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ABSTRACTIONS OF VARYING DECENTRALIZATION DEGREE
FOR REACHABILITY OF COUPLED MULTI-AGENT SYSTEMS*

DIMITRIS BOSKOST AND DIMOS V. DIMAROGONAS?

Abstract. In this paper we present a decentralized abstraction framework for multi-agent sys-
tems with couplings in their dynamics, which arise in their popular coordination protocols. The
discrete models are based on a varying decentralization degree, namely, the agents’ individual ab-
stractions are obtained by using discrete information up to a tunable distance in their network graph.
Deriving these models at the agent level is essential in order to address scalability issues which appear
in the discretization of systems with a high state dimension. The approach builds on the appropriate
discretization of the agents’ state space and the selection of a transition time step, which enable
the construction of a nonblocking transition system for each agent with quantifiable transition pos-
sibilities. The transitions are based on the design of local feedback laws for the manipulation of the
coupling terms, which guarantee the execution of the transitions by the continuous system. For a
class of nonlinear agent interconnections, the derivation of such abstractions is always guaranteed,
based on sufficient conditions which relate the agents’ dynamics and the space/time quantization.

Key words. hybrid systems, multi-agent systems, abstractions, transition systems.

AMS subject classifications. 93A14, 93C10, 93C15

1. Introduction. The analysis and control of multi-agent systems constitutes
an active area of research with numerous applications, ranging from the analysis
of power networks to the automatic deployment of robotic teams [10]. Of central
interest in this field is the problem of high level planning by exploiting tools from
formal verification [21]. In order to follow this approach for dynamical systems, a
suitable discrete representation of the system is required, which enables the automatic
synthesis of discrete plans that guarantee satisfaction of the high level specifications.
Then, under appropriate relations between the continuous system and its discrete
analogue, these plans can be converted to low level primitives such as sequences of
feedback controllers, which enable the execution of the corresponding tasks by the
continuous system.

The need for a formal approach to the aforementioned control synthesis problem
has led to a considerable research effort for the extraction of discrete state symbolic
models, also called abstractions. Results in this direction for the nonlinear single plant
case have been obtained in the papers [27] and [36], which exploit approximate sim-
ulation and bisimulation relations. Exact variants of these relations were introduced
in control by providing state space models of reduced dimension while preserving be-
havioral properties, originally for linear [26], and for nonlinear systems in [34], [16],
and recently, also to address stability of dynamical and hybrid systems [29]. Symbolic
models for piecewise affine systems on simplices and rectangles were introduced in
[18] and have been further studied in [8]. Closer related to the control framework that
we adopt here for the abstraction, are the papers [19], [20], which build on the notion
of In-Block Controllability [9], a property of the form that every point in a block of
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2 D. BOSKOS AND D. V. DIMAROGONAS

states is reachable from any other point in the same block through a bounded control.
Other abstraction techniques for nonlinear systems include [31], where discrete time
systems are studied in a behavioral framework and [2], where box abstractions are
studied for polynomial and other classes of systems. It is also noted that certain of the
aforementioned approaches have been extended to switched [14], [15], and stochastic
systems [35], allowing for the probabilistic verification of their reachability and safety
properties [30], [1]. The abstraction of larger systems through the above approaches,
which rely on the global representation of their dynamics, can become intractable
due to the size of the discrete models, which grows exponentially with respect to
the state dimension. Thus, recent research has been devoted to the construction of
symbolic models for interconnected systems, based on the appropriate composition
of abstractions for their components. Results towards this direction have been devel-
oped in [33] for stabilizable interconnected linear systems, in [28], where approximate
bisimulations are obtained under a small gain hypothesis for the components, and in
[32], which is focused on reducing the system dimension under quantitative bounds
between the original and lower dimensional model. Small gain type assumptions are
also leveraged in [11], where compositional results are provided for discrete state sys-
tems, whereas in [24] and [23], compositional abstractions for safety specifications are
obtained for systems with monotone dynamics. It is worthwhile mentioning that in
[23], a varying selection of subsystems for the abstraction is exploited, providing a
tunable tradeoff between complexity reduction and model accuracy.

In this work, we focus on multi-agent systems, such as robotic networks, and con-
sider continuous time models for the agents’ dynamics. For such systems, a variety of
decentralized protocols in the form of coupling feedback controllers between the agents
can guarantee objectives such as collision avoidance, network connectivity, and forma-
tion in a distributed and autonomous manner [22]. Furthermore, it can be desirable
that the agents fulfill additional higher level specifications, such as reachability within
specific time bounds, periodic monitoring of workspace areas, and request response
actions. This motivates our consideration of agent dynamics consisting of a class of
feedback interconnection terms, which are encountered in typical multi-agent coor-
dination schemes, and bounded additive input terms, which we call free inputs and
provide certain control freedom under the coupled constraints. Our goal is to leverage
this control freedom to construct an individual transition system for each agent based
on discrete information from nearby agents, and use these discrete agent models for
higher level control synthesis. It is noted that the compositional discrete abstraction
approaches introduced in the above paragraph, are in principle not suitable for the
systems we consider, where apart from Lipschitz continuity and boundedness, there
are no other assumptions for the interconnection terms.

The abstraction is based on a partition of the workspace into cells and the selection
of a time step, which guarantee that each agent’s symbolic model has quantifiable
transition capabilities from every discrete state. Selecting a common time step for the
discretization allows for the synchronization of the agents’ discrete transitions, whose
appropriate composition can capture the behavior of the coupled system. This enables
the synthesis of control sequences which satisfy high level tasks by working only with
the discrete models. Furthermore, it provides a convenient setting for the synthesis
of control strategies under timed specifications, that can be expressed through formal
languages such as Metric Interval Temporal Logic, e.g., specifications of the form
“always between 2 and 8 time units avoid region A and reach location B between 6
and 10 time units” [25]. Building the discrete models at the agent level also allows for
the consideration of the specific dynamic properties of each team member, which in
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ABSTRACTIONS OF VARYING DECENTRALIZATION DEGREE 3

principle cannot be captured with sufficient detail in a global manner for a large scale
system. In addition, through this framework it is possible to exploit a strict subset
of the agents’ abstractions for control synthesis. In this case it is no longer required
to consider the composition of all subsystems, whose state grows exponentially with
the number of agents and constitutes the computational bottleneck of the centralized
case. For instance, such an approach turns out to be applicable for acyclic network
structures such as trees, with the agents’ tasks prioritized according to their inverse
distance to the root node; this enables a “sequential” synthesis procedure, by first
selecting satisfying plans for the root agent, then using them to specify the desired
paths of the agents one layer below, and so forth.

In this paper, we generalize the results of our recent work [4], where each agent’s
abstraction is based on the knowledge of its neighbors’ discrete positions, by allowing
the agent to have this information for all members of the network up to a certain
distance in the communication graph. This provides an improved estimate of its
neighbors’ evolution and allows for more accurate discrete models, due to the reduc-
tion of the control magnitude that is required to manipulate the coupling terms. In
addition, the derived abstractions are coarser than the ones in [4], and hence, of re-
duced state complexity. Finally, we note that this paper includes the proofs of its
companion conference version [6], which have been completely omitted therein due to
space constraints, as well as certain additional results.

The rest of the paper is organized as follows. Notation and preliminaries are
introduced in Section 2 and the problem is formulated in Section 3. In Section 4, we
formally define well posed abstractions for multi-agent systems and prove consistency
of the latter with the required bounds on the system’s free inputs. Section 5 is
devoted to the study of deviation bounds between reference trajectories of neighboring
agents and their estimates. In Section 6 we derive space and time discretizations with
quantifiable transition capabilities. The framework is illustrated through an example
with simulation results in Section 7 and we conclude in Section 8.

2. Preliminaries and Notation. We use the notation |z| for the Euclidean
norm of a vector z € R™ and int(S) for the interior of a set S C R™. Given R > 0
and z € R™, we denote B(z; R) := {y € R" : |z — y| < R} and B(R) := B(0; R).

Consider a multi-agent system with N agents. For each agenti € N := {1,..., N}
we consider a fixed set of neighbors A; C N\ {i} and use the notation N; for the
cardinality of N;. We also consider an ordering of the agent’s neighbors which is
denoted by ji(i) < -+ < jn,(7) and define the N;-tuple j(i) = (j1(3),..., 1N, (7).
Whenever it is clear from the context, the argument ¢ will be omitted from the latter
notation. The agents’ network is represented by a directed graph G := (N, ), with
vertex set A the agents’ index set and edge set € the ordered pairs (£,4) with ¢, € A/
and ¢ € N;. The sequence igiy -« iy with (ix_1,ix) € &, &k = 1,...,m, namely,
consisting of m consecutive edges in G, forms a path of length m in G. For each
m > 1, we denote by N/ the set of agents from which i is reachable through a path
of length m and not by a shorter one, excluding also the possibility to reach itself
through a cycle. Notice that N}! = N;. We also define N := {i} and for each m > 1
the set N := U?:o j\/f, consisting of all agents from which i is reachable by a path of
length at most m, including i. With some abuse of language, we use the terminology
m-neighbor set of agent i for the set /\_/'[”, since it always contains the agent itself and
will also refer to the rest of the agents in N/, i.e., to N/™ \ {i}, as the m-neighbors
of i. Finally, we denote by N/™ the cardinality of agent i’s m-neighbors, namely, of
the set A7 \ {i}. Given an agent i € N and its m-neighbor set A/™ for certain
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4 D. BOSKOS AND D. V. DIMAROGONAS

m > 1, we consider an extension of its neighbors’ ordering ji(i) < -+ < jn, (@) to
an ordering i < ji(i) < --- < jym(i) on N/, which is fixed throughout the paper.
Whenever it is clear from the context we remove the argument 7 from these ordered
elements. Given an index set Z and recalling that IV is the total number of agents, we

Ag.7

Ag.1

Ag.2 Ag.3
FiGc. 1. The sets ./\/'lm, Nim for agents 1, 5 up to paths of length 8 are: (Agent 1) ./\711 =

{1,2,6}, N} = {2,6}; N? = {1,2,3,5,6,7}, N = {3,5,7}; N7 = {1

,2 5,6,7,8}, N} =
{4,8}; (Agent 5) N3 = {3,5}, N = {3}; NZ = {2,3,4,5}, NF = {2,4}; N

13,4,

={2,3,4,5}, N2 =0.
define the map pr; : TV — TN:"*1 which assigns to each N-tuple (Iy,...,Iy) € TV
the N/™ + 1-tuple (Lisljys - lem) € ZN"+1 je., the indices of agent i and its m-
neighbors in accordance to the ofdering. We also define a transition system as a tuple
TS = (Q, Act,—>), where: @Q is a set of states; Act is a set of actions; — is a
transition relation with —C @Q x Act x Q. The transition system is said to be finite,
if @ and Act are finite sets. We denote by ¢ —— ¢’ an element (q,a,q’) €—, and
define Post(q;a) :={¢' € Q : (¢,a,q") €E—} for every ¢ € Q and a € Act.

3. Problem Formulation. In this section we provide the agent’s dynamic
model and formulate the basic requirements of their distributed discretizations.

3.1. System Dynamics. We consider multi-agent systems of the form
(1) T; :fi(a?i,xj)—&-vi,xi ERn,iEN,

that are governed by decentralized control laws. These consist of a feedback term
fi(+), that depends on the states of ¢ and its neighbors, which we compactly denote
by x;(= X)) = (Tjys-- -, Tjy,) € RYim (see Section 2 for the notation j(i)), and an
additive input term v;, which we call free input. The dynamics f;(z;,x;) are encoun-
tered in a large set of multi-agent protocols [22], including consensus, connectivity
maintenance, collision avoidance and formation control. In addition, they may rep-
resent internal dynamics of the system as for instance in the case of smart buildings
(see e.g., [3]), where the temperature z; € R, i € N of each room evolves according
to &; = Zjex\fi a;j(x; — x;) + v;, with N denoting the rooms adjacent to i, a;; the
heat conductivity between rooms i and j, and v; the heating/cooling capabilities of
the room. We assume that the functions f;(-) are bounded and globally Lipschitz,
i.e., there exist constants M > 0, L; > 0, and L, > 0 such that

(2) | fi(zi,x;)| < M,
(3) |fi(zi, x5) = fi(zi, y;)| < Lalx; =yl
(4) | i@ x5) = filyisx5)| < Lo|w; — yil,

N;
vmi7yieRn7Xj7Yj€R n7
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for all agents i € N. Furthermore, we assume that each input v; is piecewise contin-
uous and satisfies the bound

() [0; (t)] < Vmax < M,Vt > 0.

Assumption (5) is in part motivated from the design of cooperative multi-agent pro-
tocols which guarantee robustness of certain network properties with respect to the
free inputs. This enables the exploitation of the free inputs for high level planning.
A class of multi-agent systems of the form (1) which justifies this assumption has
been studied in our companion works [5], [7]. These provide sufficient conditions to
guarantee robust connectivity of a static agent network for an appropriate selection
of Umax, which necessitate the latter to satisfy (5).

3.2. Abstraction Requirements. Our aim is to derive a discrete transition
system for each individual agent in the coupled system (1), through an appropriate
state partition and a time discretization step 6t > 0. For the space discretization we
consider a cell decomposition S = {S;}1ez of each agent’s state space R™ (see also [17,
p 129]), namely, a family of uniformly bounded and connected sets S, I € Z, such
that int(S;) Nint(S;) = 0 for all I # [ and UiezS; = R™. Each agent’s abstraction is
based on the knowledge of its neighbors’ discrete positions up to a distance m € N
in the network graph, which is fixed throughout the paper. This distance specifies
the m-neighbor set of each agent and is called the degree of decentralization. Given
a cell decomposition {S;}iez of R™, we denote by I; = (I, lj,, ..., ljgm) € IV +1 (or
just 1;) the indices of the cells where agent ¢ and its m-neighbors befong at a certain
time instant and call it the m-cell configuration of i. Analogously, we denote by
1= (ly,...,Iy) € IV the cell configuration of all agents, which projects to the m-cell
configuration of each agent ¢ through the operator pr,(-) from Section 2 applied to
the cell-index set Z, i.e., 1; = pr;(1).

Informally, we consider for each agent ¢ the transition system whose states are
the cells of the decomposition, actions are the cells of the agents in its m-neighbor
set, and transitions are defined as follows. A final cell is reachable from an initial one,
if for all states in the initial cell there is a free input such that the trajectory of i will
reach the final cell at 6t for all possible initial states of its m-neighbors in their cells
and their corresponding free inputs. To guarantee that the abstractions can generate
infinite transition sequences, we require that the discretization is well posed, namely,
that every agent can perform at least one transition from any cell.

We illustrate the concept of a well posed space-time discretization in Figure 2.
For the depicted cases we consider the same 2-cell configuration for the 2-neighbor
set N? = {i,j1,j2} of i, but different dynamics. In case (i), it is possible to drive
agent ¢ to cell Sy at 6t for all initial conditions in Sy, irrespectively from where j;
and jo start in their cells and the inputs they choose. Assuming that this holds for all
2-cell configurations of 7 and for all the agents, we have a well posed discretization for
System (i). On the other hand, for System (ii), there are distinct initial conditions of
1 in Sj,, whose reachable sets at 0t lie in different cells, and thus the discretization is
not well posed for System (ii).

3.3. Discrete Transition Control Design. The derivation of the discrete
models is based as in [4] on the design of appropriate hybrid feedback laws in place of
the v;’s which enable the desired transitions. We next define specific control laws that
will be used therefore in this paper. Consider first a cell decomposition S = {S;}iez of
R™, a time step d¢ and a selection of a reference point z; ¢ for each cell S;, [ € Z. Also,
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6 D. BOSKOS AND D. V. DIMAROGONAS
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System (i): System (ii):
i=f; 1) (T4,25,) + vi 3 = fi, i) (T6,75,) + i i)
Tj =i, 0) (T1,T5) + V46) &5 =Fi1,G0) (T2 ,%52) + V4, i)

FI1G. 2. The space-time discretization is well posed for System (i) but not for System (ii).

pick an agent 4, an m-cell configuration 1; of 4, assume without any loss of generality
that J\/imJrl # ) (the general case will be provided in the next section), and consider
the initial value problem (IVP)

Xe(t) =Felxe(®), X0, () > Xjoyw, (8)st > 0,0 € N7,
(6) xe(0) =a1,.6, V0 € N" 71,

with the terms x,(-), £ € N defined as
(7) Xe(t) == 21,0, > 0,6 € NI,

The IVP (6)-(7) provides a solution of the unforced, i.e., without free inputs subsystem
formed by the m-neighbor set of agent 7. In addition, the agents are initiated from
their reference points in their cells and the neighbors precisely m hops away are
considered fixed at their corresponding reference points for all times. We will call
the i-th component x;(-) of the solution in (6) the reference trajectory of i. We also
compactly denote as x;(-) := (xj;(");---,Xjn, (*)) the corresponding components of
1’s neighbors. The latter provide an estimate of the neighbors’ possible evolution over
the time interval [0, §t]. Notice that agent ¢ can move along its reference trajectory
Xi(-) when initiated at z;, ¢ by applying the time varying feedback law

(8)  kina(twix;) == filxi(t),x; (1) — fiwi, %), t € [0,00), (w7, %;) € RNFD™,
in place of its free input v; in (1). Next, consider a function

9) Gi:Rso— [0,M,0< A< 1

and select a vector w; from

(10) W := B(vmax) C R".

By adding to the control law v; = k; 1, 1(-) in (8) also the term

(11) kv, 2(tws) =G (t)w;, t € [0,00), w; € W,

This manuscript is for review purposes only.
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it follows that agent 7, when initiated from z;, ¢, will move according to the trajectory
t = xi(t) +w; f(f ¢i(s)ds and reach the point = := x;(dt) + w; foét ¢i(s)ds inside the
ball depicted in Figure 3 at d¢t. In a similar way, it is possible to reach any point
inside this ball by a different selection of w;. Its radius

st

(12) T = ¢i(8)dsvmax,

0
is determined through the maximum value of the control part k; 1, 2(+) that is assigned
to the free input to increase the agent’s transition choices and is quantified through
the design parameter X\ in (9), which upper bounds the values of (;(-). Finally, we
also augment the component

1

(13) ki, 3(xio) 3:&(@1,6‘ — Tio), Tio € Sy,

to the suggested control scheme, namely, we consider the feedback law
(14) i, (t, @4, %55 040, wi) = ki g, 1(t 2, %5) + kg, 2(6w03i) + ki, 3(w40),

which is parameterized by the initial condition z;p € S;, and the vector w; € W.
Then, it follows from (1), (8), (11), (13), (14), and the IVP (6)-(7), that the agent’s
trajectory xz;(-) with z;(0) = z;0 and v; = k;, will be given by

t t
wi(t) = @0 + /0 Jilxi(s), x;(s))ds + U/i/o Gi(s)ds + %(wzi,a — Zi0)

e+ [ A+ [ s+ Tt - a0)

ot —t

ot (xiO - xli,G)'

t

=xi(t) + wi/o Ci(s)ds +
The latter implies that x;(0t) = x;(0t)+w; foét ¢i(s)ds, and thus, that agent ¢ can reach
the point x in Figure 3 at dt from any initial point x;o in the cell S;,. Analogously,
¢ can reach any other point in B(x;(dt);r;) from every initial condition in S;, by
an alternative assignment of the parameter w; in k; 1, (-, -, -; -, w;), and thus, perform a
transition to any cell which has a nonempty intersection with B(x;(0t);r;). It remains
though to verify that the magnitude of the feedback law evaluated along the trajectory
of the agent does not violate the constraint (5) on the available control. Space and
time discretizations which guarantee this requirement can always be obtained for
system (1) and are provided in Section 6. It is also noted that due to the assumption
Umax < M in (5), it is in principle not possible to cancel the interconnection terms. In
addition, the feedback laws k; 1, (-) depend on the cell of agent i, and specifically, on its
m-cell configuration 1;, through the reference point z;, ¢ in (13) and the trajectories
Xi(-) and x;(-) in (8), as provided by the initial value problem (6)-(7).

4. Abstractions of Varying Decentralization. Based on the previous sec-
tions, we proceed with the formal definition of well posed discretizations and the
individual discrete models that are associated to each agent. The formulation builds
on the controller design introduced in Section 3.3. However, it is provided in a more
abstract framework, in order to focus on the desirable properties of the control laws
for the candidate discretizations, which do not require their precise formulas and allow
the design of alternative feedback laws to the ones given in (14).

This manuscript is for review purposes only.
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8 D. BOSKOS AND D. V. DIMAROGONAS

— Z;(t)
— ()

— B(x:(0t); ;)

Fic. 3. Consider any point x inside the )yball B(xi(6t);r;). Then, we can assign a parameter
w; € W to the feedback law k; g, (-, ;- ws) in (14), so that the trajectory x;(-) of i with input
vy = ky 1, satisfies x4(5t) = x;(9t) + w; (ft Ci(s)ds =z € Sl;’ for each initial condition x,0 € Sy,.
Thus, through the selected w;, the controller k; ;, enables a transition from cell S, to S),, since the
latter is reachable for every initial condition x;o € Sy, . '

4.1. Agent Reference Trajectories. The following definition provides for each
agent 1 its reference trajectory and the estimates of its neighbors’ reference trajecto-
ries, based on i’s m-cell configuration.

DEFINITION 1. Given a cell decomposition S = {S;}iez of R™ and a reference
point x; g € S| for each | € I, consider an agent i € N, its m-neighbor set N™
and an m-cell configuration l; = (I;,1;,,...,lj ) of i. We define the functions x;(t),
X (1) == (s ()5 -+ -5 X, (B)), t > 0, through the solution of the following initial value
problem, specified by Cases (i) and (i) below:

Case (i). N]"*' = 0. Then, we have the initial value problem

Xe(t) =Fe(xe(t), Xj00, () -5 Xj(oyw, (1), > 0,0 € N,
(15) XZ(O) :xle,Gav‘e € Mm’
i

where j(0)1,...,j(¢)n, denote the corresponding neighbors of each agent £ € NJ™.
Case (ii). N™™ £ 0. Then, we have the initial value problem (6)-(7). <

REMARK 2. (i) In Case (i) for the IVP of Definition 1, the requirement N;" ' =
0 implies by Lemma 17(iii) in the Appendiz, that for each agent £ € N™ its neighbors
J(0)1,...,5(0)N, also belong to N/™. Hence, the subsystem formed by the agents in
/\_/;-m is decoupled from the other agents in the system and IVP (15) is well defined.
(ii) In Case (ii), the subsystem formed by the agents in NI™ is not decoupled from the
other agents in the system. However, by considering the agents in N7™ fized at their
reference points by (7), the initial value problem (6)-(7) is again well defined.
(i11) Apart from the notation x;(-) and x;(-) above, we use the notation Xéi(‘) for the
trajectory of each agent £ € N[™ . as specified by the IVP initial value problem of
Definition 1 for the m-cell configuration l; of i (with Xé() as defined by (7) when
/\f[n+1 #(0). We refer to x;(-) = Xf() as the reference trajectory of agent i and to
each Xéj (+) with ¢ € N\ {i} as the estimate of {’s reference trajectory by i. Whenever
a cell decomposition and a selection of reference points are given for system (1), the
IVP of Definition 1 is uniquely determined by agent i and its m-cell configuration I;.
In this case, we also refer to it as the l;-1VP.

EXAMPLE 3. In this example we demonstrate the IVPs of Definition 1 for m =
3, as specified by Cases (i) and (ii) for agents 5 and 1 of Figure 1, respectively:
Agent 5 (Case (i) X5(t) = fs(x5(t), x3(t)), Xs(t) = fa(xs(t), x2(t), xa(t)), X2(t) =
f2(X2(t)aX3(t))7 X4(t) = f4(X4(t))7 XN(O) = T, g = 5a3a274; Agent 1 (Ca/se (ZZ))

xi(t) = filkxa®), xe(t), x2(t), X6(t) = fo(xe(t): x1(t), x2(t), x5(t), x7 (), X2(t) =
fQ(XQ(t)vX?)(t)): X5(t) = f5(X5(t)7X3(t))7 X3(t) = fS(X3(t)aX2(t)7wl4,G)’ X7(t) =
f7(X7(t)aX6(t)>$l8,G); XK(O) =2,,G,k = 17672353377'

This manuscript is for review purposes only.
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ABSTRACTIONS OF VARYING DECENTRALIZATION DEGREE 9

We next characterize bounds for the deviation between the reference trajectory
of an agent’s neighbor, and its estimate obtained from the agent’s initial value prob-
lem. These refer to m-cell configurations of the agent and its neighbor where the
corresponding common agents belong to the same cells. Specifically, given m-cell con-
figurations 1, = (I;,1;,,. . "ljﬁ{n) and 1, = ([g,[j(g)l,...,Zj(Z)NF) of agents i € A and

¢ € N, respectively, we say that 1; and 1, are consistent, if l,, = I, for all K € N/*NN™.

DEFINITION 4. Given i € N, the continuous function «; : [0,0t] — R>q is called
a reference trajectory deviation bound for i, if for each £ € N; and consistent m-cell
configurations l; and ly of i and ¢, respectively, it holds that

(16) g (1) = x( (D] < ailt), vt € 0,6¢]. 4

Specific reference trajectory deviation bounds for the agents will be provided in Sec-
tion 5 by exploiting the bounds and Lipschitz constants of their coupling terms.

4.2. Individual Transition Requirements. We next provide the class of hy-
brid feedback laws that are assigned to the free inputs v; to obtain the discrete tran-
sitions. As the control laws in (14), they depend on the cells each agent and its
m-neighbors belong, and are parameterized by the agent’s initial conditions and a
set of auxiliary parameters, which are exploited to increase the transition choices. In
particular, let S = {S;}1ez and W be a cell decomposition and a nonempty subset
of R™, respectively. Given an agent i € N and a cell configuration 1; of 7, we con-
sider feedback laws k; 1, (t, z;, Xj; %40, w;) : [0, 00) x RVt 5 R™ parameterized by
Zio € 51, and w; € W, which are piecewise continuous on ¢t and globally Lipschitz
continuous on (z;,%;) (uniformly with respect to ¢t € [0,00), z;0 € S;, and w; € W).
We refer to each such control law as a globally Lipschitz W -parameterized feedback
law. The motivation for this definition comes from the fact that different parameters
w; provide alternative transition possibilities to the agent, as also discussed in Sec-
tion 3.3. Due to the uniform bound on the size of the cells in the decomposition, we
choose its diameter dp,.x, as the diameter of an open ball whose translation can cover
each individual cell. Thus, we can select a reference point z; ¢ for each cell with

dmax
(17) |z — x| < 5 Ve e S;,lel.

Motivated by the control design of the previous section, we provide conditions
which enable an agent to perform a discrete transition based on the knowledge of its
m-cell configuration. Recall that each agent aims to reach a point inside the ball with
center the endpoint of its reference trajectory and radius r; given by (12), which due
to (9) satisfies r; < vpmaxdt. From the latter and (17), the agent’s distance from its
reference trajectory will be bounded by a continuous function 3 : [0, §t] — R>( with

(18) d“;" < B(0); B(6t) < VmaxOt.

In order to define the agents’ individual transitions, we consider for each i € N/
the following system with disturbances:

(19) &y = fi(xs, dj) + v,

where dj,...,djy :[0,00) = R" (also denoted dy, £ € N;) are continuous functions.
This approach is inspired by [13], where a nonlinear system is modeled by means of
a piecewise affine system with disturbances. The following definition provides the
desired transition requirement, based on the auxiliary dynamics (19).

This manuscript is for review purposes only.
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DEFINITION 5. Consider a cell decomposition S = {Si}iez of R™, a time step dt,
a nonempty subset W of R™, an agent i € N, and continuous functions B(-), a;(-),
satisfying (18) and (16) of Definition /, respectively. Given an m-cell configuration
l; of i, a globally Lipschitz W -parameterized feedback law v; = ki, (t, &5, ;5 Ti0, w;), a
vector w; € W, and a cell index I} € T, we say that k; i, w;, U, satisfy the Transition
Requirement (TR), if the following hold. For each initial condition x;o € S, and
selection of continuous functions d¢ : R>o — R™, { € N; satisfying

(20) |de(t) = x¢ ()] < ai(t) + B(t), Vi € [0, 6t),

with X5 (), € € Ni as provided by the L-IVP, the solution x;(-) of (19) with v; =
ki, (t, 4, djs x40, w;), satisfies

(21) |2:() = xi' (8)] < B(t), Vi € [0, 1),
(22) 2:(0t) € Sy,
(23) |ki,li (t, x; (t), dj (t), xi0, ’LUZ)‘ < Umax YVt € [O, 5t] <

Note that when the Transition Requirement is satisfied, agent i can be driven to
Sy precisely at 0t under the feedback law k; 1, (+) corresponding to the given parameter
w;. The latter is possible for all disturbances satisfying (20), which capture the
evolution of i’s neighbors over the time interval [0, §t], given the knowledge of i’s m-
cell configuration. Indeed, notice that 3(-) bounds the distance of each agent from its
reference trajectory over [0,4t]. Also, recall that the deviation between the reference
trajectory of each £ € N; and its estimate by 4 is bounded by «;(+). Thus, the distance
between £’s trajectory x,(-) and the estimate x} (-) of its reference trajectory by i is
bounded by «;(-)+8(-). Some additional intuition behind the Transition Requirement
is given in the example of Figure 4, with degree of decentralization m = 3.

4.3. Well Posed Discretizations. We next define a well posed space-time dis-
cretization, for which the individual transition system of each agent ¢ is non blocking,
i.e., there is an outgoing transition from each state. This is formulated through the
condition that for each m-cell configuration of ¢, there exists a control law and a
successor state, such that the Transition Requirement of Definition 5 is fulfilled.

DEFINITION 6. Consider a cell decomposition S = {S;hiez of R™, a time step dt,
a nonempty subset W of R™, and continuous functions o : [0,8t] — R>o, i € N and
B :]0,0t] = Rx>q satisfying (16) and (18), respectively. We say that the space-time
discretization S — &t is well posed (for system (1)), if for each agent i € N and m-
cell configuration l; of i, there exist a globally Lipschitz W -parameterized feedback law
v = ki, (6, 24, x;; Ti0, w;), a vector w; € W, and a cell index . € T, which satisfy the
Transition Requirement.

REMARK 7. Due to the Transition Requirement, the definition of a well posed
discretization S — dt is associated with a selection of the set W, and the mappings
a;(+) and B(-). This selection will be often assumed implicitly in subsequent statements
and invoked when necessary.

Given a well posed space-time discretization S — dt and based on Definition 6, we
next define the discrete transition system of each agent.

DEFINITION 8. For each agent i, its individual transition system T'S; := (Q;, Act;,
—4) is defined as follows:
o ;=T (the indices of the cell decomposition)

This manuscript is for review purposes only.
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St REIEE
X' (8t) ﬂ Fdy(ot)
B(ot) e
: ‘ X?(‘st) .,::
” q{(ét
(81)
dmax "'
5(0) ot
L i
Zi,,G L,
ke 5(0) lz’? X, )
.-® X, (81)
"o" __.X;-i 5t)
mljz’G :t"‘

Ty G

J1

Fia. 4. This figure illustrates i’s reference trajectory X?() on the left. The area enclosing
the agent corresponds to all positions of i that satisfy (21). The restriction (20) imposed on the
acceptable disturbances for i is depicted through the larger area enclosing the reference point x;,
of £. The darker part of this area comprises of the points with distance from the (dashed) estimate

of £’s reference trajectory X? (t) by i no more than o;(t). Thus, given that the distance of ¢ from its

own reference trajectory X? (t) is bounded by B(t) (i.e., lies inside the closed dashed curve), € will
remain within the larger red area.

o Act; := TNt (the set of all m-cell configurations of i)
o For any l;,l; € Q; and l; = (I, 1j,,...,ljg.) € Acty, 1; ln 1. iff there exist k; y,,
w; with k5, w;, l; satisfying the Transition Requirement. <

In Definition 8, considering the m-cell configurations of each agent in its action
set, indicates that the agent’s transitions are affected by the discrete positions of its
m-neighbors. This is in accordance with the intuition provided in Section 3.3, because
the agent’s m-cell configuration affects the endpoint of its reference trajectory and
hence, the successor cells which intersect the ball in Figure 3.

REMARK 9. Given a well posed discretization S — 8t and an initial cell configura-
tion L= (ly,...,lx) € IV, it follows from Definitions 6 and 8 that Post;(l;; pr;(1)) # 0
for each agent i € N' (Post;(-) refers to the transition system T'S; of agent ).

According to Definition 6, a well posed space-time discretization requires the exis-
tence of a transition for each agent i and m-cell configuration of i. The latter reduces
to the selection of an appropriate feedback controller for ¢, which guarantees that the
auxiliary system with disturbances (19) satisfies the Transition Requirement. We next
establish correctness of the abstraction, by showing that individual agent transitions
which are initiated from compatible cell configurations are correctly executed by the
continuous system (1). In particular, given a discrete configuration of all agents and
a corresponding transition for each of them, one can assign a local feedback law to
every agent and guarantee that the resulting closed-loop system will simultaneously
execute all these transitions. At the same time, the magnitude of the agents’ control
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laws evaluated along the closed-loop solution will not exceed the bound vyax in (5)
during the transition interval.

PROPOSITION 10. Assume that the space-time discretization S — dt is well posed
for system (1), consider an initial cell configuration L= (l,...,ly) € IV, and select a
successor state I € Post;(l;; pr; (1)) for each agent. Then, there exist globally Lipschitz
W -parameterized feedback laws

(24) Vs = ki,pri(l) (ta Ly L5 Ti0, wi)vl € N7

and wy,...,wx € W, such that for each initial condition x(0) € RN™ with 2;(0) =
T € Sy, i € N, the solution of the closed-loop system (1), (24) is well defined on
[0, 6t], and satisfies

(25) 24(5t,2(0)) € Sy, Vi € N,
(26) |ki,pri(l) (t, xi(t), T; (t); X0, wl)| < Umax, Vt € [0, (Sﬂ,i eN.

Proof. Indeed, consider the successor states (cell indices) I}, i € N selected in
the statement of the proposition. Since the discretization is well posed, there exist
continuous functions «; : [0,dt] = R>q, ¢ € N and S : [0,dt] — R>( satisfying (16)
and (18), respectively, such that the requirements of Definition 6 are fulfilled. Thus,
by the definition of the operators Post;(-), i € N we can select for each agent i € N
a globally Lipschitz W-parameterized feedback ki,pri(l)(-) and a vector w; € W, such
that k; 1,, w;, I} satisfy the Transition Requirement.

Next, we pick for each agent ¢ an initial condition x;0 € S;; and notice that due to
the Lipschitz assumption for the control laws, the solution of the closed loop system
is defined for all ¢ > 0. Furthermore, it follows from (17) that |z — zy,,¢| < %= for
all 1 € N. Hence, by continuity of the solution of the closed-loop system (1), (24) we
deduce from (18) that there exists ¢ € (0, §t], such that

(27) s (1) = xi* (1)] < B(2), V¢ € [0,0],

for all i € N, where z;(-) is the i-th component of the solution and x¥(-) is the
reference trajectory of i corresponding to the m-cell configuration 1; = pr;(1) of i,
with initial condition x¥(0) = z;, . We claim that for each i € A, (27) holds for
all t € [0,6t). Indeed, suppose on the contrary that there exist an agent « € AV and
a time T € (0,6t) such that |z, (T) — x(T)| > B(T), where 1, = pr,(1), and define
7= sup{t € (0,6t] : |zi(t) — x¥(t)] < B(t),Vt € [0,7],i € N'}. From the latter and
(27), it follows that 7 is well defined, 0 < 7 < 4t, and that there exists £ € A/ such
that

(28) lze(7) = X (7)| = B(7).
Next, notice that by the definition of 7, it holds that
(29) 2w (t) = xi (1)) < B(1), ¥ € [0,7], 5 € N

Also, since for each r € Ny the m-cell configurations 1, = pr,. (1) of s and 1, = pr,(1) of
¢ are consistent, it follows from (16) and the fact that 7 < dt, that |y (¢) — xX= ()| <
ay(t), for all ¢t € [0, 7], K € Ny. Hence, we obtain from the latter and (29) that

(30) |2 (t) = X0 (8)] < B(E) + (1), VE € [0,7], 1 € N

This manuscript is for review purposes only.
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By setting d,;(t) := z4(t), t > 0, k € Ny, it follows from standard uniqueness results
from ODE theory, that z,(-) is also the solution of the system with disturbances (19),
with @ = £, v; = ke, (t,¢,d;(e); 2e0,we), and initial condition x¢o € S;,. Thus, by
exploiting causality of (19) with respect to the disturbances and observing that due
to (30) the disturbances satisfy (20) for all ¢ € [0, 7), it follows from (21) and the fact
that 7 < 0t, that |z(7) — X;‘z (1)] < B(7), which contradicts (28). Hence, we conclude
that (27) holds for all ¢ € [0, 6t).

Next, by using the same arguments as above, we can deduce that for each agent
i, the i-th component of the solution of the closed loop system (1), (24), is the same
as the solution of system (19) for ¢, with disturbances d,(-), & € N; being the com-
ponents z, (), k € N; of the solution corresponding to i’s neighbors. Furthermore, it
follows that the disturbances satisfy (20). Hence, from the Transition Requirement,
and the fact that the components of the solution of the closed loop system and the
corresponding solutions of the systems with disturbances are identical, we obtain that
(25) and (26) are satisfied. The proof is now complete. 0

4.4. Exploitation of the Individual Subsystems. We next elaborate on the
exploitation of the agents’ individual models by discussing a case where control syn-
thesis can be performed under guaranteed computational complexity reduction. A
rigorous framework to address this problem will be given in a subsequent work.

Consider a tree (or more generally acyclic) network structure and assume that the
agents’ tasks are prioritized according to their inverse distance from the root node.
Hence, the tasks of the root agent are prioritized compared to its children nodes and
so forth. Then, by assuming agent ¢ to be the root of the tree, it follows that it
remains unaffected by the coupling dynamics and its transition requirement reduces
to a simplified variant of the Transition Requirement without disturbances. Thus, we
can first select the set of discrete paths of 7 which satisfy its specification and as a
next step, use all these paths as actions for the transition systems of i’s children in
order to determine the paths which satisfy their plans. Note that for any selection
of the decentralization degree, the m-neighbor set of ¢’s children consists exclusively
of i. Proceeding analogously, and considering a descendant ¢ of i, we use all the
selected paths of the ancestors of £ up to m hops up in the tree, in order to determine
all the satisfying paths of its specification. This approach can reduce significantly
the memory storage required for the transitions compared to the centralized case. In
addition, the specifications restrict the agent’s acceptable transitions and hence, the
possible actions in the m-cell configurations of the descendant agents.

5. Reference Trajectory Deviation Bounds. This section is devoted to the
derivation of explicit reference trajectory deviation bounds, that are introduced in
Definition 4. In Lemma 11 below, we provide conditions on the network structure in
a neighborhood of an agent i, which guarantee that for consistent cell configurations,
the reference trajectories of i’s neighbors coincide with their estimates by 4.

LEMMA 11. Assume that for agent i € N it holds N/"** = 0, and let I; be
an m-cell configuration of i. Then, for every ¢ € N; with NJ"' = 0, and m-cell
configuration l, of £ consistent with I;, it holds that xé“ (t) = X? (t), for all t >0, with
Xé¢(~) and X?(') as determined by the IVP of Definition 1 for l, and l;, respectively.

Proof. The proof is given in the Appendix. ]

Despite the result of Lemma 11, in principle, the reference trajectory of each
agent’s neighbor and its estimate through the initial value problem for the reference
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trajectory of the specific agent do not coincide. Explicit bounds for their deviation
are given in Proposition 13 below, whose proof requires the following auxiliary lemma.

LEMMA 12. Leti € N, £ € N, and L;, b, be any consistent m-cell configurations
of agents i and £, respectively. Also, let t* be the unique positive solution of

. L2
(31) el2t” (L2 + 2) t* —1=0,
Ll max
with
(32) Niax := max{N; : i € N'}.

Then, for each xk € N;"~' (N;*~1 € N™ by Lemma 17(i)) it holds that:
(33) i (1) = Xt (8)] < Mt vt € [0,¢7],

where x%(-) and x%(-) are determined by the initial value problem of Definition 1 for
the m-cell configurations l; and ly, respectively.

Proof. The proof is given in the Appendix. ]

PROPOSITION 13. Consider the agents i € N, £ € N;, and let I; and I, be any
consistent m-cell configurations of i and £, respectively. Then, it holds that

(34) IXE (1) = x¢ (D] < Hu(2), Y € [0,17],

where t* is given in (31), the functions Hi(-), k > 1, are defined recursively as
t

B9 H(0) =M 205 H(0) = [ HI L N Hoi ()52 0
0

and x4 (), X?(-) are determined by the initial value problem of Definition 1.
Proof. The proof is given in the Appendix. 0

We next provide some linear upper bounds for the functions H,,(-) above, which are
used for the derivation of acceptable discretizations. Let ¢ € (0,1) and define

_ L2
36 t:= t>0:el2t — (L ‘2>t1<0}.
( ) Sup{ ‘ ( 2+CLI\/]VmaLx

Then, it follows that

(37) 0<f<tr

where t* is defined in (31), and the function H,,(-) given in Proposition 13 satisfies
(38) H,,(t) <& tMt,Vt € [0,1].

Hence, if we select each function a;(+) in Definition 4 as a;(+) = «a(+), with

(39) aft) := cMt,Vt € [0,6t]; c:=e™ !,

it follows from (37), (38), and Proposition 13, that the neighbor reference trajectory
deviation bound (16) is satisfied for all 6t € (0,].

REMARK 14. Due to (39), for any fized ¢ € (0, 1), the reference trajectory devia-
tion bound decreases exponentially with respect to the degree of decentralization.

This manuscript is for review purposes only.
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6. Well Posed Space-Time Discretizations. In this section, we exploit the
controllers from Section 3.3 to provide sufficient conditions for well posed space-time
discretizations. In particular, it is shown that for any system with bounded and
globally Lipschitz dynamics of the form (1), and the hard input constraints (5), we
can always select a well posed discretization S — d¢t. This requires that each agent’s
transition system is nonblocking, namely, that for each m-cell configuration of the
agent, the Transition Requirement is fulfilled for at least one successor cell. To verify
this for the suggested discretizations, we select the function S(-) in Definition 5 as

rax (0t — 1)

Amaxt, t € [0, 6],
951 ) e ]

(40) Blt) =
where the parameter X is introduced in (9) and provides the upper part of the free
input that is used for reachability purposes.

6.1. Sufficient Conditions. As in the previous sections, given a cell decompo-
sition {S;}1ez of R™, we consider a reference point z; ¢ satisfying (17) for each cell,
and the associated reference solutions x;(-) of the initial value problems for the m-cell
configurations of each agent i. Leveraging the corresponding feedback laws (14) we
derive sufficient conditions for well posed discretizations in the following theorem.

THEOREM 15. Consider a cell decomposition S of R"™ with diameter dmax, a time
step Ot, the constant r; defined in (12), the parameter X in (9), and let A € [0, \]. We
assume that dmax and 0t satisfy the following restrictions:

. - (1 - A)'Umax
41 ste (o, t, &
( ) ( i { Ll V ]Vmax(C + AUmax) + )\LQUmax
. 2(1 — N)vmaxdt
dmax S 07 a2 1 - A max5t
( e { T (v N+ Lyt 2L

(42) (L1 v/ N (6M + M) + Aoty )12 }} :

with Ly, La, M, vmax, ¢, and t, as given in (3), (4), (2), (5), (39), and (36), re-
spectively. Then, the space-time discretization is well posed for (1). In particular, for
each agent i € N and cell configuration l; of i we have

(43) POSti(li; ll) D) {l cTl: Sl n B(XZ((%), ’I’i) 75 @}7
where r; s defined in (12) with

(44) Git) ==\

Proof. According to Definition 6, to prove that the discretization is well posed,
we specify continuous functions 8(-) and ;(+), © € N, satisfying (18) and (16), respec-
tively, so that (43) holds for all i € N and I; € ZV:i"*!. We pick $(-) as in (40) and
a;(*) = a(-), for all i € N, with a(-) as given in (39). Notice first that 3(-) satisfies
(18). Due to the requirement that 6¢ < ¢ in (41) and the discussion below (39), the
functions «;(-) satisfy (16). Thus, the requirements of a well posed discretization for
B(-) and o (-) are fulfilled. Next, let i € A and 1; € ZV"+1. To verify (43), we need
to show that for each I} € Z with Sy N B(x;(dt);7;) # 0, there exists a transition

l; —l>z I/ in T'S;. Therefore, consider the globally Lipschitz W-parameterized feed-
back law &;1,(-) given by (14) and let Ij € T with S N B(x;(0t);7;) # 0. According
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to Definition 8, to show that [; —ln I}, we need to pick w; € W so that k;y,, w;, I}
satisfy the Transition Requirement. Let z € Sy, N B(x;(dt); ;) and select

x — x;(0t)
Aot

with A as in (9). From (12) and (44), |w;| < y# < Umax. Hence, by (10), w; € W. To
verify the Transition Requirement let z;o € S;,;. We show that the solution z;(-) of
(19) with v; = k; 1, (¢, x5, d;; 240, w;) satisfies (21), (22), and (23), for any continuous
dj,, ..., djy, satisfying (20). We break the proof in the following steps.

STEP 1: Proof of (21) and (22). By taking into account (19), (14), (8), (13), (11)
and (44) we obtain for any continuous dj,,...,d;,, the solution z;(-) of (19) with
vi = ki, as () = wio + [y (fi(wi(s),d;(s)) + ki, (5, 24(5), dj (8); 20, ;) )ds = w0 +
Jo (Fixi(s), x5 (5))ds + 3y (w16 = wio) + dwi) ds = @io + xi(t) — @16 + % (@00 —
Zio) + tAw; = x;(t) + %(Iio — 1y, ¢) +FtAw;, t > 0. Hence, we deduce from (17) that

Ot — t)dmax
(46) |z () — xa(t)] < (2751 + tA\Umax, Vt € [0,0t),

which by (40) and (9) establishes (21). Furthermore, we get from (45) that x;(dt) =
Xi(0t) + 6thw; = x € Sy, and thus, (22) also holds.

STEP 2: Estimation of bounds on ki, 1(-), ki 2(-), and k; 5, 3(-) along the solution
z;(+) of (19) with v; = ki, and dj,,...,d;, satisfying (20). We first show that

JIN;

Amax ot —t -
oot (62 (6), dy (1)) <L1y/Nowan (;&) +(eM + )\vmax)t)

(47) + Ly (W + /\vmaxt> ,Vt € [0, 0t].

Indeed, due to (8), we have that

Fige1 (i), d; (1) =[£i 0 (), x5 (1) — filwi(t), x;(t))]
(48) + i), x;(1)) = fi(i(t), d; (1))].
(

For the second difference on the right hand side of (48), we obtain from (3), (20), (32),

f
(39), and (40), that |fi(z:(t), x;(8) = fi(xs(t), d;())] < Li(Z2 (alt) + B(1)?)? <

Lp/Nmax(% + (€M + AMmay)t). For the other difference in (48), it follows

from (4) that [fi(z(t), x;(£)) — fi(xi(t), x; ()] < La|(xi(t) + thw; + (1 = ) (wio —
z1,.¢)) — xi(t)| < Lo (M + AUmaxt), where x;(-) is evaluated in Step 1. Conse-
quently, from the derived bounds on the differences of the right hand side of (48), we
get (47). Next, for k; 1, 2(-) we have from (10), (11), and (44), that

(49) |kiv;,2(tws)| = |Aw;| < Avmax, VE € [0, 6t],w; € W.

Finally, by recalling that x;, ¢ satisfies (17), it follows from (13) that

1 dma
(50) |kin, 3(xi0)| = Emo — 2,6 < = V0 € S,

= 20t

STEP 3: Verification of (23). In this step we exploit the bounds from Step 2 to show
(23) for any dj,,...,d;, satisfying (20). Due to (14), (47), (49), and (50), it suffices

JIN;
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to show that L, \/Nmax(% + (eM + AMmax)t) + % + Lz(% + ANUmaxt) +
AVmax < Umax, for each ¢ € [0,0¢]. Since the left hand side of this inequality is linear

with respect to t, we only need to verify it for ¢ = 0 and ¢ = §t, which follows in both
cases from (42). Hence, (23) is also fulfilled and the proof is complete. d

From the involvement of the parameter ¢ given by (39) in the acceptable d¢t and
dmax, it follows that an increasing degree of decentralization allows the selection of
coarser discretizations. For instance, assume that the system parameters and selected

3 T Iy (1=X\)Vmax :
A, A, and t are such that ¢ > SO/ ey CRTS Y Fv— and the maximum value of dax

over all possible 0t is obtained through the second element of the min in (42), i.e.,
Amax = 2(1 — X\)Vmax0t — 2(L1v/Nimax (€M + Mmax) + ALaUmax)0t2. Then, it follows
(1=X\)v?

from (41) and (42) that this value will be dyax = TEV/ A IS VTS S WY S and
2
increase close to A2V for large degrees of decentralization m. This

L1V Nmax AVmax+AL2VUmax
observation suggests that it is not desirable to select m very large, in the sense that

beyond some value, increasing it to m+1 results to an additional state dimension that
is not sufficiently compensated by a small improvement of the discretization diameter.

We also present an improved version of Theorem 15, when the conditions of
Lemma 11 are satisfied for all agents, namely, when for any m-cell configuration of
each agent, the estimated reference trajectories of its neighbors coincide with their
reference trajectories for consistent configurations.

THEOREM 16. Assume that N/t = () holds for alli € N'. Then, the result of
Theorem 15 remains valid for any 0t and dmax satisfying

(1 — A)Umax
51 ot e (0, -
( ) ( Ll Vv Nmax/\vmax + >\L2'Umax

d € (O min{ 2(1 = A)Umaxdt
e ' 1+ (L1v/Nmax + Lo)ot’
(52) 201 — N)vmaxd — 2(L1 v/ Nonae Mimax + ALgvmax)atQ}} .

Proof. Since by hypothesis N7 = NJ"™! = {) for each pair of agents i € N,
¢ € N, it follows from Lemma 11 that for corresponding consistent cell configurations
1; and 1, it holds that X?’ (t) = x? (t), Vt > 0. Thus, we can select for each agent i € N
the reference trajectory deviation bound «;(-) = 0. The remaining proof follows the
same arguments employed for the proof of Theorem 15 and is therefore omitted. 0O

6.2. Exploiting the Abstractions for Control Synthesis. Here we describe
how Theorems 15, 16, and Proposition 10 can be used to synthesize discrete plans
and project them to sequences of local feedback controllers to enable their correct low
level execution by the agents.

Step 1. Consider the agents’ Lipschitz constants L1, Ly, dynamics bounds M, vpax,
and select a degree of decentralization m and parameters A\, A. Depending on the
selection of m and the network structure, use either Theorem 15 or Theorem 16 to
obtain the acceptable discretization values. If Theorem 15 is invoked, then select also
a constant ¢ € (0,1) and evaluate ¢ and ¢ by (36) and (39), respectively. Finally,
select dyax — 0t and a corresponding cell decomposition S.

Step 2. Fix a reference point for every cell of the decomposition and derive the
transition system T'S; of each agent i as follows. For each m-cell configuration 1; solve
the IVP of Definition 1 to obtain the endpoint y;(dt) of agent #’s reference trajectory
and specify the cells which intersect B(x;(dt);r;), i.e., the transitions to the cells given
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18 D. BOSKOS AND D. V. DIMAROGONAS

by the right hand side of (43). It is noted that the reference trajectories need not be
stored and the control laws for the transitions are not calculated at this step.

Step 3. Given a high level specification for each agent, find a discrete plan 1°1'1% - . .|
i.e., a sequence of cell configurations 1* = (If,...,I%), K = 0,1,... such that lf“ S
Post; (1#;1F), with 1f = pr,(1¥) for all i € A/, corresponding to a sequence of transitions

0] 1

19 Ln 1} in [2--. for each agent which satisfies its specification.

Step 4. Determine the continuous control laws for the implementation of each agent’s
discrete plan as follows. For each transition [f in lf‘H, find again the solution
of the IVP corresponding to the m-cell configuration 17, and obtain the reference
trajectories x;(-) and x;(-) of i and its neighbors. Then, pick any = € B(x;(dt);r;) N

S)<+1, compute the parameter w; from (45) and use x;(-), X;(-) to determine the

corresponding feedback law &; yx (-, -, - -, w;) from (14), (8), (11), and (13).

Due to Proposition 10, the satisfying plan from Step 3 is correctly executed by
the controllers evaluated in Step 4. Furthermore, Step 4 can considerably alleviate
memory storage requirements, since the reference trajectories and control laws are
stored only for the satisfying plans and not for the whole transition systems.

7. Example and Simulation Results. As an illustrative example we consider
the coordination of five interconnected agents in R? which need to fulfill certain reach-
ability goals. Agent 3 is an autonomous surface vehicle (ASV) inside a straight river
of width 2L, with a sinusoidal velocity profile of maximum speed v'V_ and direc-

3 A max
tion ¢''v € R?, with |¢"'¥] = 1 (motivated by the single agent example in [12]). Its
motion 3 is governed by the dynamics i3 = v!lV_cos (W) ¢V + v3 and

it is always possible to assign inputs vs(-) to constrain the agent inside the river.
The other agents are unmanned aerial vehicles (UAVs) operating at the same height
close to the ground. Agents 2 and 4 are coupled with agent 3 through the dynamics
T; = satgp(xg — ;) +v;, © = 2,4, and agents 1 and 5 are coupled with 2 and 4 by
&; = sats,(x; —x;) +vs, (4,7) = (1,2),(5,4), where p > 0 and sat,(z) := z, if |z < p,
sat,(x) 1= \TP'I‘?:’ if |z| > p. Assuming that the additive inputs v; and the river velocity
are bounded by Umayx = v1V_ = p, it is not hard to show that if agents 2, 3 and 3, 4
are initially located within a distance of at most 3p, they will maintain this property
during the system’s evolution. This allows them to exchange information and mea-
sure their relative states which are used for their feedback loop. Analogously, agents
1, 2 and 4, 5 will maintain a distance of at most 5p. Thus, the network will remain
connected during the system’s evolution, allowing the agents to exchange information
on the missions. We assign the team specification that every agent should reach a
target box precisely at the end of the common mission horizon, which is the time in-
terval [0,2.5] (see Figure 5). The agents’ dynamics have the form (1) and are globally
Lipschitz and bounded. Thus, by selecting the degree of decentralization m = 2, the

conditions of Theorem 16 are satisfied. Assuming also that ZULZ‘;‘ < 1, we obtain the
dynamics bounds and Lipschitz constants M := 5p, L1 := 1, and Ly := 1 for the

agents. We next choose the constant A = 1 in (9), A = 0.4 and obtain from (51) and
(52) that 0 < 6t < 1=2 and 0 < dpay < min{ 2=, 9((1— )6t — (14 A)6t2)p}. For

[ESY 125t
the simulation results we pick p = 5 and focus on the system’s behavior for ¢ € [0, 2.5].
Since dpax is maximized for 0t = 2(11;3\), we select 0t as the closest value to 2(11;&\) to
2.5

obtain an integer number of time steps NT := and the maximum corresponding
dmax to partition R? using square cells.

To derive a satisfying discrete plan we use the agents’ individual transition systems

ot
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through the following sequential process. First, we exploit the transition system of
agent 3 which is not affected by any coupling constraints to obtain all the discrete
paths, i.e., cell index sequences I3 - - - 1T of consecutive transitions which satisfy its
reachability specification. To obtain the relevant transitions, we evaluate the indices
Q5 = POStg(Qg_l) of the agent’s reachable cells at each time xdt, x = 0,1,...,NT,
using the notation Q9 := {I9} and the convention Post3(Q3) := Uj,eq, Posts(ls;l3) (I3
is a 2-cell configuration of agent 1, since the agent has no neighbors). Thus, UNZ Q%
is captured through the blue cells in Figure 5(i). Then, we pick all cells from QY7
which lie in T3 to determine the agent’s satisfying paths, depicted with the yellow cells
in Figure 5(i), with a backward reachability algorithm. We next use the satisfying

0 0

Ag94 E

i
[T AR AL

u[HH

T
T

St

(iii) (iv)

Fic. 5. (i) The reachable cells of agent 3 are depicted in blue and the ones which reach its
target box in yellow. (i) All reachable cells of agent 2 based on the satisfying ones of agent 3 in (i)
are in blue. The corresponding cells which satisfy the agents’ specifications are in yellow and green,
respectively. (iii) All reachable cells of agent 1 based on the satisfying ones of agents 2 and 3 in (i)
are shown in blue. The cells of agents 1, and 2, 3, depicted in yellow, and green, respectively, lead
to the simultaneous satisfaction of their reachability goals. (iv) Corresponding simulation results for
agents 5, 4, and 3, with the satisfying cells of agent 3 marked, to be distinguished from those of 4.

paths of 3 to obtain the reachable cells )5 of agent 2 at each time xdt. The cells with
indices UNT Q% are shown with blue in Figure 5(ii). Then, we determine the paths
of agent 2 which lead to its target box, and the corresponding paths of 3, depicted
in Figure 5(ii) with the yellow and green cells, respectively. Analogously, we use the
satisfying paths of agents 2 and 3 as actions in the transition system of 1 to determine
its reachable cells. Then, we obtain through backward reachability the satisfying
paths of 1, depicted with the yellow cells in Figure 5(iii), and the corresponding
ones of agents 2 and 3 shown in green. The exact same procedure is performed for
the specifications of agents 4 and 5, as shown in Figure5(iv). It is observed from
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Figures 5(iii) and 5(iv) that we can find a common path among the ones of agent 3
which provide satisfying plans for agents 1 and 2 (green cells of 3 in Figures 5(iii)) and
the ones of agent 3 which provide satisfying plans for agents 4 and 5 (green marked
cells of 3 in Figure 5(iv)). This implies that the specifications are satisfied by all
agents simultaneously, namely, the team mission is feasible. The agents’ successor
cells were evaluated using Step 2 of the procedure outlined in Section 6.2, without
storing their reference trajectories or evaluating the control laws for the transitions.
As described in Step 4 of the same procedure, the latter are computed once a satisfying
discrete plan is selected. The simulation results were implemented in MATLAB with
a running time of approximately five minutes, on a PC with an Intel(R) Core(TM)
i7-4600U CPU @ 2.10GHz processor.

8. Conclusions. We have provided abstractions for multi-agent systems under
a varying degree of decentralization and modeled their transitions by exploiting a sys-
tem with disturbances that capture the evolution of each agent’s neighbors. Sufficient
conditions for the space and time discretization quantify the reachability capabili-
ties of the symbolic models. Their transitions are realized by hybrid feedback laws
which modify a part of the agents’ couplings and navigate them to their successor
cells. Ongoing work includes the formulation of online abstractions for heterogeneous
agents with updated choices of the discretization and the consideration of higher or-
der dynamics. We also aim at studying robustness of the approach with respect to
measurement and actuator errors, both from a continuous and a discrete perspective.

9. Appendix. The Appendix includes omitted proofs from Section 5 and the
following Lemma, which establishes useful properties of the agents’ m-neighbor sets.

LEMMA 17. (i) For each agent i € N, neighbor £ € N; of i, and m > 1, it holds
that NJ"~1 C NI™.
(ii) For each i € N, m > 1, and £ € N/™, it holds that Ny ¢ N/™ L.
(iii) Assume that for certain i € N and m > 1 it holds N]*** = (). Then, for each
¢ € N™ it holds that Ny C NI™.

Proof. For the proof of Part (i), let any i’ € N;""'. Then, since NJ" ! =
Uzlz_ol # either i/ = £, which implies that i’ € N;, and hence, also that i’ € N/, or
S ./\/[ml for certain m’ € {1,...,m—1}. If i/ = 4, then i € N™ and hence, it remains
to consider the case where 7/ # i and i’ € N for some m’ € {1,...,m—1}. The lat-
ter implies that there exists a shortest path g ...4%,, with ig = ¢ and %,,, = £ from ¢’
to £. Then, since i,y = £ € Nj, it follows that g . . . 4,7 is a path of length m’+1 < m
from i’ to ¢. Thus, either it is a shortest path, implying that ' € A/im’+1 C N™, or,
since i’ # 1, there exist 0 < m” < m’ 4+ 1 and a shortest path of length m” joining ¢’
and 7. In the latter case, it follows that i’ € /\/im”, and hence, again that ¢/ € /\7{”.
The proof of Part (i) is now complete.

For the proof of Part (i), let £ € N/™ and i’ € Ny. If i/ = i then i’ € N/" .
Otherwise, since £ € N/™, there exists 1 < m’ < m and a path 4g.. .4, of length m’
with ig = £ and i,y = 4, implying that i'ig ... 4., is a path of length m’ +1 <m +1
from 4’ to i. Thus, it follows that i’ € ./\7im+1.

For the proof of Part (iii), let £ € N and i/ € Ny. If £ = i or i’ = 4, then
the result follows directly from the facts that N; C N/™ and i € N/, respectively.
Otherwise, there exists 1 < m’ < m such that £ € /\/;-m/, implying that there exists a
path g ... 4%, of length m’ with iy = £ and 4,,, = i. Thus, since i’ € Ny, we get that
i ... 1y is a path of length m’+1 from 4’ to i. If it is a shortest path, then it follows
that m’ < m, because otherwise, since i’ # i, we would have a shortest path of length
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m + 1 joining 4" and 4, implying that N;"™' # () and contradicting the hypothesis of
Part (iii). Hence, it holds in this case that i’ € /\[;ﬂﬂ for certain 1 < m/ < m and
thus, that ¢/ € A", Finally, if i’ig ... 4, is not a shortest path, then there exists a
shortest path of length 1 < m” < m joining ¢’ and 4, which implies that i € /\/;m”,
and hence, again that i € /™. 0

We next give the proofs of Lemma 11, Lemma 12, and Proposition 13 in Section 5.

Proof of Lemma 11. Since ./\/;-m‘*'1 = (), it follows that the initial value problem
which corresponds to the m-cell configuration of agent ¢ and specifies the trajectory
X; (+) of ¢ is provided by Case (i) of Definition 1, namely, by (15). We rewrite (15) in
the compact form

(53) X F( ) (fn17'~'7fn]vlyn+1)v X = (Xn1v~~'7Xanm+1)a

with initial condition x4, (0) = z1,,.¢, v = 1,.. ,ZS[Z” + 1, and K, being the v-th
index of N;™ according to the total ordering < of A" (see Section 2). Next, since
Nt = ), we similarly obtain the initial value problem associated to the m-cell

configuration of agent ¢ to specify X?(-), as

(54) Xl FI(XI) Fl (f 7""f"6Nm+1) (Xﬁ,l""’XKEVZnJrl)’
with initial condition x./ (0) = 21 @, v = 1,...,N/® + 1, and &/, being the cor-

responding v-th index of Né”. Taking into account that ./\fierl = (), we get from
Lemma 17(i) that Nj* ¢ N"™' = N UN™ = A", Thus, assuming without
loss of generality that the inclusion is strict and reordering the components y,,,,
v=1,...,N™+1, (53) can be cast in the form

(55) X; = Fi (X)), Xa = Fy(X1, X2),

with X7, Fi(+) as in (54), Xo = (X“Ngmrz’ .. "X'ﬁzvimﬂ)’ Fy, = (f“NE”Jr?’ .. .,f,,mlmﬂ),
and the same initial condition as for (54) for the X; part, due to the consistency of
1, with 1;. Hence, since the X; part of the solution in (55) is independent of X, the
reference trajectory Xze(') of agent ¢ given by (54) and its estimate X?‘(.) obtained
from the first subsystem in (55) coincide. ad

Proof of Lemma 12. For the proof, it suffices to show that (33) holds for all agents
k€ N™ NN}, since by Lemma 17(i) we have N;"~' C N/™. We distinguish the
following cases.

Case (7). NJ"T1 # 0 and N # ). For Case (i) we consider the following subcases
for each agent K € N/ ﬁ/\/m

Case (ia). k € (N ﬂj\/m) (N UNJ™). In this case, it follows from (7) that either
Xi() =@y, g or X¥ () = 21, . Without loss of generality we assume that x € N}~ !,
and thus, x'(-) is specified by the IVP (6), and x%(-) = 2, . Then, we get from (2)
and consistency of 1, with 1;, which implies that x(0) = x¥(0) = 2;_ ¢, that

(56)  xi(t) = xk ()] = lan,.6 — X ()] < ; £ 00 (8), X ) (8))ds < MVt > 0.

Case (ib). k€ (N7 N N™) \ (MJ™ UNJ"). Notice first, that (N NA™)\ (N U
Ny € NP N and thus, & € N"7! and & € NJ"~'. Hence, we obtain
from Lemma 17(ii) t hat N, C N/ and N,, C Nj*, respectively, implying that N, C
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N™ AN, Consequently, it follows from Definition 1 that both x;i(ﬁ)(-) and X;Z(H)(-)
are well defined. To show (33) for all x of Case (ib) we will prove the following claim.
Claim I There exists 6 € (0,¢*), so that (33) holds for all ¢ € [0,0] and & of Case (ib).
To show Claim I, let § € (0,¢*) with

(57) § < mi 1 In2
min R ———
= AL/ Nowe Lo [’

and k € (N NN\ (NP UNT™). Since 1, is consistent with 1; and N,, € N/* NN,

we have that x(0) = x%(0) = z;, g, for all v € N,.. Thus, by exploiting (2), (32),
and (57), we deduce that

M
1; Iy s
(58) Xy () = X (O] < 2M /Nt < 7,91 € [0,).

Next, we obtain from (3) and (4) that |xL(t) — x%(¢)] < fOt(L2|X};' (s) — x¥(s)| +
L1|X;"(H)(s) - x;‘(n)(s)DdS, which due to (58), implies that

t
69 bk k0] < 4+ [ Lalds) - xi(o)lds, e € 0.9
0

To bound |xk(-) — x¥(-)|, we use the following version of the Gronwall Lemma.
Fact I. Let A : [a,b] — R be a continuously differentiable function with A(a) = 0 and p

a nonnegative constant. If a continuous function y(-) satisfies y(t) < A\(t) + fj uy(s)ds
on [a,b], then, on the same interval it holds that y(t) < f; et (=) \(s)ds. <
By exploiting Fact I, we obtain from (59) and (57) that

t
(60) () = x ()] < / et s < M, ¥t € [0,0),
0

which concludes the proof of Claim I. We next show that (33) also holds for all
t €10,t*] and & of Case (ib). Assume on the contrary that

(61) i (T) = x5 (T)| > MT,

for some £’ € (N* NN\ (N UN™) and T € (0,¢*], and define

36122) max{f € [0, 7] : [x;i (1) = xit ()| < Mt,Vt € [0,8], 5 € (N" NN\ (N UNG™)}
Then, it follows from (60) and (61) that

(63) X3 (7) = X3l (7)] = M,

for some £ € (N N NF) \ (N UNJ™). Also, from Claim I and (62) we get that
(64) 0<7T <t

Since k" € (N NN\ (M™ UN™), it holds that N € N/ NAN{". Thus,
for each neighbor v € N, of k", either v € (N/™ N N™) N (N* UNJ"), or v €
N AN\ (N UN™), and we deduce from (56) and (62), respectively, that

(65) i () = xif (1) < M.Vt € [0,7],v € N,
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It then follows from (3), (4) and (65) that |xY, (1) — x4 (1) < N Lo|xY, (s) —
X}f~(s)|ds + fOT Ly M+/N,»sds. Hence, we get from Fact I and (32) that

(66)

1; 1 L Ly elet 1
|X,‘-{1”(T) - X,Lf” (T)| S / € 2(T*S)L1M NK//SdS S —M Nmax —_— =T — — .
0 Ly Lo Lo

In addition, it can be checked by elementary calculations that

L2
(67) elat — <L2+L2) t—1<0,Vt e (0,t%),
1 max

with ¢* specified by (31). However, from (63) and (66), eLQT—(LQ—I—LlLi\/%)T—l >0,
which contradicts (67), since by (64), 0 < 7 < t*. Thus, (33) holds for Case (ib).
Case (ii). NJ"T! # () and "' = ). For Case (ii) we consider the following subcases
for each agent x € N™ N NJ™.

Case (iia). k € (N*NN)NN™. In this case, it follows from (7) that x¥(:) = 2, ¢
and thus, by using similar arguments with Case (ia) that (56) is fulfilled.

Case (iib). k € (N N N*) \ N™. Notice that (N* N N™) \ N/* ¢ NP nN»
and thus, for each agent x € (N NNJ™) \ N/™ we have that k € NJ"~* and x € N
Hence, we obtain from Lemma 17(ii) and the fact that A" ™! = 0, that N, C N/ and
N, C /\_/'eerl = /\_/Z" UJ\/ngrl = _1}”7 respectively, implying that NV, C ./\_/imﬂ/\_/'em. The
remaining proof for this case follows similar arguments with the proof of Case (ib)
and is omitted.

Case (iii). N/"T' =@ and NJ""! # (. We consider again the following subcases for
each agent k € N/ NN

Case (iiia). k € (NJ"NN) NN ™. In this case, it follows from (7) that x¥(-) = ;. ¢
and thus, by using again similar arguments with Case (ia) that (56) is fulfilled.

Case (iiib). k € (N/* N N™) \ NJ*. Notice that (N/* NN \ N* ¢ NNt
and thus, for each agent £ € (N NNJ*) \ NJ* we have that kK € NJ" and k €
N;*7. Hence, we obtain from Lemma 17(ii) and the fact that N;"™' = @, that
N, € N = Nm U N = N and N, € NJ, respectively, implying that
N, CN™ ﬂ/\_/'em. The remaining proof for Case (iiib) follows again similar arguments
with the proof of Case (ib) and is omitted.

Case (iv). N]"™' = and NJ""! = . In this case the result follows from the proof
of Lemma 11, which implies that the trajectories x%(-) and x!(-) coincide for all
k€NM™N /%m. The proof is now complete. ]

Proof of Proposition 13. The proof is carried out by induction and is based on
the result of Lemma 12. We will show the following induction hypothesis:
IH. For each m/ € {1,...,m} and ¢ € N;"~™ | it holds that

(68) i (8) = it ()] < Howe (1), 9 € [0, 8]

Note that for m’ = m the Induction Hypothesis implies (34). Also, by Lemma 12, TH is
valid for m’ = 1. To prove the general step, assume that IH is true for m’ € {1,...,m—
1} andlet: € J\_/';%(murl). Since m—(m’+1) < m—2, both x;i(b)(~) and x;"'(b)(-) are well
defined and the differences |x1 (-) — x%(-)|, v € Nj(,), of their respective components
satisfy (68) with m/. It then follows that |x;"(b)(t) — x;?(b) (t)] < /N, Hy (t) for all

t € (0,t*). Thus, by evaluating |y} (-) — x!(-)| as in the proof of Lemma 12, we obtain
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that |xY (1) — xk(t)| < fot Li/N,H,,(s)ds + fg Lao|xti(s) — x!(s)|ds. By exploiting
Fact I used in the proof of Lemma 12, we obtain from (68) and the recursive definition

of Hys1(-) that [x5 () — x¥(8)| <[] €220 Liy/Nyar Ho (8)ds = Hypya (1), VE €

[0,¢*], which establishes the general induction step. The proof is complete. ]
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