ROBUSTNESS AND INVARIANCE OF CONNECTIVITY
MAINTENANCE CONTROL FOR MULTI-AGENT SYSTEMS*

DIMITRIS BOSKOST AND DIMOS V. DIMAROGONAS

Abstract. This paper is focused on a cooperative control design which guarantees robust
connectivity and invariance of a multi-agent network inside a bounded domain, under the presence
of additional bounded input terms in each agent’s dynamics. In particular, under the assumptions
that the domain is convex and has a smooth boundary, we can design a repulsion vector field near
its boundary, which ensures invariance of the agents’ trajectories and does not affect the robustness
properties of the control part that is exploited for connectivity maintenance.
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1. Introduction. Multi-agent coordination has evolved in the last decades into
a well established field of research with emerging applications ranging from robotics to
social sciences [24]. From a control perspective, high interest is focused on the design
of control protocols that are based on local network information for the accomplish-
ment of a team goal. Typical objectives are the consensus problem, which aims at the
agreement of the agents’ states to a common value [16], [29], rendezvous to a common
location [23], reference tracking [1] and formation control [17]. For application fields
such as mobile robot coordination, it is of paramount importance to ensure network
connectivity [41], due to the agents’ limited sensing and communication capabilities
which necessitate the satisfaction of certain relative distance constraints between com-
municating agents. The latter objective requires control designs which guarantee that
the network topology will remain connected during the evolution of the system.

In [17], solutions to the rendezvous and formation control problems are pro-
vided while preserving connectivity by means of unbounded feedback laws. Other
approaches to the problem of connectivity maintenance include [9], where controllers
that additionally guarantee collision avoidance are designed, bounded potential field
based control laws [1], decentralized navigation functions [8], [18], hybrid control
policies [40], algorithmic solutions for discrete time second order agents [30] and opti-
mization frameworks for the maximization of the second smallest Laplacian eigenvalue
[11] (see also [2], [37], [38], [39]). A detailed literature review on the subject can be
also found in the survey paper [41]. Furthermore, in the recent work [28], Lyapunov
based barrier functions are constructed for the coordination of a multi-agent team
with a leader under guaranteed collision avoidance, where connectivity to the leader
is established by enforcing the team to operate inside a circular domain. Robustness
of multi-agent coordination has been studied in particular with respect to the consen-
sus problem, also due to the Input-to-State Stability property of consensus algorithms
[20]. Results on consensus in the presence of disturbances can be found for instance in
[33] for single integrator agents with general time-varying graph topologies, in [22] for
systems with heterogeneous uncertainties, in [15] for agents with nonlinear dynamics
and in [14], [26] for higher order systems. With respect to connectivity maintenance
robustness issues have been addressed in [10], where flocking is studied in the pres-
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2 D. BOSKOS AND D. V. DIMAROGONAS

ence of disturbances for second order systems, and [31], which provides an algorithmic
framework and considers robustness with respect to link failures.

In this paper we consider for each agent a control law comprising of a feedback
component, which depends on the relative states of the agent and its neighbors and
is responsible for keeping the network connected, and an extra bounded input term,
which provides some additional control freedom to the agent. In particular, we design
a bounded control law which results in network connectivity of the system for all
future times provided that the initial relative distances of interconnected agents and
the additional input terms satisfy appropriate bounds. Relevant feedback laws can be
found in [6], where finite time consensus is guaranteed in the presence of a common
unknown nonlinear drift term for all agents. However, the framework is based on the
design of unbounded feedback laws and the dynamics of the drift vector field are the
same for all agents, whereas in this paper, constraints on the additional input terms
are only imposed on their magnitude. Also, in [10], where flocking is considered in
the presence of disturbances, the latter evolve according to the dynamics of a known
external system and are estimated through the applied feedback design.

Most existing works in the literature study connectivity in conjunction with addi-
tional multi-agent control goals, such as flocking [35], consensus [36], formation [3], [7],
rendezvous [12], [34], containment [19] and leader follower control [32]. Our primary
motivation for the control design in this paper comes from the exploitation of the
extra input terms for high level planning, through the construction of finite symbolic
agent models (abstractions) which can provide algorithmic solutions to reachability
problems of the multi-agent system. A derivation of such discrete models has been
studied in our recent work [4], which provides an appropriate discretization of the
agents’ workspace into cells and relies on the agents’ dynamics bounds and the corre-
sponding bounds on the additional input terms, which are exploited for the navigation
of each agent to its successor cells. Thus, the results of this paper provide a suitable
framework for the aforementioned approach to high-level planning, since the designed
feedback terms are bounded, and additionally, inputs up to a certain bound do not
affect the desired connectivity maintenance. Furthermore, we design an extra feed-
back term which ensures invariance of the system’s solution inside a bounded domain
and enables the derivation of finite abstractions, which in turn can ensure compu-
tational feasibility of discrete planning problems. Hence, the main contribution of
this paper is the design of a control framework which can allow the synthesis of high
level plans for multi-agent systems under guaranteed network connectivity and tra-
jectory invariance. In particular, a rich variety of collaborative and individual goals
can be addressed to the agents by exploiting the expressiveness of formal languages
and satisfying plans can be found by leveraging the discrete agent models that can
be derived in [4] together with appropriate algorithmic tools. This application has
been considered in [27] which deals with multi-agent planning under timed temporal
specifications, in the presence of coupling constraints between the agents.

In this work we extend our previous results in [5] where robust connectivity was
studied in conjunction with invariance inside a spherical domain, to any convex do-
main with smooth boundary. We also provide proofs of technical details which were
omitted in [5] due to space constraints. The invariance approach is based on the de-
sign of a repulsion vector field near the boundary of the domain, whose construction
leverages the tubular neighborhood theorem [21]. Tt is noted that tubular neighbor-
hoods have been also used for the construction of Lyapunov functions for asymptotic
submanifold stabilization in the recent work [25]. Finally, in addition to the invari-
ance result, we exploit the convexity assumption on the agents’ workspace in order to

This manuscript is for review purposes only.



110
111
112
113
114
115
116
117
118

ROBUST CONNECTIVITY MAINTENANCE CONTROL 3

prove that the robustness properties of the connectivity maintenance control law are
unaffected by the superposition of the repulsion vector field. Thus, in terms of the
theoretical analysis, the contribution of the paper is summarized in i) the derivation of
sufficient conditions which guarantee quantifiable robustness of the connectivity con-
trol with respect to additional inputs, in terms of the agents’ initial configurations,
algebraic properties of the network graph and tunable nonlinearities of the applied
feedback laws and ii) the proof of the fact that this robustness margin is unaffected by
the superposition of the repulsion vector field through the exploitation of tools from
differential geometry and convex analysis.

The rest of the paper is organized as follows. Section 2 introduces basic notation
and preliminaries. In Section 3, results on robust connectivity maintenance are pro-
vided and explicit controllers which establish this property are designed. In Section
4, the corresponding controllers are appropriately modified, in order to additionally
guarantee invariance of the solution for the case of a convex domain. An example with
illustrative simulations is provided in Section 5. Finally, we summarize the results and
discuss possible extensions in Section 6.

2. Preliminaries and Notation.

2.1. Notation. We use the notation |z| for the Euclidean norm of a vector
x € R™. For a matrix A € R™*™ we use the notation |A| := max{|Az| : z € R"}
for the induced Euclidean matrix norm and AT for its transpose. For two vectors
x,y € R"(= R™*1) we denote their inner product by (z, y) := 27y. Given a subset S of
R™, we denote by cl(5), int(S) and 95 its closure, interior and boundary, respectively,
where 95 := cl(S) \ int(S). For R > 0, we denote by B(R) the closed ball with center

0 € R™ and radius R. Given a vector x = (z!,...,2") € R® we define the component
operators ¢;(z) := !, [ = 1,...,n. Likewise, for a vector x = (x1,...,zy5) € RV we
define the component operators ¢;(x) := (¢;(z1),...,c(zn)) ERN, I=1,...,n

Consider a multi-agent system with N agents. For each agenti € {1,..., N} = N
we use the notation A; for the set of its neighbors and N; for its cardinality. We also
consider an ordering of the agent’s neighbors which we denote by j1,...,jn,. The
undirected network’s edge set is denoted by £ and {4, j} € £ iff j € NV;. The network
graph G := (N, &) is connected if for each 7,7 € N there exists a finite sequence
i1,..,0 € N with iy =4, 4, = j and {ig,igs1} € E, forall k=1,...,1 — 1. Consider
an arbitrary orientation of the network graph G, which assigns to each edge {i,j} € £
precisely one of the ordered pairs (i,5) or (j,7). When selecting the pair (i,5) we
say that 7 is the tail and j is the head of edge {i,j}. By considering a numbering
Il =1,...,M of the graph’s edge set we define the N x M incidence matrix D(G)
corresponding to the particular orientation as follows:

1, if vertex k is the head of edge [,
D(G)k =< —1, if vertex k is the tail of edge [,
0, otherwise.

The graph Laplacian L(G) is the N x N positive semidefinite symmetric matrix
L(G) := D(G)D(G)T. If we denote by 1 the vector (1,...,1) € RY, then L(G)1 =
D(G)T1 = O Let 0 = A1(G) < A3(G) < -+ < An(G) Dbe the ordered eigenvalues of
L(G), which correspond to a set of mutually orthogonal eigenvectors. In addition,
A2(G) > 0 iff G is connected.

This manuscript is for review purposes only.



145

146

147

148
149

4 D. BOSKOS AND D. V. DIMAROGONAS

2.2. Problem Statement. We focus on single integrator multi-agent systems
with dynamics

(1) :bi:ui,xi€R",i€N.

We aim at designing decentralized control laws of the form

(2) Ui = ki(xivxj1a"'7xjNi)+via

which ensure that appropriate apriori bounds on the initial relative distances of in-
terconnected agents guarantee network connectivity for all future times, for all inputs
v; bounded by a certain constant. In particular, we assume that two agents form an
edge as long as the marimum distance between them does not exceed a given positive
constant R. In addition, we make the following connectivity hypothesis for the initial
states of the agents.

(ICH) We assume that the agents’ communication graph is initially connected and
that

(3) max{|z;(0) — 2;(0)] : {i,5} € £} < R for certain constant R € (0, R).

2.3. Potential Functions. For the solution of the problem we will assign po-
tential field-type controllers to the feedback terms (2), which depend on the relative
positions of the interconnected agents. We proceed by defining certain mappings
that will be exploited for the design of these control laws. Let r : R>g — R>o be a
continuous function satisfying the following property.

(P) r(-) is increasing and r(0) > 0.
Also, consider the integral

(1) Plp) = [ r(s)sds,p € R,

For each pair {i,7} € £ we define the potential function V;; : R¥™ — R>q as
(5) Vij(x) :== P(\xi—xj\),xz(xl,...,xN)ERN".

Notice that V;(-) = Vj;(-). Furthermore, V;;(-) is continuously differentiable and
satisfies

(6) Dy, Vij(x) = r(|j; — aj])(zi — 2;)", Vo € R,

where D, stands for the derivative with respect to the z;-coordinates.

REMARK 1. Notice, that we are only interested in the values of the mappings r(-)
and P(-) in the interval [0, R], which stands for the maximum distance that two in-
terconnected agents may achieve before losing connectivity. Yet, defining them on the
whole positive line provides us certain technical flexibilities for the analysis employed
in the subsequent proofs.

3. Robust Connectivity Analysis. In this section, we will design the feedback
terms in (2) and provide bounds on the maximum initial relative distances of the
agents and the input terms v;, which will guarantee connectivity of the multi-agent
network. In particular, based on the potential functions Vj;(-) in (5) (corresponding
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ROBUST CONNECTIVITY MAINTENANCE CONTROL 5

to certain continuous 7(-) that satisfies property (P)), we will assign to each agent the
control law

(7) wi=— Y Vo Vij(a) +vi=— Y vl —aj)) (@i — x;) + v,
JEN; JEN;

where V;,V;(x) is the gradient of V;;(z) at z with respect to the z;-coordinates,
namely, V., V;;(z) = (Dg, Vij (a:))T Our approach is inspired by the analysis employed
in [17] (see also [24, Section 7.2]) and relies on the selection of a tension energy type
function, whose derivative along the solutions of the system becomes negative for
all possible appropriately bounded inputs v;, when the relative distances between
interconnected agents exceed a certain threshold. We consider the energy function

(8) Vi) = % SO 3 Vis(a),w € RV,

iEN JEN;

where the mappings V;;(-), {¢,j} € € are given in (5). Then, it follows from (6) that

(9) Dy, V()= r(lwi — )@ — ;)"

JEN;
Also, in accordance with [24, Section 7.2] we have for [ = 1,...,n that
(10)
al Y r(e—a) @ — ), Y rllen — 2@y — ;) | = Lu(z)a(x),
JEN JENN

The weighted Laplacian matrix L, (x) in (10) is given as

(11) Ly(x) = D(G)W (2)D(9)",

where D(G) is the incidence matrix of the communication graph (see Notation) and
(12) W(x) := diag{w1(x), ..., wnm(x)} = diag{r(|z; — z;]),{i,j} € £}

(recall that M = card(€), where card(-) is used to denote the cardinality of a set). Be-
fore proceeding to the main result of this section, we provide a bound on the derivative
of the energy function V(-) along the vector field v := (u1,...,uy) (parameterized
by the v;’s) with the feedback laws u;, i € N as given by (7). Therefore, we also
introduce some additional notation. Let Y be the subspace

Y::{xGRN”:x1:x2:~~:xN}.

For a vector z € RNV™ we denote by Z its projection to the subspace Y, and z its
orthogonal complement with respect to that subspace, namely - := x —z. By taking
into account that for all y € Y we have D(G)T¢;(y) = 0 and hence, due to (11), that
c1(y) € ker(Ly,(z)), it follows that for every vector x € RV™ with # = Z + 2+ it holds

(13) Lo(2)c)(Z) = 0 = Ly(x)ci(z) = Ly (2)cr(xh).

We also denote by Az € RM™ the stack column vector of the vectors x; —x;, {i,5} € €

with the edges ordered as in the case of the incidence matrix. Thus, it follows that
for all z € RNV™ it holds

(14) D(G)T¢(z) = ¢(Ax).

This manuscript is for review purposes only.
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6 D. BOSKOS AND D. V. DIMAROGONAS

We are now in position to state the lemma which provides the desired bounds on the
derivative of the energy function.

LEMMA 2. Consider the energy function V(-) as defined in (8) and the feed-
back laws u;, i € N in (7). Then, the derivative of V(-) along the vector field
u=(uy,...,un) satisfies the bound

(15) DV (2)u < ~a(G)r(O)]P|a* + VN VAN (G)|Aalr(|Az] ) v]oc,

where M\2(G) and An(G), are the second and largest eigenvalues of the network’s graph
Laplacian, respectively, v = (vy,...,vx) with each vi, i € N as given in (7), v+, Az
are defined above, and |Ax|so, |V are given as

(16) [v] oo :=max{|v;|,i € N'},
(17) |AZ| oo :=max{|Az;|,i=1,..., M}.

Proof. By evaluating the derivative of V(-) along the vector field given by u and
taking into account (8), (9) and (10) we get

NIE

DV (z)u = ¢ (DV(x)) ¢i(u)
1=1
==Y @)’ Ly(@)(Lu()a(x) — av))
=1
(18) < - ch(x)TLw(x)ch(x) + ch(x)TLw(x)cl(v) .
=1 1=1

First, we provide certain useful inequalities between the eigenvalues of the weighted
Laplacian L, (z) and the Laplacian matrix of the graph L(G). Notice, that due to
(12), for each i = 1,..., M we have w;(z) = r(Jzx — x¢|) for certain {k, ¢} € £ and
hence, by virtue of Property (P), it holds

< w; < — .
(19) 0<7(0) <w(x) < {glg}ecgrﬂxk 7))

In addition, since L, (z) is also a symmetric positive semidefinite matrix satisfying
L,(x2)1 =0, it follows from (19) that

(20) Aa(x) = A2(G)r(0),
where 0 = A\j(z) < Ao(z) < - < An(z) and 0 = A (G) < A2(G) < -+ < An(G) are

the eigenvalues of L,,(x) and the Laplacian matrix of the graph L(G), respectively.
Indeed, in order to show (20), notice that
Luz) = D(G)ding{uwn (). ..., wp ()} D(G)”
D(G)diag{r(0),...,r(0)}D(G)"
D(G)diag{wi(z) —(0),...,wy(z) = r(0)}D(G)" = r(0)L(G) + B,

_l’_
where (19) implies that B := D(G)diag{w;(x) — 7(0),...,wa(x) — r(0)}D(G)T is

positive semidefinite. Hence, it holds L, (z) = 7(0)L(G), with > being the partial
order on the set of symmetric N x N matrices and thus, we deduce from Corollary

This manuscript is for review purposes only.
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ROBUST CONNECTIVITY MAINTENANCE CONTROL 7

7.7.4(c) in [13, page 495] that (20) is fulfilled. Furthermore, due to (12) and (19), we
get that

(21) (W ()] < r(|A%]s)-

For the sequel, we will also use the following facts, whose proofs can be found in the
Appendix. In particular, for the vectors z = (x1,...,2x),y = (y1,-..,yn) € RV the
following properties hold.

Fact 1.

(22) |Lw(a:)cl(a:l)| > Ag(x)\cl(xlﬂ,w =1,....n
Fact II.

(23) ZICz el < J=|lyl.

We are now in position to bound the two terms involved in the derivative of V(-).
Bound for the first term in (18). By taking into account (13), it follows that

n n 9
(24) Yo a@) " Ly(@) al@) =) |Lu(@)al@®)]
=1 1=1
and by exploiting Fact T and (20), we get

Y |Lu(@ala)]” =3 Aa(@)? e
=1

M:

~

1

P2(G)r(0)Pleu(z)* = a2 (G)r(0)] 2.

Mz

(25)

N
Il
=

Thus, it follows from (24) and (25) that

n

(26) Y a@) Lu(x) (@) = Da(G)r(0)a* .

=1

Bound for the second term in (18). For this term, we have from (11) and (14)
that

le1(@) " D(G)W (2)D(G) ca(v))|

Mz

ch ) (v)| <
=1

~

1

ler(Az) "W (2) D(G) ey (v)]

I
NIE

~

1

le(A)||[W (@)[|D(G) " []ex (v)].

NE

(27) <

~

1

By taking into account (21), and the fact that |D(G)T| = /Amax(D(G)D(G)T) =
An(G) we obtain

(28) D la(Aa)[|W(@)[|D(G) [la(v)] < ZICz Az)|r(|Az]oo) VAN (G) e (v
=1

This manuscript is for review purposes only.
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8 D. BOSKOS AND D. V. DIMAROGONAS

Also, by exploiting Fact 11, we get that

D la(A)[r(|Az]o) VAN (G)]ar(v)] <r(|Az]o) /AN (G)]Ax][0]
=1
(29) <r(|Az]o) VAN (G)|Az|VN 0] o,

with |v|e as given in the statement of the lemma. Hence, it follows from (27)-(29)
that

n

(30) Y a@) Lu(z)a)| < VNVAN(G)| Alr(|Az]o)|]o.

=1
Thus, we get from (18), (26) and (30) that (15) is fulfilled and the proof is complete.O

Having established this auxiliary result, we provide in the following proposition a
control law (2) and an upper bound on the magnitude of the input terms v;(-) which
guarantee connectivity of the multi-agent network.

PROPOSITION 3. For the multi-agent system (1), assume that (ICH) is fulfilled
and pick the control law (7) for certain continuous r(-) satisfying Property (P). Define

v 2NN =1/Ax(G)

(31)

A2(G)? ’
and consider a constant & > 0. Assume that 8, R and r(-) satisfy the restrictions
1 S ~
32 § < —r(0)>——,s >R,
(32) < 0P

with K as given in (31) and

(33) MP(R) < P(R),

where P(-) is given in (4), and M = card(E). Then, the system remains connected
for all positive times, provided that the input terms v;(-), i € N satisfy

(34) [vi (1)) < 8,V > 0.

Proof. For the proof we exploit the result of Lemma 2, which provides bounds for
the derivative of the energy function V'(-) in (8) along the vector field u = (uq, ..., un)
as specified by the feedback laws w;, i € A in (7). In particular, we want to provide
bounds for the right hand side of (15) which guarantee that the sign of DV (z)u is
negative whenever the maximum distance between two agents exceeds the bound R
on the maximum initial distance as given in (3), and for appropriate bounds on the
v; terms. Therefore, we will also use the following facts, which are proved in the
Appendix. In particular, for each x = (z1,...,2x5) € RV the following hold.

Fact III.

1

(35) |2t | > ——|Ax|.
2(N —1)
Fact IV.
1
(36) lzt] > —=|Az|so.

V2
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ROBUST CONNECTIVITY MAINTENANCE CONTROL 9

By exploiting Facts III and IV, we get from (15) that

1

DV (a)u < () (0] sl 7 el
VA @) Al (Ao el
— 8] (= 5 PO | Aelo + VIV AR G)r(| el ol ).

By using the notation |[Az|y := s, in order to guarantee that the above right hand
side is non-positive for s > R, it is required that

by 2
2(9) 0)2s + VN /AN (G)r(s)|v]eo < 0,Vs > R <

72(N—D
2/ N(N — 1)/An(9) ) s -
()2 [v]oo < 7(0) @,Vs > R,
or equivalently
1 9 8 ~
(37) "U‘oo S }T(O) T—S),Vs 2 ]’%7

with K as given in (31). Hence, we have shown that for v satisfying (37) the following
implication holds

(38) |Az|oo > R = DV (z)u < 0.

By assuming that conditions (34), (32) and (33) in the statement of the proposi-
tion are fulfilled and recalling that according to (ICH) (3) holds, we can show that the
system will remain connected for all future times. Indeed, let x(-) be the solution of
the closed loop system (1)-(7) with initial condition satlsfylng (3), defined on the max-
imal right interval [0, Tiyax). We claim that the system remains connected on [0, Tinax ),
namely, that max{|z;(t)—x;(t)| : {i,j} € £} < Rforallt € [0, Tinax), which by bound-
edness of the dynamics on the set F := {z € RN" : |x; — z;| < R,V{i,j} € £} implies
that Thax = oo. In order to prove the last assertion, assume on the contrary that
Timax < 00. Then, by taking into account that z(¢) remains in F for all ¢ € [0, Tinax)
and that the dynamics are bounded in F, it follows that z(¢) remains in a compact
subset of RN™ for all t € [0, Tmax) and hence, that it can be extended, contradicting
maximality of [0, Tinax). We proceed with the proof of connectivity. First, notice that
due to (3) and (33), it holds

V(2(0)) = 5 Z > P(lzi(0) —x;(0)])

1€Nj€N

333 P(R) = P(R) < S P(R).

ZENJEN

(39)

I /\

In order to prove our claim, it suffices to show that

(40) V(xz(t)) < 5 P(R),Vt € [0, Tiax),

DN | =

This manuscript is for review purposes only.
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10 D. BOSKOS AND D. V. DIMAROGONAS

because if |x;(t) — x;(t)| > R for certain ¢ € [0, Tymax) and {7,j} € £, then V(z(t)) >
1P(|z;(t) — z;(t)]) > 2P(R). We prove (40) by contradiction. Indeed, suppose on
the contrary that there exists T € (0, Tiax) such that

(41) V(a(T)) > %P(R)
and define
(42) T :=min{t € [0,T] : V(x(?)) > $ P(R),Vt € (¢, T},

which due to (41) and continuity of V(z(-)) is well defined. Then it follows from (39)
and (42) that

(43) V(a(r) = S P(R),V((t)) > 3 P(R), Yt € (r,T],

(44) V(x(7)) = > 0.
On the other hand, due to (43), it holds
_ 1
(15) V() > LP(R)
which implies that there exists {i,j} € £ with
(46) |J),(77') - J?j(f’)| > R.

Indeed, if (46) does not hold, then we can show as in (39) that V(z(7)) < 1P(R)
which contradicts (45). Notice that by virtue of (34) and (32), (37) is fulfilled. Hence,
we get from (46) that |Az(7)|s > R and thus from (38) it follows that V(z(7)) =
DV (z(7))u(7) < 0, which contradicts (44). We conclude that (40) holds and the
proof is complete. ]

In the following corollary, we apply the result of Proposition 3 in order to provide
two explicit feedback laws of the form (7), a linear and a nonlinear one and compare
their performance in the subsequent remark.

COROLLARY 4. For the multi-agent system (1), assume that (ICH) is fulfilled and
consider the control law (2) as given by (7). By imposing the additional requirement

r(0) =r(R) =1 and defining

(47) 5=

= =

with R and K as given in (3) and (31), respectively, the system remains connected for
all positive times, provided that the function r(-) and the constant R are selected as
in the following two cases (L) and (NL) (providing a linear and a nonlinear feedback,
respectively).

Case (L). We select

(48) r(s):=1,s>0
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and
(49) R<-L R
T
(recall that M = card(E)).
Case (NL). We select
1, sel0,R]
(50) r(s):=4 %, se(R R
R
G SE(R,00)
and
1
51 R< 2 'R
(51) =\smw—1) ™
Proof. For the proof we apply the result of Proposition (3). In particular, it

suffices to show that for both cases (L) and (NL) the selection of the function r(-)
and the initial maximum distance R satisfy (32) and (33), with § as given by (47).
Case (L). Indeed, it follows from (47) and (48) that (32) is fulfilled. Furthermore, it
follows from (48) and (4) that (49) is equivalent to (33).

Case (NL). Also in this case, it follows from (47) and (50) that (32) is again fulfilled.
In addition, it follows from (50) and (4) that is (51) is equivalent to (33). The proof
is now complete. 0

REMARK 5. At this point we derive the advantage of using the nonlinear controller
over the linear one by comparing the ratio of the maximal initial relative distance that
maintains connectivity for these two cases. In both cases we have the same bound
on the input terms v; and the same feedback law up to some distance between neigh-
boring agents, which allows us to compare their performance under the criterion of
maximizing the largest initial distance between two interconnected agents. In particu-
lar, this ratio depends on the number of edges in the system’s graph and is given as

1
ﬁ/ (3]\4%1) ° By differentiating the latter expression, it follows that it is a strictly

decreasing function of M with values less than 1 for M > 1, as also depicted in
Figure 1.

L L
50 100 150
1

Fic. 1. This figure shows the ratio ﬁ / (W{l) ® for the number of edges ranging
from 2 to 150.
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4. Invariance Analysis. In what follows, we assume that the agents’ initial
states belong to a given bounded domain @ C R™. We aim at designing an ap-
propriate modification of the feedback law (7) which additionally guarantees that the
trajectories of the agents remain in 2 for all future times. We assume that € is convex
and that its boundary 99 is a smooth n — 1-dimensional (embedded) submanifold of
R™. We denote by 1 the smooth mapping that assigns to each z € 92 the unit outward
pointing normal vector n(z) (see Figure 2, top left). By additionally exploiting that
0f) is compact, i.e., a closed and bounded subset of R™, it follows from the tubular
neighborhood theorem (see [21, Theorem 10.19]) that there exists an € > 0 such that

(52) N::={x —tn(z): z € 0Q, |t| < &}

is a tubular neighborhood of 99 (see e.g, [21, page 255] for the definition of a tubular
neighborhood). In addition, the following properties are fulfilled (see [21, Proposition
10.20 & Problem 10-2]):

(P1) For each y € Ng there exist unique z € 9Q and t € (—¢,&) such that y =
x — tn(x), defining a smooth mapping H : N — 99Q with H(y) = z, implying that
[t] = [H(y) — yl-

(P2) For each y € Nz, H(y) is the closest point to the boundary of €, namely,
|H(y) —y| = d(y,00) := inf{]ly — z| : z € 9Q}. Conversely, for each y € R™ with
d(y,00) < &, it holds y € N¢.

From (P1), it follows that

(53) H(y) -y

FiG. 2. Illustration of the domain 2, the tubular neighborhood N& and the partition of
Q) into N, and €.

Next, for each a € (0,&) we define
(54) Ny :={x —tn(x): z € 0N, t € (0,a]},

which by virtue of (P2) is the region with distance up to a from 09 towards the
interior of (2. Thus, it follows that

(55) Ny ={x € Q:d(z,00) <a}.
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Also, let
(56) Q, :=Q\ N,

(see also Figure 2, bottom, for an illustration of N, and Q,). From (P1), (P2) and
(53)-(56), we obtain the following property.

(P3) Given a € (0,8), for any y € N:NQ, which according to (P1) can be written as
y =« — tn(x) for unique x € 9Q and t € (0,¢€), it holds: (i) t < a <= y € Ng; (ii)
t=a <= Yy t>a < y e,

We establish certain useful properties of the sets {2, in Lemma 6 below.

LEMMA 6. (A) For any a € (0,€) the set Q) is convexr.
(B) For each x € 0L, it holds

(n(H (), 2) = (n(H(x)),y), Yy € L,

with H(-) as defined in (P1), namely, {y € R™ : (n(H(x)),z) = (n(H(z)),y)} is a
supporting hyperplane of Q, at x.

Proof. (A) Indeed, let 21,22 € Q,. We will show that also Azy + (1 — X)zg € Q,
for each A € (0,1). Notice first, that by virtue of (55) and (56), for both z; and x5 it
holds

(57) d(x;, 00) > a,i=1,2.

We prove the assertion by assuming on the contrary that there exists z € {Az1 + (1 —
Az @ A € (0,1)} such that z ¢ Q,. From (56) and convexity of €2, it follows that
Z € N,, thus, we get from (P1) and (54) that |H(Z) — Z| < a. Hence, we may pick

(58) Z € argmin{|H(z) —z| :x = Ax1 + (1 — N)x2, A € (0,1),2 € Ny}
The latter selection implies that
(59) |H(Z) — Z| < a.

Also, due to (53) and (58), which implies that 21 — Z = (1 — A\)(z1 — x2), for certain
A€ (0,1), we get that

(60) (H(Z) — &,21 —x2) = 0= (n(H(Z)),v1 — &) = 0,

where the left hand side of the implication is justified by the fact that the function
t = |H(Z) — & + t(x1 — x2)| has a minimum in a neighborhood of zero (otherwise
there would be points on the line segment joining z; and zs with distance less than
|H(z) — Z|). In addition, by convexity of € and smoothness of 0}, the fact that
H(z) € 09 implies that {y € R"™ : (n(H (%)), H(Z)) = (n(H(Z)),y)} is a supporting
hyperplane of 2 at H(Z), namely, it holds

(61) (n(H(z)), H(z)) = (n(H(Z)),y),Vy € cl().

Next, pick y = 1 + A(H(Z) — &), where

(62) A=sup{\ > 0:21 + A(H(Z) — %) € Q}.

which is well defined, since €2 is bounded. Then, it follows from (57), (59) and (62)
that

(63) NH(E) — 7| > d(21,00) > a=> A > L.
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Thus, we obtain from (53), (60) and (63) that

)
)&+ (H(Z) =) + 21 — &+ (A= 1)(H(Z) — 7))

= (n(H(Z))
= (n(H(2)), H(Z)) + 0+ (n(H()), (A = 1)(H(Z) — &))
> (n(H(z)), H(Z)),

which contradicts (61), since from (62) we have that 1 + M(H(Z) — &) € cl(Q).
(B) For the proof of (B), we will exploit the convexity result of Part (A), in conjunc-
tion with the fact that

(64) (n(H(z)),z —y) > —Clz — y|*,Vy € cl(Q,),z € 9,

for certain C' > 0. In order to show (64), notice that by virtue of (P2), (55) and (56),
for any y € cl(2,) and = € 99, it holds

|H(x) — x| < |H(z) —y| =

|H(z) —af* < |H(z) — 2+ 2 —y|* =

|H(2) = 2f? < [H(z) — 2 + 2(H(2) — 2,2 — y) + |z - y|* =
—lz —y? <2(H(z) - 2,2 —y).

From the latter and (53), it follows that (64) holds with C' = m In order to
complete the proof assume on the contrary that there exist § € cl(Q2,), T € 99, and

a constant C' > 0, such that

(65) (n(H (%)), —g) = —C(<0).

Then, it follows from convexity of cl(€2,) that T — A& —g) € cl(€),) for any A € (0,1)
and by virtue of (64) we get that

(66) (n(H (%)), % — (¥ = M@ = §))) = —CIAE - ).
Also, from (65), we obtain that
(67) (n(H(&)), A& — §)) = —AC.

Equality of the left hand sides of (66) and (67) implies that for each A € (0, 1) it holds
“AC > —CN i — > = C < CNi — g%,

which is violated for A < %|5¢ — 7|2, The proof is now complete. O

We proceed by defining a repulsion from the boundary of €2 vector field, which when
added to the dynamics of each agent in (7), will ensure the desired invariance of the
closed loop system and simultaneously guarantee the same robust connectivity result
established above. First, define the function W : N — R by

W(z) := —(H(z) — z,n(H(x))).

The following lemma includes certain properties of W(-) that will be exploited in the
subsequent analysis (see also Figure 2, top right).
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LEMMA 7. (A) It holds
VW(z) =n(H(z)),Vx € N
(B) For each a € (0,8), it holds 0Q, = W~({—a}), namely, W(-) is a globally
defining function for 0Q, (see [21, page 184]).
(C) Given any a € (0,&) and x € Ng, let & :=x — (a — |H(z) — 2|)VW (z). Then,
(68) €00,
and it holds
(69) VW (z) = VW ().
(D) For any a € (0,€), x € N, and y € cl(Q,) it holds
(z —y, VW(x)) > 0.

Proof. (A) In order to prove this part, we need to show that for each x € N¢ it
holds

(70) W(z + ox) — W(x) — (n(H(x)),0x) = o(dx).
Notice first, that
(71) H(z+ d6x) = H(x) + DH(z)dz + o(dx),

where DH(-) in (71) stands for the derivative of H(-). Also, since H(y) € 02 for
each y € N, it holds DH(y)z € T, 09 for all z € R", with Tp(,)08 denoting the
tangent space of 9Q at H(y). The latter implies that

(72) (DH(y)z,n(H(y))) = 0.
Similarly, we obtain that
(73) n(H(x + o0x)) =n(H(z)) + D(no H)(x)dzx + o(dx).

where 7 o H stands for the composition of 7 and H. In addition, for all y € 99 it
holds |n(y)|? = 1, which by direct differentiation implies that n(y)T Dn(y) = 0. Thus,
it follows that Dn( )z € T,,0Q for all z € R™, or equivalently

(74) (Dn(y)z,n(y)) =

Next, by picking © € Nz and exploiting (71) and (73), we evaluate

Wz + 6x) + W(x) + (n(H(2)),07) = (H(x + 0x) — (z + 6x),n(H(z + 62)))

— (H(z) —2,n(H(z))) + (n(H (z)), 0x)
= (H(z) + DH(z)dx + o(dx) — (z + dz),n(H(z)) + D(no H)(x)dz + o(dx))
—(H(z) —z,n(H(x))) + (n(H(z)), 6z)

= (H(x) — 2, D(n o H)(x)dx) — (dx,n(H (z)))
(DH (z)ox,n(H(x))) + (n(H(z)), 6x) + o(dz)
(75) = (H(x) —x, Dn(H(z)) DH(x)dz) + (DH (x)dz,n(H (2))) + o(dz).

+
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16 D. BOSKOS AND D. V. DIMAROGONAS

From (74) and (53), we deduce that the first term in (75) is zero. Likewise, it follows
from (72) that the second term in (75) is zero as well and we conclude that (70) is
satisfied.

(B) In order to prove part (B), we need to show that W(z) = —a = z € 99,. By
taking into account (P3)(ii), it suffices to show that = H(z) —an(H (x)). Note first,
that since W (x) = —a, namely, —(H (z) — z,n(H (z))) = —a, it follows from (53) and
the fact that |n(H(x))| = 1, that

(76) —([H(x) — z[n(H(x)),n(H(2))) = —a = |H(z) — 2| = a.
In addition, from (53) we get that
(77) x = H(z) - [H(z) — z|n(H(z)),

which by virtue of (76) implies that x = H(x) — an(H (x)) as desired.

(C) In order to prove (68) in part (C) of the lemma, it suffices by virtue of (P3)(ii)
to show that & = H(z) — an(H(z)) € 08,. Hence, we get from (77) and part (A) of
the lemma that

&= H(x) — |H(z) — x|n(H(z)) — (a — |H(x) — z[)n(H (z))
(78) = H(z) — an(H(z)),

which provides validity of (68). In addition, from (78) and (P1) we get that H(Z) =
H(z). Thus, it follows from part (A) of the lemma that (69) is satisfied as well.

(D) For the proof of part (D), notice first that € 9Q; and y € cl(€;) for certain
a € (0,a]. Thus, by applying Lemma 6(B) with a := @, we get that (zx —y,n(H(x))) >
0. From the latter and Lemma 7(A), namely, the fact that VIV (x) = n(H(x)), we
obtain the desired result. a
Next, pick € € (0,&), select a Lipschitz continuous function h : [0,1] — [0,1] that
satisfies

(79) h(0) = 0; h(1) = 1; h(-) strictly increasing

and consider the vector field g : 2 — R™ defined as
_ e—|H(x)—a ;

(80) o(z) = coh ( - ) VW (z), ifxze N,

0, if x € Q.,

with h(-) as given above and appropriate positive constants ¢, 6 which serve as design
parameters. Then, it follows from (79), (80), the Lipschitz property for h(-) and
smoothness of H(-), W(-), that the vector field g(-) is Lipschitz continuous on €.
Having defined the mappings for the extra term in the dynamics of the candidate
controller for each agent, we now state our first main result which guarantees the
desired forward invariance property for the trajectories of the closed loop system.

THEOREM 8. Consider the multi-agent system (1) and assume that for the initial
states of the agents it holds x(0) € Q, where Q is a convex and bounded domain
of R™. Also, let e € (0,8), with & as given in (52), N, Q. as defined by (54), (56),
respectively and select the control law

(81) wi = g(z:) — Y rllw — a)) (@i — z5) + vi,

JEN;
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with r(s) > 0 for all s > 0 and g(-) given in (80) for certain ¢ > 1 and § > 0. Then,
assuming that the input terms v;(-), i € N satisfy (34) with the selected constant ¢,
it follows that QN is forward invariant for the solution of the closed loop system (1),
(81), namely, it holds z(t) € QN for all t > 0.

Proof. Given that the stack vector of the agents’ initial states satisfies 2(0) € QV,
let [0, Thyax) be the maximal forward interval for which the solution z(-) of (1), (81)
exists and remains inside QY. We claim that for all t € [0, Tinax) the solution remains
inside cl(Qz)Y with

(82) £ :=min {min{H(xi(O)) —z;(0)],i € N§},e (1 —nt C)) } ,

S :={i e N:240) € N}

and where ¢ > 1 and h(-) are given in the statement of the proposition and (79),
respectively. From (82), we get that

(83) §<5—5h1<1>=>h(€_5>>1.
& € &

In addition, it follows from the fact that z(¢) remains in the compact subset cl(€2z)
of QN for all t € [0, Tinax ), that Tiax = 0o, which provides the desired result. In order
to prove our claim, define for each ¢ € N the function

N

(81)  mi(t) = { 0 H@a(e)) - att)), ﬁgg So7 s te T
and let
(85) m(t) := max{m;(t) : i € N}, t € [0, Tnax),

where m; (t) denotes the distance of agent i from Q. at time ¢ and m(t) is the maximum
over those distances for all agents. Hence, for all ¢ € [0, Tinax) and all & € (0,e] we
obtain from (84), (85) and (P3) the following equivalences

(86) 2i(t) € No = my(t) € [e—&,¢),
(87) X; t) €00 — mi(t):&'—é,
(88) 2i(t) € (), Vi € N = m(t) € [0, — &].

Notice that the functions m;(-), ¢ € N and m(-) are continuous and due to (82), it
holds

(89) m(0) <e—¢.
We claim that
(90) m(t) <e—¢&,Vt € [0, Thax),

with € as given in (82). Indeed, suppose on the contrary that there exists T € (0, Tinax)
such that

(91) m(T) = — &+ 2A¢, Ac € (0, ;)
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18 D. BOSKOS AND D. V. DIMAROGONAS

and define
(92) T:=min{7 € [0,T]: m(t) > e —E+ Ae,Vt € [F,T]}.

Then, it follows from (91) that 7 is well defined and from (89), (92) and the continuity
of m(-) that

(93) m(t) =e—E+ Ae
and that there exists a sequence (t,),en With
(94) t, \yTand m(t,) >e—E+ Ae,Vv € N.

From (85), (93), (94) and the infinite pigeonhole principle, namely, that in each finite
partition of an infinite set there exists a set with infinite cardinality, we deduce that
there exists ¢ € A and a subsequence (t,, )xen Of (t,),en such that

(95) m;(ty,) > e —E+ Ae,Vk € Nymy(1) = — €+ Ae.

Thus, it follows by virtue of (86) and (87) that

(96) xi(tuk) € Nz_pe,Vk € N;:Bi(T) € 0Nz_Ae-

Notice, that according to Lemma 7(B), W (x) is a global defining function for 9Qz_a.
with larger values outside 2s_a.. Thus, we deduce that

(97) %W(wi(t)) = lim W(mi(t”gz) :?/(xi(ﬂ) > 0.
On the other hand, we have ;;t k
GV = (YW () a0
98 = (W) glar)+lr) - 3 rllar) - 2, (o)) ailr) (7).

JEN;

By taking into account (96) we get from (79), (80) and (83) that

(99) lg(@i())| = coh (H;AE> > coh <€ - 5) - 05% —s

Also, due to (80) it holds

(100) VW (zi(r)) = —ag(z:i(1)),
for certain a > 0. Then, we get from (99), (100) and the fact that |v;(7)| < § that

(VW (@4(7)), g (7)) + (7)) < (VW (&i(7), glas(r))) + [os(7)
(101) = g (P)] + ()] < 0.

Furthermore, we have from (93) and (88) that x;(7) € cl(Qz_ac) for all j € N
and from (96) that z;(7) € Nz_ae. Thus, it follows from Lemma 7(D) applied with
a:=¢&— Ae, z :=z;(7) and y := x;(7), that

(102) (VW (zi(7)), i(7) — x;(7)) = 0.
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From (101), (102) and the fact that r(s) > 0 for all s > 0, we obtain that (98) is
negative, which contradicts (97). Hence, (90) holds, which implies that z(t) remains
in the compact subset cl(Qz)" of QN for all t € [0, Tinax). Thus, Thax = oo and we
conclude that the solution z(-) of the system remains in Q¥ for all ¢ > 0.

Hence, we have shown that for each initial condition in Q¥ the solution of the
closed loop system is well defined and remains in a compact subset of QY for all
positive times. The proof is now complete. 0

Having shown that the control law in (81) establishes forward invariance of the
closed loop system within QV, we proceed by proving that the connectivity result
of Proposition 3 remains valid with the same bounds for the input terms v; and the
relative initial distances between the agents, when the initial condition of each agent
lies in . In particular, we obtain the following result.

THEOREM 9. For the multi-agent system (1), assume that the hypotheses of Theo-
rem 8 are fulfilled and that the function r(-) in (81) satisfies Property (P). In addition,

assume that the (ICH) (3) holds for certain R € (0, R), and that the constant § in
(34), (80) the distance R and the function r(-) satisfy (32) and (33). Then, in addi-
tion to forward invariance of QN with respect to the solution of the closed loop system
(1), (81), the topology of the multi-agent network remains connected for all positive

times.

Proof. Notice first, that by the result of Theorem 8, the solution of the closed loop
system (1), (81), is well defined and remains inside Q¥ for all positive times. In order
to prove that the network topology will also remain connected, we will appropriately
modify the corresponding proof of Proposition 3. In particular, we exploit the energy
function V(-) as given by (8) and show that when |Az|o, > R, namely, when the
maximum distance between two agents exceeds R then its derivative along the vector
field defined by the closed loop system is non-positive. Thus, by using the same
arguments with those in proof of Proposition 3 we can deduce that the system remains
connected. Indeed, by evaluating the derivative of V(-) along the vector field u =
(u1,...,uy) as specified by the control laws u;, i € A in (81) we obtain

DV (z)u = Z D,V (x)u;

ieN
= Z Dy V(z)g(z:) — Z (@)’ Lu(x)?a(x) + ) ()" Ly (x)a(v)
iEN =1 =1
(103) <> D V(a)g(i) = Y a(@) Lu(@)’al@) + Y al@) Lu(z)a)].
iEN =1 =1

By taking into account (18) and using precisely the same arguments with those in
the proof of Proposition 3, it suffices to show that the first term of inequality (103),
which by virtue of (9) is equal to

Y Do V@)g(r) =3 > vl — 2 (@i — x;), g(@2)),
ieEN i€EN JEN;

is nonpositive for all x € €. Given the partition €., N, of 2, we consider for each agent
i € N the partition /\fiﬂf, ./\/;-N ¢ of its neighbors’ set, corresponding to its neighbors
that belong to €. and N., respectively. Also, we denote by £V= the set of edges {4,5}
with both x;,z; € N.. Then, by taking into account that due to (80), g(x;) = 0 for
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x; € Q., it follows that

D D rlles —aD{(@i — ), g(x))

1EN JEN;

= Z Z |!L‘Z — T (xz - 37j),g(515i)>

{iEN:z;EN.} JEN;

= Z Z (@i — z;]){((zi — x5), 9(4))

{ieN:wieN} jeNPeun e

= S e — (- ). 9(@)

{i€EN @i €N} jen e

(104) + > rlr = a D = 25),9(@) + (@5 = 20), 9(27)]-

{i.j}e€N=

In order to prove that both terms in (104) are less than or equal to zero and hence
derive our desired result on the sign of DV (x)u, we exploit the following fact.

Fact V. Consider the vectors «, 8,7 € R™ with the following properties:

(105) lal =1, [ =1,
(106) (,7) 20, (8,7) <0

Then for every quadruple Ay, Ag, ta, 18 € R>¢ satisfying

(107) Aa = Ags fta = 1,

it holds

(108) (o = psf),8) > 0
where

(109) 6= Ao+ — \gB.

We provide the proof of Fact V in the Appendix.

We are now in position to show that both terms in the right hand side of (104)
are nonpositive, which according to our previous discussion establishes the desired
connectivity maintenance result.

Proof of the fact that the first term in (104) is nonpositive. For each 4, j in
the first term in (104) we get by applying Lemma 7(D) with a := ¢, x := x; € N, and
y:=x; € Q). that

r(lz; — zi]) (@i — x5, 9(24))

=—r(|lz; — z;|)cdh <5_|H(W

- ) <£EZ - Xy, VW(IEz» S 0

and hence, that the first term is nonpositive.

Proof of the fact that the second term in (104) is nonpositive. We exploit
Fact V in order to prove that for each {i,j} € £V the quantity

(110) (@i = j), g(2i)) + (2 — 2:), 9(x;))
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in the second term of (104) is nonpositive as well. Notice that both z;,z; € N, and
without loss of generality we may assume that

(111) |H () — i < [H(x;) — ],

namely, that z; is farther from the boundary of €. than x;. Then, by setting

(112) a :=VW(z;); 8 := VW (x;),

(113) v =i — i,

with

(114) .fi =T — (6 — |H(.131) — J,‘ZDVW(QSZ),

(115) Ty =y — (e — [H(x;) — x;)VW (25)

and

(116) Ao i=€ = [H(zi) — m3]; Ag := € — [H(z5) — 2],

(117)  po i=cdh (8 )= xi') g = coh <€ S xj') ,

it follows from (112) that |a| = |5| = 1, and from (79), (111), (116) and (117) that
Aa > Mg > 0,00 > pg > 0. Furthermore, we get from (114), (115) and Lemma
7(C) with a := ¢, z := x;, z;, that Z;,; € 0, and VW (x;) = VW (&;), VW (z;) =
VW (Z;). Thus, it follows from (112), (113) and application of Lemma 7(D) with
a:=¢, o =2 and y = &; that (a,y) > 0 and similarly, that (8,v) < 0. It thus
follows that all requirements of Fact V are fulfilled. Furthermore, by taking into
account (112)-(116), we get that

(118) 6= Mo+ — g =i — .
Hence, we establish by virtue of (80), (108), (109), (112), (117) and (118) that

{(Hac — psB),8) = —((9(@i) — g())), (@i —2;)) 2 0 =
(@i = j), g(wi)) + (2 — @), 9(x;)) <0,

as desired. We conclude that the network topology remains connected during the
evolution of the system and the proof is now complete. ]

REMARK 10. The result of Theorem 9 remains valid under the hypotheses of
Theorem 8 for the closed loop system (1), (81), if the (ICH) (3) holds for certain
R € (0, R), the function r(-) in (81) satisfies r(s) > 0 for all s > 0 (not necessarily
Property (P)), (33) holds, and the following condition is fulfilled. There exists a con-
stant 6 > 0, such that (38) holds with uw = (u1,...,uy) and u;, i € N as given by (7),
V(-) as given by (8) and all v;, i € N with |v;| < §. This observation follows from
Theorem 8 and the arguments applied for the proofs of Proposition 3 and Theorem
9, and can provide improved bounds on the additional input terms v; for certain net-
works where the verification of condition (38) does not necessarily require tools from
algebraic graph theory.
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o

5. Example and Simulation Results. We consider a system of four agents
with states 1,2, 23,74 € R% whose initial conditions lie inside the open planar
circular domain Q := {z € R? : |z| < p}. For the example we select the agents’
neighbors’ sets as N1 = {2}, Ny = {1,3}, N5 = {2,4}, Ny = {3}, i.e., such that the
network topology is given by a path graph. Their dynamics are given by (1), (81)
with 7(-) satisfying r(s) > 0 for all s > 0. Therefore, the connectivity and invariance
analysis will be based on the establishment of the conditions provided in Remark 10.

Notice first, that in the case of a circle the tubular neighborhood Ng in (52)
is well defined for & = p. In addition, the maps H(-) and VIW(z) in (P2) and
Lemma 7(A), are given as H(x) = % and VW (z) = 77> Tespectively, for all z € Ne.
Thus given ¢ € (0,p) and the partition of Q in Q. = {z € R? : || < p — ¢} and
N.={x € R?: p—¢e <|z| < p} we obtain the function g(-) in (80) as

0, if |z| < p—-e,
119 =
(119) 9(@) {c&p_i_lx 2, ifp—e<lz| <p,

||

W NN = O O 0

PNEEEN PN BEEN BN PN BN TR BN BN
WP W

3

w W

~

I
g

739  where § > 0, ¢ > 1 and h(-) has been selected as h(s) = s, s € [0,1]. The repulsion
740 vector field g(-) is illustrated together with the agents and their network topology in
741 Fig. 3, below.

Fic. 3. 4-Agent Example in a Circular Domain.

742 We proceed to determine a bound § > 0 such that (38) is fulfilled with v =
743 (ug,...,uy) and u;, ¢ € N as given by (7), V() as given by (8) and all v;, i € N
744 with |v;] < 6. For notational convenience we denote as ¢; := |x;41 — 25| and r; :=

745 r(|wipr —i]) =7v(6), 1 =1,2,3. Given u = (uq,...,uy) with u;, 7 € N as in (7), the
746 derivative of the energy function V() along u is given by virtue of (9) as

4 4
47 DV(z)u = ZDIV(x)uz = Z Z r(|lz: — 25)) (2 — 25) T wy
i=1 i=1 \jEN;
748 ri(zy — 22) T [ri(ze — 1) +v1 — (r1(21 — T2) + ro(23 — T2) + v2)]
749 —I—’/‘Q(Jig —$3)T[7"1( 2) +’I“2($3 —.132)4—1]2 — (’/‘2(1‘2 —l‘3) +T3($4 —1‘3) -‘1-’03)]
750 +r3(2s — 24) T [ro(20 — 23) + r3(2s — 3) + v3 — (r3(w3 — 24) + v4))].
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For |v;] < 4,4 =1,2,3,4 we obtain from the Cauchy-Schwartz inequality that

DV(.T)’LL S — 27"%6% — 27“§£g — 27“§€§ —+ 27“11€17"2£2 —+ 27“21€2’]"3£3 —+ 2(7“151 —+ 7“2@2 =+ 23[3)5
= —2(1 — k)(rif3 + 1303 +r303) — (2kr203 — 2r1y79ly + kr3l3)
— (2kr203 — 2rolorsls + krie2) + 2(rily + roly + 2303)0,

for any k£ € R. By additionally exploiting the elementary fact that for any a,b > 0 it
holds 2ka? —2ab+kb% > 0 for all k > %, it follows that DV (z)u < —2 (1 — %) (r2e2
+130% + 1r203) + 2(r161 + 12l + 1303). In order to show (38) it suffices to show that
_ (1 — g) (120347303 4+7203)+(r1 € 14120y +1303)5 < 0 whenever max{(y, (s, (s} > R.

By additionally requiring that r(-) is increasing and satisfies r(R) > 0, the latter is
equivalent to showing that 13413 +13 — (I +12+13)0 > 0, whenever max{ly,la,l3} > 1,

o= rili -___ 5 :
where we have set [; : RE and 0 : (17§)T(R)R' The latter follows if we assume

that without any loss of generality I = 1, 6§ < 1, and specify 6 such that
(120) L4+ +13-0(1+1y+13) >0.

The left hand side of (120) is minimized when 2l5 = 2l3 = 6, and becomes —% —0+1.

Thus, by selecting § = v/3 — 1, we obtain the maximum value of ¢ for which (120) is
valid for all Iy, I3, and we get § = 0.21447(R)R. We next select r(s) := as for certain

a > 0 and obtain the function P(s) = a% in (4). Thus, we can specify the maximum

initial distance R between interconnected agents in such a way that (33) is fulfilled,
i.e., such that 3aR> = aR3, by selecting R= %R.

For the simulation results we pick p = 10, e = 5 and ¢ = 1.1 in (119). In addition
we select R = 10 and a = 0.2 which provide the maximum initial distance R =6.9336
and the bound § = 2.0615 on the inputs v;. We consider two different cases for the
initial positions of the agents and their inputs v; and depict the system’s evolution
for each case over the time interval [0,12] in Fig. 4, below. The inputs in the left
figure have been selected as vy (t) = (—1,-1), t € [0,6], v1(t) = (—=2,0), t € [9,12],
va(t) = (0,—1), t € [0,6], v2(t) = (0,0), t € [9,12], vs(t) = (0,0), ¢t € [0,12], and
va(t) = (2,0), t € [0,6], va(t) = (0,0), ¢t € [9,12], respectively, and as the convex
combination (ggt)v,-(ﬁ) + @vi@) for t € (6,9), i = 1,2,4. Thus, the network
moves downward and the distance between agents 2, 3 and 4 increases over the time
interval [0, 6]. After the transient period (6,9), namely, for ¢ € [9,12] the only agent
with nonzero input is 1, and this results in the motion of the group to the left and
convergence of the other agents towards agent 1. The corresponding inputs in the right
figure are v1(t) = (1,0), t € [0,3], v1(t) = (1,1.5), t € [6,12], va(t) = v3(t) = (0,0),
t € [0,12], va(t) = (1,0), t € [0,3], va(t) = (1,—-1.5), ¢t € [6,12], respectively, and
the convex combination (fj—gt)vi(B) + (tg—&vi(G) for t € (3,6), i+ = 1,4. Thus, the
network moves to the left and the agents approach each other over the time interval
[0,3]. After the transient period (3,6), the agents obtain a vertical distance, due to
the additional upward motion of 1 and the downward motion of 4 imposed by the
vertical component of their corresponding input terms. We observe that in both cases
the requirements on the maximum initial distance between interconnected agents and
the bounds on the input terms are satisfied, which by virtue of Remark 10 result in
connectivity maintenance and invariance of the agents’ trajectories inside the circular
domain.
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Fic. 4. This figure shows the evolution of agents 1, 2, 3 and 4 for times t € [0,12]. The
initial conditions are depicted by the triangles and the diamonds represent the start and
endpoint of the transient time intervals (6,9) and (3, 6) for the input terms v; in the left and
right figure, respectively.

6. Conclusions. We have designed a decentralized control framework for single
integrator multi-agent systems in order to maintain connectivity of the network during
the evolution of the system and established robustness of this property with respect to
additional bounded input terms. Furthermore, under the assumption that the initial
conditions of the agents lie inside a bounded and convex domain, a modification of the
proposed control law guarantees forward invariance of the agents’ trajectories inside
this domain, while simultaneously preserving the robust connectivity result.

Future research includes the application of optimization tools in order to improve
the bounds on the extra input terms and the initial relative distances of the agents,
and the consideration of nonconvex domains, by additionally relating the derived
bounds to curvature properties of their boundaries.

7. Appendix. In the Appendix, we provide the proofs of Facts I, II and III,
IV, which were used in the proofs of Lemma 2 and Proposition 3, respectively, and
of Fact V, which was used in the proof of Theorem 9. For convenience we state the
elementary inequality

(121) 2(|w)? + |2]?) > |w — 2|, Vw, z € R™,
which is a direct consequence of the triangle inequality.

Proof of Fact I. Let {ex }renr be an orthonormal basis of eigenvectors corresponding
to the ordered eigenvalues of L,,(z). Then, for each I =1,...,n we have that

N
Cl(mL) = Zﬂkekhuk € Rak:27"'7N
k=2

and hence, that
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Thus, we get that

| L (z)er(a )]

N
Z bk Lo (x)ek
k=2

N
> mdi(x)en
k=2

= (Z(ukAk(x))2> > Xa(2) <Z Mi) = Xa(@)|ar(a)),
k=2

k=2

which establishes (22).
Proof of Fact II. By taking into account the Cauchy Schwartz inequality we obtain

Y la@)lla)l < (Z ICI(x)I2> (ZICz(y)I2>
=1

=1

~

I
VR
M-

]
o
—

8
e
N———

Nl
~~
(]
=
i)
s
e
N———
|

I
—~
>

(]
ie]
—
8
e
N——
N
R
=
) 3
ie]
=
e
N——
N

11(=1 =1 l=
N 3 /N 3
_ (zw) (zw) el
=1 =1

and hence (23) holds.
Proof of Fact III. By the definition of 2+ and z, it follows that there exists & € R"
such that © —z+ =7 = (%,...,%) € RN". Hence, we have that

1
N 2
ot = |z — 2| = |(21,...,2N8) — (&,...,7)| = (Z xi—;ﬁ|2> =

i=1

V2(N = 1|2t = (Z 2N —1)|z; — :z|2>

i=1

Nl

= Yoo 20w -+l - |

{i.iYeE(K(N)

where E(K(N)) stands for the edge set of the complete graph with vertex set N.
Then, it follows from (121) that

2 2
oo 2w —EP -2 | > oo fm—al
{i,7}€E(K(N)) {i,7}€E(K(N))
2
> > || =|Ax],
{i,j}€€&

which provides the desired result.
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Proof of Fact IV. Notice that (36) is equivalently written as

N

2|zt > max z; —xi]? = 2 Zac-—;%2 > max |z; — z4]?
| | {17 }E ‘ 2 jl i:1| K3 | 7{i,j}6£| 7 j| 9

with # € R™ as in proof of Fact IIL. Let {7, j} € & such that |75 — 5] = maxy; jyee |vi—
xj|. Then, by taking into account (121) we have

N

_F2 ) > 2 — 72 = B2 > | — 2?2 = ]2
> o=l ) > 2l =3 e =) 2l =i = o o,

and thus (36) is fulfilled.
Proof of Fact V. By taking into account (105)-(107) and (109) we evaluate

(o — 115B),0) = (o — p5B), Ao — AgB) +7)

= ((Hae = 1pB), (Aac = AgB)) + pa e, v) — 1p(B,7)
> ((pacx — Nﬂﬂ)v (Aa — )‘ﬂﬁ»

= pradalal® = (Hads + ppAa) (e, B) + pas|l®

> paalal? = (ads + pada)lalB] + ppsAsl B

= ftara — fag — [aAa T HpAS

= fla(Aa = Ag) — 11(Aa — Ag) = (ha — p8)(Aa —Ag) 20

and hence, (108) holds.
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