
are then extended in Section 3.3 to define the predi-
cate robustness degree. In the remainder, we consider
the formula φ to be in positive normal form (PNF) [2,
Appendix A.3]. For formulas in PNF, negations only
occur in front of predicates, e.g., ¬G[a,b]µ1 is not in
PNF, while G[a,b]¬µ1 := G[a,b]µ2 with µ2 := ¬µ1 is in
PNF. A formula that is not in PNF can be rewritten
in PNF [25]. Subsequently, we assume that φ contains
no negations since each negation can be encoded into a
new predicate, e.g., µ2 := ¬µ1 for the example above.

3.1 Discrete Average Space Robustness

Space robustness (Definition 4) uses min-operations to
consider the point of weakest satisfaction within a signal.
First, define kmin := mink∗∈Ω(τk+a,τk+b) k

∗ and kmax :=
maxk∗∈Ω(τk+b,τk+b) k

∗ as the smallest and largest ele-
ment of Ω(τk + a, τk + b), respectively. We now pro-
pose novel quantitative semantics Aφ(x, k) in Defini-
tion 5, which are called discrete average space robust-
ness (DASR) and where instead average satisfaction is
considered. An advantage of DASR compared to SR is
that min-operations of the always- and until-operators
are replaced by linear expressions. This makes DASR
computationally more tractable than SR.

Definition 5 Given µi ∈ P, STL formulas φ and ψ, and
a signal x, discrete average space robustness (DASR) is
defined as:

Aµi(x, k) := fi(x(k)) = zi(k)

A¬φ(x, k) := −Aφ(x, k)

Aφ∧ψ(x, k) := min(Aφ(x, k),Aψ(x, k))

Aφ∨ψ(x, k) := max(Aφ(x, k),Aψ(x, k))

AφU[a,b] ψ(x, k) := max
k1∈Ω(τk+a,τk+b)

1

2

(
1

k1 − k + 1

·
k1∑
k′=k

Aφ(x, k′) +Aψ(x, k1)

)
AF[a,b]φ(x, k) := max

k1∈Ω(τk+a,τk+b)
Aφ(x, k1)

AG[a,b]φ(x, k) :=
1

kmax − kmin + 1

kmax∑
k′=kmin

Aφ(x, k′)

To further remove the max-operations of the eventually-
and until-operators, k1 can be manually chosen. A
method to determine k1 is described in Section 5.1.
This results in a simplified version of DASR in Defini-
tion 6, which we call discrete simplified average space
robustness (DSASR) and denote by ASφ(x, k).

Definition 6 Given µi ∈ P, k1 ∈ N with k1 ≥ k, STL
formulas φ and ψ, and a signal x, discrete simplified
average space robustness (DSASR) is defined as:

ASµi(x, k) := fi(x(k)) = zi(k)

AS¬φ(x, k) := −ASφ(x, k)

ASφ∧ψ(x, k) := min(ASφ(x, k),ASψ(x, k))

ASφ∨ψ(x, k) := max(ASφ(x, k),ASψ(x, k))

ASφU[a,b] ψ(x, k) :=
1

2

(
1

k1 − k + 1

k1∑
k′=k

ASφ(x, k′)

+ASψ(x, k1)

)
ASF[a,b]φ(x, k) := ASφ(x, k1)

ASG[a,b]φ(x, k) :=
1

kmax − kmin + 1

kmax∑
k′=kmin

ASφ(x, k′)

Note that unlike SR, neither DASR nor DSASR sat-
isfy that (x, k) |= φ if Aφ(x, k) > 0 or ASφ(x, k) > 0.
This can be seen by considering φ := G[a,b](x ≥
0), where it is possible that, even if ASφ(x, k) =

1
kmax−kmin+1

∑kmax
k′=kmin

x(k′) > 0, there might ex-

ist a k2 ∈ Ω(τk + a, τk + b) s.t. x(k2) < 0 and
hence ρφ(x, k) = min

k2∈Ω(τk+a,τk+b)
x(k2) < 0. Sub-

sequently, Aφ(x, k) > 0 ; (x, k) |= φ, whereas
ρφ(x, k) > 0 ⇒ (x, k) |= φ. However, in this pa-
per additional constraints will be included in the
optimization problem to enforce this property. An-
other property of DASR and DSASR is the follow-
ing: it holds that AG[a,b]φ(x, k) 6= A¬F[a,b]¬φ(x, k)

and ASG[a,b]φ(x, k) 6= AS¬F[a,b]¬φ(x, k) although
G[a,b]φ = ¬F[a,b]¬φ. Furthermore, A>U[a,b]φ(x, k) 6=
AF[a,b]φ(x, k) and AS>U[a,b]φ(x, k) 6= ASF[a,b]φ(x, k) al-
though >U[a,b]¬φ = F[a,b]φ. These cases, however, will
not occur in the STL fragment that is considered in Sec-
tion 4. We remark that the goal is to obtain expressive
and computationally tractable semantics.

Remark 2 Averaged STL was introduced in [1] and is
different compared to DASR and DSASR. The averaged
always-, eventually-, and until-operators of averaged
STL form a weighted time average over ρG[a,b]φ(x, k),
ρF[a,b]φ(x, k), and ρφU[a,b] ψ(x, k), respectively, hence not
removing min- or max-operations and keeping nonlinear,
nonsmooth, and nonconvex semantics of the always-,
eventually-, and until-operators. This can cause compu-
tational burdens in optimization problems. Furthermore,
averaged STL results in time and space robustness, while
DASR and DSASR only consider a notion of space ro-
bustness. Time robustness is a useful measure with the
drawback of resulting in even more complex semantics.
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3.2 Predicate Functions as a Robustness Indicator

Define a vector ζ :=
[
ζ1 ζ2 . . . ζNµ

]T
∈ RNµ>0 and con-

sider the possibly nonlinear predicate vector z(k) as
in (4). Furthermore, define a modified predicate vec-
tor zζ(k) := z(k) + ζ. It hence holds that z(k) <
zζ(k) where < indicates element-wise inequality. As-
sume that the formula φ contains the predicates P :=
{µ1, . . . , µNµ} and that (x, k) |= φ is evaluated with
two different predicate vectors z(k) and zζ(k). In other
words, each predicate µ1, . . . , µNµ is evaluated as in (3)
with the corresponding elements of either z(k) or zζ(k).
According to Definitions 4, 5, and 6, we define and ob-
tain ρφ(x, k), Aφ(x, k), and ASφ(x, k) if z(k) is used or

ρφζ (x, k), Aφζ (x, k), and ASφζ (x, k) if zζ(k) is used.

Corollary 1 Consider a formula φ in PNF and two
predicate vectors z(k) and zζ(k) such that z(k) < zζ(k).

It then holds that ρφ(x, k) < ρφζ (x, k), Aφ(x, k) <

Aφζ (x, k), and ASφ(x, k) < ASφζ (x, k). Furthermore,

it holds that ρφζ (x, k) − ρφ(x, k) ≥ ζmin, Aφζ (x, k) −
Aφ(x, k) ≥ ζmin, and ASφζ (x, k) − ASφ(x, k) ≥ ζmin
where ζmin := mini∈{1,...,Nµ} ζi.

PROOF. A formula φ in PNF excludes the case of
negations in Definitions 4, 5, and 6. Due to the induc-
tive definition of SR, DASR, DSASR, and the exclusion
of negations, a bigger predicate vector z(k) will lead

to bigger functions ρφ(x, k), Aφ(x, k), and ASφ(x, k).
Since z(k) < zζ(k) holds element-wise, we can con-

clude that ρφ(x, k) < ρφζ (x, k), Aφ(x, k) < Aφζ (x, k),

andASφ(x, k) < ASφζ (x, k). It is then straightforward to

show that the difference of ρφζ (x, k)−ρφ(x, k),Aφζ (x, k)−
Aφ(x, k), and ASφζ (x, k) − ASφ(x, k) is lower bounded
by ζmin = mini∈{1,...,Nµ} ζi. �

Next, assume that z(k) is an affine function inx as in (5),
i.e., z(k) := Cx(k)+c. In Corollary 1, an increase in the
predicate vector from z(k) to zζ(k) was induced by ζ. If
an increase in z(k) is instead induced by a change of x(k)
in z(k) := Cx(k)+c, then robustness can be interpreted
in terms of the distance between hyperplanes. Note that
for each predicate function zi(k) := C(i, :)x(k)+ci with
i ∈ {1, . . . , Nµ}, we can define a corresponding time-
dependent hyperplane Zi(k) := {x ∈ Rn|nTi x = ei(k)}
with nTi := C(i, :) and ei(k) := zi(k) − ci. Now,
consider two different signals x′ and x′′ resulting in
two different versions z′i(k) := C(i, :)x′(k) + ci and
z′′i (k) := C(i, :)x′′(k) + ci of the i-th predicate func-
tion. The resulting two hyperplanes are Z ′i(k) := {x ∈
Rn|nTi x = e′i(k)} and Z ′′i (k) := {x ∈ Rn|nTi x = e′′i (k)}
with e′i(k) := z′i(k) − ci and e′′i (k) := z′′i (k) − ci. The

distance between these two parallel hyperplanes at time

k is given by δZ′
i
,Z′′
i

(k) :=
|e′i(k)−e′′i (k)|
‖ni‖ =

|z′i(k)−z′′i (k)|
‖ni‖ .

Assume again that φ contains the predicates P :=
{µ1, . . . , µNµ} and consider the two predicate vectors

z′(k) :=
[
z′1(k) z′2(k) . . . z′Nµ(k)

]T
= Cx′(k) + c and

z′′(k) :=
[
z′′1 (k) z′′2 (k) . . . z′′Nµ(k)

]T
= Cx′′(k) + c.

Similarly to Corollary 1, define ρφ′ (x, k), Aφ′ (x, k), and

ASφ′ (x, k) if z′(k) is used and ρφ′′(x, k), Aφ′′(x, k), and

ASφ′′(x, k) if z′′(k) is used in Definitions 4, 5, and 6. Next,
Corollary 2 provides a geometric interpretation since

the robustness increase given by ρφ′′(x, k) − ρφ′ (x, k),

Aφ′′(x, k) − Aφ′ (x, k), and ASφ′′(x, k) − ASφ′ (x, k) is
proportional to the minimum distance of the hyper-
planes Z ′i(k∗) and Z ′′i (k∗) over all i ∈ {1, . . . , Nµ} and

k ∈ {k, . . . , k + hφd}. Together, Corollary 1 and 2 state
that robustness increases if z(k) increases element-wise.

Corollary 2 Consider a formula φ in PNF and
two signals x′ and x′′ such that z′(k∗) < z′′(k∗)

for all k∗ ∈ {k, . . . , k + hφd}. It then holds that

ρφ′ (x, k) < ρφ′′(x, k), Aφ′ (x, k) < Aφ′′(x, k), and

ASφ′ (x, k) < ASφ′′(x, k). Furthermore, it holds that

ρφ′′(x, k)−ρφ′ (x, k) ≥ δmin, Aφ′′(x, k)−Aφ′ (x, k) ≥ δmin,

and ASφ′′(x, k) − ASφ′ (x, k) ≥ δmin where δmin :=
mini∈{1,...,Nµ}mink∗∈{k,...,k+hφ

d
} |z
′
i(k
∗) − z′′i (k∗)| =

mini∈{1,...,Nµ}mink∗∈{k,...,k+hφ
d
} δZ′i,Z′′i (k∗)‖ni‖.

PROOF. The proof is again based on the inductive
definitions of SR, DASR, DSASR, and the fact that φ is
in PNF. However, now we need to consider the minimum
of |z′i(k∗) − z′′i (k∗)| over all i ∈ {1, . . . , Nµ} and k∗ ∈
{k, . . . , k + hφd} to get the lower bound δmin. �

Example 1 Fig. 1 displays three evaluations of the pred-
icate function z1(k) := x1(k)−x2(k)+1 := nT1 x(k)+c1,
which is associated with the predicate µ1. Moving from
x′(k) ∈ Z ′1(k) := {x ∈ Rn|nT1 x = e′1(k)} (solid hy-
perplane) with e′1(k) := z′1(k) − c1 := −1 to x′′(k) ∈
Z ′′1 (k) := {x ∈ Rn|nT1 x = e′′1(k)} (dashed hyperplane)
with e′′1(k) := z′′1 (k) − c1 := 1 results in an increase of
the predicate function from z′1(k) = 0 to z′′1 (k) = 2. The
distance δZ′1,Z′′1 (k) between the solid and the dashed hy-

perplane is given by δZ′1,Z′′1 (k) =
|e′1(k)−e′′1 (k)|
‖n1‖ =

√
2 since

‖n1‖ =
√

2. Next, consider the formula φ := G[a,b]µ1

and assume that |z′1(k∗) − z′′1 (k∗)| ≥ 2 for all k∗ ∈
{k, . . . , k+hφd}, which means that the hyperplane distance

is δZ′1,Z′′1 (k∗) ≥
√

2 for all k∗ ∈ {k, . . . , k+hφd}. Accord-

ing to Corollary 2, it holds that ρφ′′(x, k) − ρφ′ (x, k) ≥
δmin, Aφ′′(x, k) − Aφ′ (x, k) ≥ δmin, and ASφ′′(x, k) −
ASφ′ (x, k) ≥ δmin with δmin = 2.
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x1

x2

n1

δZ′1,Z′′1 (k)

x1 − x2 + 1 = 0

x1 − x2 + 1 = −2

x1 − x2 + 1 = 2

Fig. 1. Consider z1(k) := x1(k)− x2(k) + 1 := nT
1 x(k) + c1.

The solid hyperplane separates the state space into two
regions, one increasing and one decreasing robustness in
the sense of Corollary 2. Moving the predicate z1(k) in
−n1-direction from the solid to the dotted hyperplane, de-
creases robustness, while robustness is increased when mov-
ing into the direction of the dashed hyperplane.

3.3 Predicate Robustness Degree

Assume again nonlinear predicate functions zi(k) :=
fi(x(k)) with i ∈ {1, . . . , Nµ} as in (4). In the sequel,
we will write fi(x(k)) to stress the dependence on x(k).
Each predicate µi ∈ P in φ is assigned a domain of in-
fluence at time k, denoted by Dk,i(φ) and defined as

Dk,i(φ) := D′k,i(φ) ∪ D′k,i(¬φ)

with D′k,i(φ) := N \ {k′ ∈ N|∀z ∈ R,∀x∗ ∈ f−1
i (z),∃x ∈

Lk(φ) s.t. x(k′) = x∗} where the set f−1
i (z) := {x ∈

Rn|fi(x) = z} is the inverse image of fi(x). This do-
main of influence states for which k′ ∈ N the func-
tion values of fi(x(k′)) can change the evaluation of
(x, k) |= φ. In other words, fi(x(k′)) can take arbitrary
values for each k′ /∈ Dk,i(φ) while the boolean evalu-
ation of (x, k) |= φ will always be the same. For ex-
ample, consider again the formula φ := G[a,b]µ1 where
Dk,1(φ) = Ω(τk + a, τk + b). In order to proceed, de-

fine the function h(x) :=

{
1 if x ≥ 0

0 if x < 0
and abbreviate

h+
i (k′) := h

(
fi(x(k′))

)
and h−i (k′) := h

(
− fi(x(k′))

)
.

Definition 7 Given a formula φ in PNF and a signal
x, the predicate robustness degree at time k is defined as

PRDk(x, φ) :=
Nµ∑
i=1

∑
k′∈Dk,i(φ)

h−i (k′)fi(x(k′)) if x /∈ Lk(φ)

Nµ∑
i=1

∑
k′∈Dk,i(φ)

h+
i (k′)fi(x(k′)) if x ∈ Lk(φ)

The predicate robustness degree measures robustness
by considering predicates as follows: if x ∈ Lk(φ), we

sum over all fi(x(k′)) > 0 with i ∈ {1, . . . , Nµ} and
k′ ∈ Dk,i(φ). If x /∈ Lk(φ), we instead sum over all
fi(x(k′)) < 0 with i ∈ {1, . . . , Nµ} and k′ ∈ Dk,i(φ).
Note that if fi(x(k′)) ≥ 0 for all i ∈ {1, . . . , Nµ} and k′ ∈
Dk,i(φ), then (x, k) |= φ holds. Conversely, if fi(x(k′)) <
0 for all i ∈ {1, . . . , Nµ} and k′ ∈ Dk,i(φ), then (x, k) 6|=
φ, i.e., (x, k) |= ¬φ, holds. Hence, the predicate robust-
ness degree PRDk(x, φ) measures the summed distance
of all fi(x(k′)) > 0 (if x ∈ Lk(φ)) or fi(x(k′)) < 0 (if
x /∈ Lk(φ)) with i ∈ {1, . . . , Nµ} and k′ ∈ Dk,i(φ) to
fi(x(k′)) = 0; fi(x(k′)) = 0 is the value of the predicate
where the evaluation of (x, k) |= φ will change its truth
value if all fi(x(k)) > 0 (if x ∈ Lk(φ)) or fi(x(k)) < 0
(if x /∈ Lk(φ)) are changed such that fi(x(k′)) = 0.

Remark 3 The predicate robustness degree is suitable
for comparing two signals x′ and x′′ with respect to a
formula φ. It is, however, not suited for considerations
of the worst case disturbance (robustness degree).

Example 2 Consider the discrete-time dynamics

x(k + 1) =

[
0.79 0

0.176 0.0296

]
x(k) +

[
0.281

0.0296

]
u(k)

that represent a coupled two-tank process with T := 12.
The input u represents a pump that fills the first tank
with water (water level indicated by x1), while there
is an outlet in the first tank from which water pours
into the second tank (water level indicated by x2).
There is another outlet in the second tank so that wa-
ter seeps into the ground. We impose the specification
φ := G[144,216](x1 ≥ 1)∧G[372,444](x1 ≥ 1). It holds that

Aφ(x, k) = ASφ(x, k) since the semantics for the always-
operator are the same for DASR and DSASR, i.e., the
notions of DASR and DSASR coincide in this example.
We solve two optimization problems to demonstrate the
difference between the use of ρφ(x, k) (SR) and Aφ(x, k)
(DASR): 1) argmax

ust

ρφ(x, 0) and 2) argmax
ust

Aφ(x, 0)

s.t. x1(k′) ≥ 1 for all k′ ∈ Ω(144, 216) ∪ Ω(372, 444).
Additionally, both 1) and 2) are subject to the con-
straints 0 ≤ u(k′) ≤ 3 for all k′ ∈ Ω(0, 444) and∑hφ

d

k′=0 u(k′) ≤ 20. The result is shown in Fig. 2 and
it is visible that DASR gives a greater average sat-
isfaction within the regions [144, 216] and [372, 444]
resulting in a greater predicate robustness degree than
SR. Note that the red shaded areas show where a signal
could potentially violate the formula φ. The predicate
robustness degree at k := 0 is PRD0(x, φ) = 5.12 for
DASR and PRD0(x, φ) = 3.01 for SR, whereas the ro-
bustness degree at k := 0 is RD0(x, φ) = 0 for DASR
and RD0(x, φ) = 0.215 for SR. Hence, a small distur-
bance at exactly 216 seconds (see Fig. 2), i.e., a worst
case disturbance for both shown signals, will not change
(x, 0) |= φ for the SR approach, but it can for the DASR
approach. On the other hand, if there is a disturbance
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Fig. 2. For the water level x1 of the first tank, we impose
the specification φ := G[144,216](x1 ≥ 1)∧G[372,444](x1 ≥ 1).
SR performs better in terms of the worst case disturbance,
while DASR can, on average, tolerate more disturbance.

between 150 and 200 seconds, the DASR approach can
tolerate a bigger disturbance than the SR approach.

One may now wonder when to choose which notion.
Putting computational issues aside for a moment, it may
be more suitable to use SR for safety-critical systems.
For systems that are not safety-critical or where con-
straints are mostly soft, the notion of DASR/DSASR
may be a good alternative. A worst case disturbance
may now more easily lead to not satisfying the formula;
however, for other disturbances the system may per-
form more robustly as illustrated in Example 2. Note
that maximizing DASR/DSASR leads to increasing the
predicate robustness degree. DASR may lead to a higher
predicate robustness degree than SR. This intuitive ob-
servation can be justified by looking at the definitions of
the always- and until-operator for both DASR and SR.
While maximizing SR leads to maximizing the worst
case, i.e., only one point in time (min-operation for until-
and always-operators in Definition 4), DASR maximizes
predicates over certain time intervals (summation-
operator for until- and always-operators in Definition 5).
These time intervals are linked to Dk,i(φ), which are
used to calculate PRDk(x, φ).

4 Problem Statement

In this paper, the STL fragment under consideration is

γ ::= µ | ¬µ | γ1 ∧ γ2 (7a)

ψ ::= γ1 U[a,b] γ2 | F[a,b]γ1 | G[a,b]γ1 | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

(7b)

φ ::= G[0,∞]ψ | event =⇒ ψ. (7c)

where γ1 and γ2 are formulas of class γ given in (7a),
whereas ψ1 and ψ2 are formulas of class ψ given in (7b).
The formulas φ := G[0,∞]ψ are called all-time satisfying
formulas, which means that the formula ψ is imposed at
every sampling step; φ := event =⇒ ψ are called one-
time satisfying formulas since ψ is to be satisfied once.

The boolean variable event ∈ {>,⊥} is an indicator for
the time kevent when ψ is activated, i.e., event(kevent) =
> and event(k) = ⊥ if k ∈ N \ kevent. This means that
(x, 0) |= φ holds if and only if (x, kevent) |= ψ. We argue
that the STL fragment in (7c) offers a good trade-off be-
tween computational tractability and expressivity and
allows to express many real-world, especially robotic,
specifications. Periodic tasks, such as surveillance, can
be formulated as all-time satisfying formulas, while one-
time satisfying formulas can be used to express reach-
ability or other robotic tasks such as formation con-
trol. The GR(1) fragment of LTL introduced in [20] also
offers computationally tractable algorithms, while con-
sidering a reactive design procedure. Compared to the
GR(1) fragment, we allow for quantitative temporal re-
quirements, i.e., hard deadlines can be imposed, while
also considering until- and disjunction-operators.

Define next two variables kl, kh ∈ N. For all-time satisfy-

ing formulas, set kl := k0−hψd +1 and kh := k0 +N−hψd
where N is a prediction horizon, k0 is the current time,

and hψd is the discrete formula length of ψ. Knowledge of
x(k) for all k ∈ {kl, kl+1, . . . , N} is sufficient to evaluate
(x, k′) |= ψ for all k′ ∈ {kl, kl + 1, . . . , kh}. This means
that satisfaction of ψ is considered for the past and the
future with respect to k0, which resembles the notion of
past satisfaction in [25,23]. For one-time satisfying for-
mulas, set kl := kh := kevent since only (x, kevent) |= ψ
is required. We assume that the time intervals [a, b] are

finite and that N ≥ hψd . To obtain computationally ef-
ficient algorithms to control the system (1) subject to
an STL formula φ with a corresponding formula ψ as
in (7), neither ρψ(x, k) nor Aψ(x, k) are used and in-

stead ASψ(x, k) is used. Note that the k1’s in Defini-

tion 6 are needed in order to fully define ASψ(x, k).
Therefore, we first propose an offline algorithm, referred
to as Algorithm 1, that calculates candidate k1 for each
temporal operator in ψ that then define the DSASR se-
mantics ASψ(x, k). In a second step, ASψ(x, k) is max-
imized through an optimization problem, while the ob-
tained candidate k1’s are additionally used to ensure
that (x, k′) |= ψ for all k′ ∈ {kl, kl + 1, . . . , kh} as ex-
plained more in Section 5.2.

Problem 1 Given an STL formula φ as in (7c), the

corresponding DSASR semantics ASψ(x, k) that are to
be obtained by Algorithm 1, the system (1), the current
state x(k0), and a prediction horizon N ≥ hψ, compute

argmax
ust

kh∑
k′=kl

ASψ(x, k′)−
k0+N−1∑
k′=k0

‖u(k′)‖2M (8a)

s.t. x(k + 1) = Ax(k) +Bu(k) (8b)

Auu(k′) ≤ bu ∀k′ ∈ {k0, . . . , k0 +N − 1} (8c)

Axx(k′) ≤ bx ∀k′ ∈ {k0 + 1, . . . , k0 +N} (8d)

(x, k′) |= ψ ∀k′ ∈ Ω(τkl , τkh), (8e)
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where Au, Ax, bu, and bx are of appropriate size and
may be used to define input and state constraints, while
M ∈ Rmn×mn is a positive semidefinite matrix.

In the remainder, (8b), (8c), (8d), and the term∑k0+N−1
k′=k0

‖u(k′)‖2M in (8a) are not explicitly mentioned.

Solving (8) in a receding horizon fashion will result in a
closed-loop solution. The procedure is initialized at time
k0 := 0 where (8) is solved. Only the first element of ust
is applied to the system and the procedure is repeated
at the next sampling step with k0 increased by 1.

Corollary 3 The closed-loop solution obtained by iter-
atively solving Problem 1 results in the satisfaction of φ,
i.e., (x, 0) |= φ, if (8) is feasible at every sampling step.

PROOF. The assumption that (8) is feasible at ev-
ery sampling step is necessary. For one-time satisfying
formulas, the result trivially holds. For all-time satis-
fying formulas, it holds that (x, 0) |= φ if and only if
(x, k′) |= ψ for all k′ ∈ N. Due to the choice of kl, we
consider past satisfaction and the result follows. A simi-

lar idea is used in [23] where the past hψd − 1 inputs and
robustness constraints are stored and considered. �

5 Control Strategy

Section 5.1 describes the offline calculation of k1 to ob-
tain the DSASR semantics, while Section 5.2 explains
our proposed control strategy that depends on these k1.

5.1 Offline calculation of k1

The parameter k1 needs to be calculated for each
eventually- and until-operator in φ (see Definition 6) and
hence ki1 needs to be calculated for each i ∈ {1, . . . , Nφ},
where Nφ is the total number of eventually- and until-
operators contained in φ; ki1 is therefore the k1 of the
i-th eventually- and until-operator. We first provide
two examples that give some intuition on this before
we present Algorithm 1 that automatically calculates
ki1. Since Algorithm 1 uses the discrete-time intervals
Ω(a, b), our examples will directly use the discrete-time
intervals, e.g., F{5,...,15}γ1 instead of F[5,15]γ1 when
Ω(5, 15) = {5, 6 . . . , 15}. For one-time satisfying formu-
las, ki1 is calculated as in the next example.

Example 3 Assume φ1 := event =⇒ ψ1 with ψ1 :=
F{5,...,15}γ1 and Nφ1 = 1. Choosing k1

1 ∈ {kevent +
5, . . . , kevent + 15} results in (x, 0) |= φ1, which is the
same as (x, kevent) |= ψ1, if (x, k1

1) |= γ1 holds. If the
number of eventually- and until-operators exceeds one,
e.g., Nφ > 1, the selection of ki1 can be extended as fol-
lows: assume φ2 := event =⇒ (ψ1 ∧ ψ2) with ψ1 as
before and ψ2 := F{5,...,15}γ2. Consequently, Nφ2 = 2

and ki1 needs to be selected for i ∈ {1, 2}. In this case,
k1

1 ∈ {kevent + 5, . . . , kevent + 10} and k2
1 ∈ {kevent +

11, . . . , kevent + 15} can be used for the first and sec-
ond subformula, respectively. If now (x, k1

1) |= γ1 and
(x, k2

1) |= γ2 hold, then (x, kevent) |= ψ1 ∧ ψ2 holds and
consequently (x, 0) |= φ2 is true. The reason why k1

1 6=
k2

1, becomes obvious when γ1 := x ≥ 2 and γ2 := x ≤ 1.

For all-time satisfying formulas φ := G[0,∞]ψ, we need

(x, k′) |= ψ for all k′ ∈ N. We hence have to find ki1 for
each k′ ∈ N and each i ∈ {1, . . . , Nφ}. Therefore, we
consider the functions ki1 : N→ N so that ki1(k′) dictates
which ki1 is used at k′.

Example 4 Let φ1 := G[0,∞]ψ1 with ψ1 := F{5,...,15}γ1

and Nφ1 = 1. The set-valued map K1
1 : N ⇒ N is defined

by K1
1 (k′) ∈ {k′ + 5, k′ + 15}. It holds that (x, k′) |= ψ1

if and only if (x, k1
1(k′)) |= γ1 with k1

1(k′) ∈ K1
1 (k′).

In Fig. 3a for instance, a vertical line at k′ = 5, i.e.,
K1

1 (5), indicates that γ1 should be true at least once be-
tween {10, 11, . . . , 20} to obtain (x, 5) |= ψ1, i.e., if there
exists k1

1 ∈ {10, 11, . . . , 20} such that (x, k1
1) |= γ1, then

(x, 5) |= ψ1. By looking at Fig. 3a, it turns out that if
(x, k1

1(k′)) |= γ1 with k1
1(k′) := 15 (first dotted hori-

zontal line) for all k′ ∈ {0, . . . , 10}, then (x, k′) |= ψ1

for all k′ ∈ {0, . . . , 10}. If further (x, k1
1(k′)) |= γ1 with

k1
1(k′) := 26 (second dotted horizontal line) for all k′ ∈
{11, . . . , 20}, then (x, k′) |= ψ1 for all k′ ∈ {11, . . . , 20}.
Define the function k1

1(k′) := k1
0 + ∆

⌊
k′

∆

⌋
with k1

0 := 15
and ∆ := 11, where bxc rounds to the nearest integer less
than or equal to x. If (x, k1

1(k′)) |= γ1 for all k′ ∈ N, then
(x, k′) |= ψ1 for all k′ ∈ N and consequently (x, 0) |= φ1;
k1

0 is the point, referred to as baseline, which is periodi-

cally repeated with ∆. In Fig. 3a, k1
1(k′) := k1

0 + ∆
⌊
k′

∆

⌋
corresponds to a periodic repetition of the dotted hori-
zontal line at k1

0 with ∆. This idea can be extended in
the case of two or more eventually- and until-operators,
i.e., Nφ > 1. Fig. 3b shows this situation for φ2 :=
G[0,∞](ψ1∧ψ2) with ψ1 as before, ψ2 := F{5,...,15}γ2, and

Nφ2 = 2. Similarly, it is needed that k1
1(k′) ∈ K1

1 (k′)

and k2
1(k′) ∈ K2

1 (k′). If k1
1(k′) := k1

0 + ∆
⌊k′+b1−k1

0

∆

⌋
with k1

0 := 10 and ∆ := 11 is chosen for the first sub-

formula (left subfigure) and k2
1(k′) := k2

0 + ∆
⌊
k′

∆

⌋
with

k2
0 := 15 is chosen for the second subformula (right

subfigure). The distance between k1
0 and k2

0 is given by
η := |k1

0 − k2
0| = 5, also explained in the discussion be-

low. If now (x, k1
1(k′)) |= γ1 and (x, k2

1(k′)) |= γ2 for all
k′ ∈ N, then (x, k′) |= ψ1 ∧ ψ2 for all k′ ∈ N and hence
(x, 0) |= φ.

Algorithm 1 next describes the procedure to calculate
ki1(k′) for each i ∈ {1, . . . , Nφ}. We remark that this al-
gorithm is not complete with respect to the feasibility
of the optimization problem (8). In other words, if Al-
gorithm 1 returns an error, it does not mean that there
exists no ki1 such that (8) is feasible. Furthermore, if Al-
gorithm 1 returns the functions ki1, it does not mean that
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(a) Calculation of k11(k′) for φ1 = G[0,∞]ψ1
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(b) Calculation of k11(k′) and k21(k′) for φ2 = G[0,∞](ψ1 ∧ ψ2)
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Fig. 3. The x-axis represents the discrete times k′ ∈ N, while the y-axis shows set-valued maps K1
1 and K2

1 . Note that K1
1 (k′)

and K2
1 (k′) map from a natural number to a set of natural numbers.

(8) is feasible. The algorithm delivers, however, candi-
date ki1 that can lead to a feasible optimization problem.
A lazy satisfiability modulo convex-based approach as in
[26] that iterates between Algorithm 1 and (8) may ac-
count for these drawbacks. Algorithm 1 is not run on all
eventually- and until-operators simultaneously, but only
on a subset of them that are depending on each other. In
this respect, maximal dependency clusters are defined.

Definition 8 Consider the undirected graph G := (V, E)
with V := {1, . . . , Nφ} as the set of nodes. There exists
an edge (vi, vj) ∈ E ⊆ V ×V if and only if the predicates
of the i-th eventually- or until-operator share at least one
element of x with the j-th eventually- or until-operator;
Ξ ⊆ V is a maximal dependency cluster if and only if
∀vi, vj ∈ Ξ there is a path from vi to vj in G and @vk ∈
V \ Ξ such that there is a path from vi to vk in G.

Algorithm 1 is now applied to each dependency clus-
ter Ξl ∈ {Ξ1, . . . ,ΞNφ

Ξ
} separately. The inputs are Ξl

and the intervals [ai, bi] of each eventually- and until-
operators contained in Ξl stacked such that aΞl :=[
aΞl(1), . . . , aΞl(|Ξl|)

]T
and bΞl :=

[
bΞl(1), . . . , bΞl(|Ξl|)

]T
(line 1), where Ξl(j) denotes the j-th element of Ξl and
|Ξl| denotes the cardinality of Ξl. The outputs are ∆Ξl
and ki0 (line 19), which can then be used to determine
the function ki1 given by

ki1(k′) := ki0 + ∆Ξl

⌊k′ + hbid − ki0
∆Ξl

⌋
, (9)

where hbid := maxk∈Ω(0,bi) k, i.e., the discrete formula
length of the i-th eventually- or until-operator. Note
again that ki0 is a baseline that is periodically repeated
with ∆Ξl as discussed in Example 4 (horizontal lines
in Fig. 3). Lines 2-7 determine dminΞl

, i.e., the shortest
discrete-time interval among all eventually- and until-
operators in Ξl. The period ∆Ξl := dminΞl

+ 1 is calcu-

lated in line 8. If the number of operators |Ξl| is too
high and the period ∆Ξl is too short, then the algorithm
returns an error (lines 9-10). Otherwise, define the dis-

tance between two consecutive k
Ξl(j)
0 and k

Ξl(j+1)
0 to be

ηΞl := b∆Ξl

|Ξl| c (line 12). It follows that |Ξl|ηΞl ≤ ∆Ξl

and consequently each eventually- and until-operator
obtains a separate slot within the period ∆Ξl , which

guarantees that ki1 6= kj1 for all i, j ∈ Ξl with i 6= j.
In line 13, the baseline ki0 for i = Ξl(1) is calculated

as k
Ξl(1)
0 := minj∈{1,...,|Ξl|}mink∈Ω(aΞl

(j),bΞl
(j)) k. All ki0

with i ∈ Ξl \ Ξl(1) are then calculated in lines 14-16.
Note that for Example 2 we get k1

0 := 10 and k2
0 := 15,

while Algorithm 1 outputs k1
0 := 5 and k2

0 := 10. Both
solutions are valid, but the values in Example 4 have
been chosen this way for illustrative reasons.

Algorithm 1 Calculation of ∆Ξl and ki0 for all i ∈ Ξl

1: procedure k1(Ξl,aΞl , bΞl)
2: for j := 1 : |Ξl| do
3: kmin(j) := mink∈Ω(aΞl

(j),bΞl
(j)) k

4: kmax(j) := maxk∈Ω(aΞl
(j),bΞl

(j)) k

5: d(j) := kmax(j)− kmin(j)
6: end for
7: dminΞl

:= minj∈{1,...,|Ξl|} d(j)

8: ∆Ξl := dminΞl
+ 1

9: if |Ξl| > ∆Ξl then
10: error() . Not feasible
11: else
12: ηΞl := b∆Ξl

|Ξl| c
13: k

Ξl(1)
0 := minj∈{1,...,|Ξl|} kmin(j)

14: for j := 2 : |Ξl| do

15: k
Ξl(j)
0 := k

Ξl(1)
0 + (j − 1)ηΞl

16: end for
17: end if
18: return ∆Ξl , k

i
0 for all i ∈ Ξl

19: end procedure

9



5.2 Computationally-efficient Solutions via Convex
Quadratic Programming

It is next shown how Algorithm 1 is used in our con-
trol approach defined in Problem 1. We emphasize be-
forehand that Algorithm 1 is used to obtain ASψ(x, k)
in (8a) and to make sure that (8e) holds. For all-time
satisfying formulas, we show in a first step (Step A)
how G[0,∞]ψ with ψ as 1) γ1 U[a,b] γ2, 2) F[a,b]γ1, and 3)
G[a,b]γ1 can be handled if γ1 and γ2 do not contain con-
junctions. If γ1 and/or γ2 contain a conjunction (last case
in (7a)), e.g., γ1 := µ1∧µ2 and γ2 := µ3∧µ4, then it holds
that γ1 U[a,b] γ2 = µ1 U[a,b] µ3 ∧ µ2 U[a,b] µ4, F[a,b]γ1 =
F[a,b]µ1∧F[a,b]µ2, andG[a,b]γ1 = G[a,b]µ1∧G[a,b]µ2 if k1,
as determined by Algorithm 1, remains the same for the
until- and eventually-operator on the right-hand side of
the equations (see Definition 1). This case hence reduces
to the conjunction case to be discussed in the second step
(Step B) where we consider G[0,∞]ψ with ψ as ψ1 ∧ ψ2.
Note that one-time satisfying formulas are a subclass of
all-time satisfying formulas with kl = kh = kevent.

Step A) First, considerψ := γ1 U[a,b] γ2 withASγ1(x, k) :=
z1(k) and ASγ2(x, k) := z2(k). For φ := G[0,∞]ψ, the
equations (8a) and (8e) in Problem 1 become

argmax
ust

1

2

kh∑
k′=kl

z2

(
k1(k′)

)
+

1

k1(k′)− k′ + 1

k1(k′)∑
k′′=k′

z1(k′′)

(10a)

s.t. z1(k′′) ≥ 0 ∀ k′ ∈ Ω(τkl , τkh),∀k′′ ∈ Ω(τk′ , τk1(k′))
(10b)

z2

(
k1(k′)

)
≥ 0 ∀ k′ ∈ Ω(τkl , τkh). (10c)

Note that the constraints (10b) and (10c) are added to
account for the constraint (8e), i.e., these constraints
establish the desired under-approximation property and
hence lead to satisfaction of ψ at each k′. The function
k1(k′) := k1

1(k′) is given by (9). Second, consider ψ :=
F[a,b]γ1 with ASγ1(x, k) := z1(k). For φ := G[0,∞]ψ, the
equations (8a) and (8e) become

argmax
ust

kh∑
k′=kl

z1

(
k1(k′)

)
(11a)

s.t. z1

(
k1(k′)

)
≥ 0 ∀ k′ ∈ Ω(τkl , τkh) (11b)

where the constraint (11b) enforces (8e) in Problem 1.
Third, consider ψ := G[a,b]γ1 with ASγ1(x, k) := z1(k).
For φ := G[0,∞]ψ, the equations (8a) and (8e) become

argmax
ust

kh∑
k′=kl

1

kmax,k′ − kmin,k′ + 1

kmax,k′∑
k′′=kmin,k′

z1(k′′)

(12a)

s.t. z1(k′′) ≥ 0 ∀ k′ ∈ Ω(τkl , τkh),

∀ k′′ ∈ Ω(τk′ + a, τk′ + b)
(12b)

where kmin,k′ := mink∗∈Ω(τk′+a,τk′+b)
k∗, kmax,k′ :=

maxk∗∈Ω(τk′+a,τk′+b)
k∗, and the constraint (12b) is

again added to enforce (8e) in Problem 1.

Step B) Considerψ := ψi∧ψj whereψi,ψj are of classψ
as in (7b) and do not contain conjunctions/disjunctions.
For φ := G[0,∞]ψ, the equations (8a) and (8e) become

argmax
ust

kh∑
k′=kl

min(ASψi(x, k′),ASψj (x, k′)) (13a)

s.t. cψitemp and c
ψj
temp, (13b)

where cψitemp is a shorthand notation for the constraints
(10b) and (10c) if ψi = γ1 U[a,b] γ2, (11b) if ψi = F[a,b]γ1

and (12b) if ψi = G[a,b]γ1.

Theorem 1 Assume that z(k) is linear as in (5), ψ does
not contain disjunctions, and that (10), (11), (12), and
(13) together with Algorithm 1 are used to encode (8).
Then the optimization problem (8) can be written as a
convex quadratic program. If M := 0m,m, then the opti-
mization problem can be written as a linear program.

PROOF. Equations (10), (11), (12) can be reduced to
a convex quadratic program as argmax

ust

1TNE zall s.t.

Rzall ≥ 0 where zall stacks zst with past predicates

as zall :=
[
z(kl)

T
. . . z(k0)

T
zTst

]T
. Note that zall is

linear in ust as can be seen from (6) and that a linear
program is obtained when M := 0m,m. For translating
(10) into E and R, note that E depends on k1(k′) and is

of size E ∈ RN×Nµ(N+hψ
d

) where Nµ = 1. By denoting
ik := i+ kl − 1, the E matrix can be constructed as

E(i, j) :=



1
2 if: j = 2(hψd + k1(ik)− k0)

1
2(k1(ik)−ik+1) if: 1)j is odd, and

2)2(i− 1) ≤ j, and

3)j ≤ 2(hψd + k1(ik)− k0)

0 otherwise.

(14)

Let Nc denote the total number of inequalities in (10b)

and (10c). Then the matrix R ∈ RNc×Nµ(N+hψ
d

) is se-
lected such that R(i, j)zall ≥ 0Nc represents all inequal-
ities in (10b) and (10c). Next, note that (11) and (12)
can be translated into E with Nµ = 1, while R can be
determined in the same way as for ψ := γ1 U[a,b] γ2. The

10



matrix E for (11) is then

E(i, j) :=

{
1 if j = hψd + k1(ik)− k0

0 otherwise,
(15)

while the matrix E for (12) is

E(i, j) :=


1
κ if: 1) j ≤ kmax,ik − kl + 1, and

2) kmin,ik − kl + 1 ≤ j
0 otherwise

(16)

where κ := kmax,ik−kmin,ik+1. For conjunctions in (13),

note that argmax
ust

∑kh
k′=kl

min(ASψi(x, k′),ASψj (x, k′))

in (13a) is a sum of finite elements as

argmax
ust

{min(ASψi(x, kl),ASψj (x, kl)) + . . .+

min(ASψi(x, kh),ASψj (x, kh))}.
(17)

With ux :=
[
ux,1 . . . ux,N uTst

]T
where ux,1, . . . , ux,N

are new decision variables, (13) can hence be written as

argmax
ux

N∑
i=1

ux,i (18a)

s.t.ux,1 ≤ ASψi(x, kl) and ux,1 ≤ ASψj (x, kl) (18b)

... (18c)

ux,N ≤ ASψi(x, kh) and ux,N ≤ ASψj (x, kh) (18d)

cψitemp and c
ψj
temp. (18e)

Note that (18) and (13) are equivalent [4, pp. 6-7].
This is again a convex quadratic program with cost

function argmax
ux

[
1TN 0TNm

]
ux. By defining H2,man :=[

0NµN,N H2

]
, the stacked predicate vector from (6) can

be rewritten as zst := H1x(k0) + H2,manux + 1N ⊗ c
so that the linear inequalities of (18b) - (18d) are equiv-
alent to Qux ≤ Rzall, where Q and R are constructed
accordingly. Explicit construction rules for Q and R are
omitted due to space limitation. Note, however, that the
E matrices constructed in (14), (15), and (16) can be
used to form R. An extension to more than one conjunc-
tion ψ := ψi ∧ ψj ∧ ψk ∧ · · · can be handled by adding
additional constraints for each added conjunction. �

Convex quadratic programs can be solved reliably and
efficiently. We therefore propose in Step C) to solve dis-
junctions by calculating multiple convex quadratic pro-
grams in parallel instead of using computationally de-
manding mixed integer programs to resolve the disjunc-
tion operator, e.g., by using the Big-M method.

Step C) Consider next ψ := ψi ∨ ψj where ψi and ψj
are of class ψ as in (7b) and do not contain any other
disjunctions for now. For φ := G[0,∞)ψ, we separately
calculate the optimal solution of G[0,∞)ψi and G[0,∞)ψj
with kl and kh based on ψ. Hence, calculate Cπ :=

max
ust

∑kh
k′=kl

ASψπ (x, k′) s.t. cψπtemp for each π ∈ {i, j}

where cψπtemp denotes the corresponding set of constraints
obtained from the previous steps. These two processes
are run simultaneously to then choose the corresponding
input with the highest cost to be applied to the system.
In other words, let π∗ := argmaxπ∈{i,j}Cπ and apply

the corresponding input u∗st to (1) where u∗st is calcu-

lated as u∗st := argmax
ust

∑kh
k′=kl

ASψπ∗ (x, k′) s.t. cψπ∗temp.

This procedure can be applied in exactly the same way
to solve formulas ψ involving more than one disjunction,
where additional disjunctions lead to additional Cπ’s.
Due to the choice of kl and kh based on ψ, a receding
horizon procedure will guarantee satisfaction of φ in the
sense of Corollary 3. It could be argued that this way of
handling disjunctions is rather conservative since we as-
sume that eitherψi orψj holds for each k′ ∈ {kl, . . . , kh}.
There may indeed be cases where (x, k′) |= ψi for some
k′ and (x, k′) |= ψj for the remaining k′ yield a feasible
result. Our approach, however, is computationally more
favorable than solving mixed integer programs as will be
further argued in the simulation results of Section 6.

We now analyze how the framework derived above can
be modified when the optimization problem is infeasible,
i.e., when there is no solution to (8). The idea is similar
to [25] and [11] and makes use of slack variables ζi ≥ 0
with i ∈ {1, . . . , Nµ} that are added as decision variables
to the optimization problem. Therefore, recall that ζ :=[
ζ1 ζ2 . . . ζNµ

]T
and define usl :=

[
uTst ζ

T
]T

. Next,

change the cost function in (8a) to

argmax
usl

kh∑
k′=kl

ASψζ (x, k′)− s1TNµζ, (19)

where s is a sufficiently large constant. Recall the differ-

ence between ASψζ (x, k′) and ASψ(x, k′) as discussed in

Section 3, i.e., the former is evaluated with zζ(k) and
the latter is evaluated with z(k). This leads to the fact
that the constraints in (10b), (10c), (11b), and (12b)
are changed to z1(k′′) + ζ1 ≥ 0, z2

(
k1(k′)

)
+ ζ2 ≥ 0,

z1

(
k1(k′)

)
+ ζ1 ≥ 0, and z1(k′′) + ζ1 ≥ 0, respectively.

Corollary 4 If the optimization problem (8) is infeasi-
ble, then the modified cost function in (19) together with
the use of zζ(k) leads to a least violating solution of the
optimization problem in (8).

PROOF. Note that formulas ψ in (7b) are in
PNF. Then, according to Corollary 1, we have that
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ASψ(x, k) < ASψζ (x, k) and ASψζ (x, k) − ASψ(x, k) ≥
ζmin where ζmin := mini∈{1,...,Nµ} ζi if ζi > 0 for all
i ∈ {1, . . . , Nµ}. The cost function minimizes ζi, but
will select ζi > 0 if the original problem (ζ = 0Nµ) is
infeasible in order to artificially increase the robustness

ASψζ (x, k). This will eventually lead to a feasible prob-

lem, but now using ASψζ (x, k) instead of ASψ(x, k).

The minimization of s1TNµζ leads to a least violating

solution of the optimization problem in (8). Note that
the hyperplane interpretation of Section 3 applies due
to the assumption of linear predicate functions. �

Remark 4 Corollary 4 does not guarantee that (x, k) |=
ψ for all k ∈ Ω(τkl , τkh). We remark that [11] uses a
similar idea for the specific case of predicate repair. In
contrast to our approach, [25] uses a scalar slack vari-
able ξ and defines zsoft(k) = z(k) + 1Nµζ. This works
well for SR, but for DSASR a vector ζ is more suitable
since it avoids an unnecessary increase in DSASR. For
instance, consider x1(k) = x2(k) := 0 for all k ∈ N.
The formula φ := (x1 ≥ 5)U[5,10] (x1 ≥ 0) with z(k) :=[
x1(k)− 5 x2(k)

]T
is initially infeasible due to x1(k) <

5, in fact we have ρφ(x, 0) = −5 and ASφ(x, 0) = −5. If

instead zsoft(k) := z(k)+1Nµζ =
[
x1(k)− 5 x2(k)

]T
+[

5 5
]T

is used, the problem is feasible with ρφsoft(x, k) =

0 and ASφsoft(x, k) = 2.5. For zζ(k) := z(k) + ζ =[
x1(k)− 5 x2(k)

]T
+
[
5 0
]T

we get ρφζ (x, k) = 0, while

ASφζ (x, k) = 0, i.e., ASφζ (x, k) does not unnecessarily
increase and indicate too optimistic robustness values.

6 Simulations

The system under consideration is a centralized multi-
agent system with three agents α1, α2, and α3. Each
agent αi with i ∈ {1, 2, 3} has four states xi, yi, vix, and
viy denoting position and velocity in two-dimensional
space, respectively. The agents obey continuous-time
double integrator dynamics and the stacked vector of

all agents is denoted by x :=
[
x1 x2 x3

]T
∈ R12 with

xi :=
[
xi vix y

i viy

]T
∈ R4. After periodic sampling

with T := 0.1, the discrete-time dynamics are

x(k + 1) = Ax(k) +Bu(k), (20)

whereA := I6⊗

[
1 0.1

0 1

]
,B := I6⊗

[
0.005

0.1

]
, andu(k) :=[

u1
x u

1
y u

2
x u

2
y u

3
x u

3
y

]T
∈ [−20, 20]6 with I6 being the

6×6 identity matrix. In order to obtain linear predicates,

we use the infinity norm. For instance,
∥∥∥ [xi yi] ∥∥∥

∞
:=

max(|xi|, |yi|) can be used to rewrite
∥∥∥ [xi yi] ∥∥∥

∞
≤ 5

as (xi ≤ 5) ∧ (−xi ≤ 5) ∧ (yi ≤ 5) ∧ (−yi ≤ 5), i.e.,

the formula
∥∥∥ [xi yi] ∥∥∥

∞
≤ 5 can be rewritten by using

three conjunctions and four predicates with the linear
predicate functions f1(x) := 5 − xi, f2(x) := 5 + xi,
f3(x) := 5− yi, and f4(x) := 5 + yi.

The specification imposed on the system, in words, is
the following: each agent αi is supposed to remain in the

region [0, 10] × [0, 10], i.e.,
[
xi yi

]T
∈ [0, 10] × [0, 10],

and the multi-agent system is supposed to perform
surveillance of this region. In formulas, the all-time sat-
isfying formula φ := G[0,∞)(ψ1 ∧ ψ2) is imposed where

ψ1 := G[0,3]

(∥∥∥ [x1 y1 x2 y2 x3 y3
]T
− 56

∥∥∥
∞
≤ 5

)
and ψ2 := F[1,3]

(∥∥∥ [x1 y1
]T
−
[
5 9
]T ∥∥∥

∞
≤ 1

)
∧

F[1,3]

(∥∥∥ [x1 y1
]T
−
[
1 5
]T ∥∥∥

∞
≤ 1
)
∧F[1,3]

(∥∥∥ [x2 y2
]T
−[

8 8
]T ∥∥∥

∞
≤ 1
)
∧F[1,3]

(∥∥∥ [x2 y2
]T
−
[
2 2
]T ∥∥∥

∞
≤ 1
)
∧

F[1,3]

(∥∥∥ [x3 y3
]T
−
[
9 5
]T ∥∥∥

∞
≤ 1
)
∧F[1,3]

(∥∥∥ [x3 y3
]T
−[

5 1
]T ∥∥∥

∞
≤ 1

)
; ψ1 defines the requirement to stay

within [0, 10] × [0, 10], while ψ2 expresses the surveil-
lance task that is to be performed every 1 to 3 seconds.
This formulation results in 36 predicates with 35 con-
junctions, which can be seen as a complex temporal
logic formula.

For the simulation, we have selected a prediction hori-
zon of N := 45, while no cost penalization of inputs
has been used, i.e., M := 06,6. Within the MPC proce-
dure, we performed 100 optimization steps. The closed-
loop solution of this MPC procedure is shown in Fig. 4.
The agents remain within [0, 10] × [0, 10] all the time,
while satisfying the surveillance task within the time
bounds. This would result in (x, 0) |= φ by repeating
the MPC procedure infinitely many times. It can also
be seen that the DSASR semantics have been maxi-
mized. For instance, looking at the signal x1 and y1,
it can be seen that x1(2) = 1, x1(3) = 5, x1(4.1) =
1.073, x1(5.1) = 4.944, x1(6.2) = 1.187, and x1(7.2) =
4.835, while y1(2) = 5, y1(3) = 9, y1(4.1) = 5.141,
y1(5.1) = 8.707, y1(6.2) = 5.217, and y1(7.2) = 8.81.

This shows that the reachability taskF[1,3]

(∥∥∥ [x1 y1
]T
−[

5 9
]T ∥∥∥

∞
≤ 1

)
∧ F[1,3]

(∥∥∥ [x1 y1
]T
−
[
1 5
]T ∥∥∥

∞
≤ 1

)
for agent α1 is performed with high robustness. In fact,
the robustness degree is RD0(x, φ) = 0.324. We com-
pared this result with the case where we do not maxi-
mize the DSASR semantics, i.e., not accounting for (8a)
while still ensuring (8e), which results in a marginal ro-
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(c) Agent inputs
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Fig. 4. Simulations result for φ := G[0,∞)(ψ1 ∧ ψ2).

bustness degree of only RD0(x, φ) = 0.005. Further-
more, we remark that the open-loop solution, which
is not presented due to space limitations, gives opti-
mal robustness, i.e., x1(3) = x1(5.1) = x1(7.2) = 5,
x1(2) = x1(4.1) = x1(6.2) = 1 and y1(3) = y1(5.1) =
y1(7.2) = 9, y1(2) = y1(4.1) = y1(6.2) = 5.

The simulation has been performed in real-time on a
MacBook Air (Mid 2012) with a two-core 1.8 GHz CPU
and 4 GB of RAM. The resulting linear program has 315
decision variables and, on average, 2264.3 constraints; it
has been modeled in Yalmip [16] and solved by the com-
mercial solver Gurobi [13]. The average time to solve (8)
(where ψ := ψ1 ∧ ψ2) is 0.076 seconds. For comparison,
we tried to solve the same formula φ with the same dy-
namics (20) by using the toolbox BluSTL [21], which is
based on the works in [22,23]; however, after 30 minutes
of calculations, the software still did not return a result.
This confirms what the authors in [22,23] already de-
scribed, i.e., the MILP formulation becomes intractable
when the problem size is large. In fact, checking the feasi-
bility of the obtained MILP formulation is NP-hard. For
the robustness-based encoding, [23, Section 2.3] states
the complexity in terms of variables and constraints:
O(NNµ) + O(N |φ|) continuous variables and O(N |φ|)
binary variables are introduced, where |φ| is the num-
ber of operators in φ. We remark that our simulation is
made with low performance hardware, which indicates
that our algorithms will also run efficiently on integrated
microcontrollers.

7 Discussion and Future Work

This work introduced discrete average space robust-
ness as quantitative semantics for signal temporal logic.
Closely connected to these semantics, the predicate
robustness degree was introduced as a new robustness
notion of a signal with respect to a signal temporal
logic formula by only looking at predicates. In an illus-
trative example, we motivated why these notions may
be a suitable choice in control applications. A model

predictive control framework was then presented where
a simplified version of discrete average space robustness
was incorporated into the cost function of the opti-
mization problem. The presented framework guarantees
the satisfaction of the formula while maximizing the
discrete average space robustness. Furthermore, it was
shown that the proposed framework is computationally-
efficient, which was demonstrated in a high-dimensional
simulation example.

For the simplified version of discrete average space ro-
bustness, a parameter k1 needs to be determined. We
proposed an algorithm that solves this problem; how-
ever, this algorithm has some limitations and is hence
subject to future work. Another topic of future work is
the question if recursive feasibility of the MPC frame-
work can be guaranteed. Furthermore, experiments are
planned in order to demonstrate the suitability of our
method for practical use. In a complementary approach,
we are currently also working on continuous-time feed-
back control laws for signal temporal logic specifica-
tions by considering nonlinear predicates and nonlinear
(multi-agent) systems.

References

[1] T. Akazaki and I. Hasuo. Time robustness in mtl and
expressivity in hybrid system falsification. In Proceedings
of the International Conference on Computer Aided
Verification, pages 356–374, San Francisco, CA, 2015.

[2] C. Baier and J.-P. Katoen. Principles of Model Checking.
The MIT Press, Cambridge, MA, 1 edition, 2008.

[3] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. J. Pappas. Symbolic planning and control of robot motion
[grand challenges of robotics]. IEEE Robotics Automation
Magazine, 14(1):61–70, 2007.

[4] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, New York, NY, 1 edition, 2004.

[5] L. Brim, T. Vejpustek, D. Šafránek, and J. Fabriková.
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