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a b s t r a c t

As a means to regulate the continuous-time bounded confidence opinion dynamics, an exo-system to the
original Hegselmann–Krausemodel is added. Some analysis ismade about the properties of the combined
system. Two theorems are provided in this article in terms of sufficient conditions of the exo-system that
can guarantee opinion consensus for any initial conditions. Twomore corollaries are given to describe the
resulting synchronized opinions.
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1. Introduction

Self-organized group behavior can be observed in animal flocks
aswell as human society. By simple communication, awhole group
of birds can react to danger rapidly, or can migrate in a certain
formation. A herd of predator can hunt with special tactics by
following certain self-organized rules. As higher intelligent and
relatively more independent human beings, we think and behave
based on our own will while influenced by many other human
individuals andby the society. Sociologists, psychologists, and even
engineers and mathematicians want to model and study this in-
teraction among human societies nowadays. While psychologists
focus more on how people handle and react from social input,
mathematicians analyze relatively simplemodels and the resulting
group/global behaviors.

Among the different models about human opinion dynamics in
the literature, there is a type of model called bounded confidence
model who allows opinion influence to happen only when the two
opinions are close enough. This type of modes also has the name
‘‘Hegselmann-Krause models’’ from its initiators Rainer Hegsel-
mann and Ulrich Krause [1]. These discrete-time, deterministic
models force the opinion of an individual to reach the opinion av-
erage among its close-by neighbors at every time step. The models
lead to a well known clustering phenomenon that the opinions
will converge to one or a few certain constant values. For a given
model, the number and position of those values are completely
determined by the starting opinion distributions.
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Despite the simple expression of the Hegselmann–Krausemod-
els, the analysis of the opinion evolution is complicated. Besides
the original article by Hegselmann and Krause, there are papers
such as [2–4] that study the convergence, stability and steady state
of the opinions under the Hegselmann–Krause model. By applying
the theory of differential equations, the model is also extended to
continuous-time opinions; [5,6] provide a detailed analysis on the
existence and uniqueness of the solution to the continuous-time
model, which is non-trivial due to the discontinuous right-hand
side.

A frequently asked question is: for what initial opinion distri-
bution the system will have only one cluster when time evolves.
Reaching only one cluster is also called reaching consensus. The
sufficient and necessary condition for reaching consensus has
not been given in the literature. There are a few results for suf-
ficient conditions such as those in [7]. Other researchers test
some modified version of the Hegselmann–Krause model for dif-
ferent purposes. Those models can be found in [7,8]. In [9], a
bounded confidencemodel with antagonistic interactions was dis-
cussed based on the analysis of the original Altafini’s model in
[10–12].

Instead of the standard homogeneous Hegselmann–Krause
models, heterogeneous models that consider agents as different
individuals are studied in the literature [13,14], which can improve
the chance of reaching consensus for random initial conditions. An
example of the heterogeneous models is by introducing ‘‘stubborn
agents’’ that are unwillingly to change their opinions [15]. The
extreme case of those stubborn agents can be considered as the
state of a special type of exo-system that has zero dynamics. In
this paper, we combine the Hegselmann–Krause model with a
general exo-system. If the exo-system satisfies certain sufficient
conditions, the consensus behavior can be guaranteed for any
random initial opinion distribution.
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TheHegselmann–Krausemodelwith exo-systems is introduced
in Section 2 with some properties of the model. Two theorems are
provided that guarantee consensus in Section 3 together with two
corollaries. In Section 4, numerical experiments are carried out to
test and illustrate the results of the theorems and corollaries. A
short summary is included in Section 5 as well as a forecast of
possible future study.

2. Problem formulation

We study a system of N agents with their time-dependent
opinions denoted as xi(t) ∈ R for i = 1, 2, . . . ,N . Agent i is
influenced by agent j only if the opinions of both are close enough.
The dynamics of the opinions can be modeled as the following
system:

ẋi =

∑
j:|xj−xi|<d

(xj − xi), (1)

where the distance d > 0 is called the confidence range. The
system (1) is also referred as continuous-timeHegselmann–Krause
(H–K) model initially introduced in [5] based on the original
discrete-time ‘‘bounded confidence’’ models. There are both theo-
retical analysis and numerical simulations about this model in the
literature, showing the cluster behavior of the opinions. Asymp-
totically, each opinion will converge to one of the several certain
values called opinion clusters. The distance between any pair of
opinion clusters is proven to be larger than d in [5].

If the opinions converge to a single cluster, we say the opinions
reach consensus. There are a few results about consensus behavior
for both system (1) and modified versions of (1) with given initial
conditions. For an arbitrary random initial opinion distribution,
consensus is however not guaranteed even if the neighbor graph is
initially connected. In this paper we introduce certain exo-systems
in addition to the H–K model so that opinion consensus can be
reached for a broader range of initial conditions. The new system
is modeled as follows:

ẋi =

∑
j:|xj−xi|<d

(xj − xi) +

∑
k:|yk−xi|<d

(yk − xi)

ẏk = gk(t, y),
(2)

for i = 1, 2, . . . ,N and k = N + 1,N + 2, . . . ,N + M, where
yk’s are the state variables for the exo-system and gk’s are bounded
continuous functions that we design later. M is dimension of the
exo-system. For simplifying later use, x ∈ RN and y ∈ RM will
denote the stack vectors of xi’s and yk’s, respectively. In the context,
we also call the state of the original H–Kmodel xi’s normal opinions
in order to separate them from the external opinion yk’s.

Because of the discontinuity of the right-hand side of the
continuous-time H–K model, the classic analysis of the existence
and uniqueness of the solution does not apply. There are many
discussions in the literature about different types of solutions to
this differential equation. In [5], the authors introduced the con-
cept of ‘‘proper solutions’’ as a subset of Carathéodory solutions,
which guarantee existence and uniqueness for ‘‘proper initial con-
ditions’’ that are almost sure in measure. In [6], the more general
Krasovskii solutions are discussed for H–K models, which exist for
any initial condition without a guarantee of uniqueness. There is a
detailed discussion about the difference between these two types
of solutions at the end of [6]. In our case, as long as the g function
in the exo-system is locally bounded and well defined in an open
neighborhood around the initial time, the existence of Krasovskii
solution will be guaranteed (see [16]). Since g is given for design
purposes, we assume that in this paper gk(t, y) is continuous and
is defined for all t ∈ R, and thus we consider that (x(t), y(t)) is a
Krasovskii solution to (2) for the rest of the paper. Similar to the

approach introduced in [6], we use the following way to describe
a solution.

Given a Krasovskii Solution (x(t), y(t)), define the joint graph
G(x, y) = (Vx ∪ Vy, E(x, y)), where Vx = {1, 2, . . . ,N} and Vy =

{N + 1,N + 2,N + M} are the sets of vertices, and

E(x, y) = {(i, j) : i, j ∈ Vx, |xi − xj| < d}
∪ {(i, k) : i ∈ Vx, k ∈ Vy, |xi − yk| < d}

is the set of edges.1 Slightly different from the standard graph
theory definition, in this paper, we call two opinions connected if
and only if their distance is less than d, i.e., i, j are connected if and
only if (i, j) ∈ E(x, y) for i, j ∈ Vx ∪ Vy. We also need to define the
concept of boundary of the edge set, which is

∂E(x, y) = {(i, j) : i, j ∈ Vx, |xi − xj| = d}
∪ {(i, k) : i ∈ Vx, k ∈ Vy, |xi − yk| = d}.

∂E(x, y) includes those pairs (i, j) that have the exact distance d
for the corresponding opinions. The pair should not be in the set
of edges but with any arbitrary small perturbation in the negative
direction, it will form an edge between them. These pairs are the
locations of the potential discontinuities in the system, where the
Krasovskii solution allows small perturbation around them. Note
that the dynamics of the exo-system is always continuous as we
assumed, we only focus on the normal opinions xi(t).

By definition, for any given Krasovskii solution (x(t), y(t)) and
for almost any time t , it holds that d

dt (x(t), y(t)) belongs to the
closed convex hull of intersecting the right-hand-side of (2) with
arbitrary small perturbation of the states. Since we have already
defined the boundary of the edge set, we can always find a set of
normalized weights α

(x,y)
H , depending on both the solution (x, y)

and the time t , such that
d
dt

xi(t) =

∑
H⊂∂E(x,y)

α
(x,y)
H

×

⎛⎜⎝∑
j∈NH

i

(xj(t) − xi(t)) +

∑
k∈ÑH

i

(yk(t) − xi(t))

⎞⎟⎠ , (3)

where α
(x,y)
H > 0,

∑
H⊂∂E(x,y)α

(x,y)
H = 1, andNH

i and ÑH
i are defined

as follows, respectively:

NH
i = {j ∈ Vx : (i, j) ∈ E(x, y) ∪ H};

ÑH
i = {k ∈ Vy : (i, k) ∈ E(x, y) ∪ H}.

H denotes the possible set of edges that can be added to the graph,
where the length of each of those edges is exactly d. Namely, the
two opinions that have difference d can sometimes be considered
as directly connected. We also define NH

ij = NH
i ∩ NH

j , and ÑH
ij =

ÑH
i ∩ ÑH

j for the simplification of later uses.
We start our analysis of the model by introducing the following

order preservation property (Proposition 2.1) first.

Remark. It is intuitive to consider the order preservation property
in the following way: when xi(t) = xj(t) for some t , they should
retain the same opinion for t ′ > t since the derivative is only state
related. However, this property only holds for ‘‘proper solutions’’
as shown in [5]. For general Krasovskii solutions, the equality for xi
and xj maybe lost at discontinuities even after time t [6]. Therefore,
the following order preservation property only covers the cases of
strict inequality.

1 The graph is defined at time t and is time dependent. To simply the notation,
we do not add t explicitly to the definitions. The edge definition here makes the
graph a directed graph. However, the interaction between normal opinions is still
symmetric.



Y. Yang et al. / Systems & Control Letters 119 (2018) 23–30 25

Proposition 2.1 (Order Preservation). In system (2), for any i, j ∈

{1, 2, . . . ,N}, if xi(0) < xj(0), then xi(t) < xj(t) for any t ≥ 0.

Proof. Wewill prove the claim by contradiction. Given the contin-
uous Krasovskii solution (x(t), y(t)), if the statement is false, then
there must be i, j ∈ {1, 2, . . . ,N} and an interval [T − τ , T ] such
that xi(t) < xj(t) for all t ∈ [T − τ , T ) and xi(T ) = xj(T ) for some
positive τ . Due to the continuity of the opinions, we can further
assume that xi(t) − xj(t) > −d for t ∈ [T − τ , T ] if τ is small
enough. If we calculate the derivative of the opinion difference, we
get that for almost all t ∈ [T − τ , T ):
d
dt

(xi(t) − xj(t))

=

∑
H⊂∂E(x,y)

α
(x,y)
H

( ∑
l∈NH

i

(xl(t) − xi(t)) +

∑
k∈ÑH

i

(yk(t) − xi(t))

−

( ∑
m∈NH

j

(xm(t) − xj(t)) +

∑
s∈ÑH

j

(ys(t) − xj(t))
))

= −

∑
H⊂∂E(x,y)

α
(x,y)
H

(
|NH

ij | + |ÑH
ij |(xi(t) − xj(t))

)

+

∑
H⊂∂E(x,y)

α
(x,y)
H

⎛⎜⎝ ∑
l∈NH

i \NH
j

(xl(t) − xi(t))

+

∑
k∈ÑH

i \ÑH
j

(yk(t) − xi(t))

⎞⎟⎠
−

∑
H⊂∂E(x,y)

α
(x,y)
H

⎛⎜⎝ ∑
m∈NH

j \NH
i

(xm(t) − xj(t))

+

∑
s∈ÑH

j \ÑH
i

(ys(t) − xj(t))

⎞⎟⎠ .

Note that by the assumption of 0 > xi(t) − xj(t) > −d, we always
have:

• for any element l ∈ NH
i \ NH

j , xl(t) < xi(t)
• for any element k ∈ ÑH

i \ ÑH
j , yk(t) < xi(t)

• for any elementm ∈ NH
j \ NH

i , xm(t) > xj(t)
• for any element s ∈ ÑH

j \ ÑH
i , ys(t) > xj(t)

Hence, we can derive that
d
dt

(xi(t) − xj(t)) ≤ −

∑
H⊂∂E(x,y)

α
(x,y)
H

(
|NH

ij | + |ÑH
ij |(xi(t) − xj(t))

)
≤ −

∑
H⊂∂E(x,y)

α
(x,y)
H

(
(N + M)(xi(t) − xj(t))

)
= − (N + M)(xi(t) − xj(t)),

since |NH
ij | ≤ N and |ÑH

ij | ≤ M always hold. By the comparison
lemma2 ,

xi(T ) − xj(T ) ≤ e−(N+M)τ (xi(T − τ ) − xj(T − τ )) < 0,

which contradict with the assumption that xi(T ) = xj(T ) (see
Fig. 1). □

2 The integral form of Grönwall’s inequality is needed here.

Fig. 1. Plot describing the above statements.

We introduce the following notations for later use:

xmax(t) = max
i

{xi(t)}, xmin(t) = min
i

{xi(t)}

ymax(t) = max
k

{yk(t)}, ymin(t) = min
k

{yk(t)}

Proposition 2.1 guarantees that the state x(t) will preserve orders
when time evolves. xmin will coincide with one of state variables
that has the minimal initial value, and xmax will be one of the state
variables with the maximal initial value. Thus, in the later use, we
always consider that the notation min and max indicate specific
vertices in the graph G(x, y) for x(t) variables. Note that this may
not hold for y(t).

3. Main results

Intuitively, if the signals yk(t)’s generated by the exo-system,
called exo-opinions later, change slow enough, the opinions of
normal agents xi(t)’s should keep following at least one of them.
We can actually give a bound for the speed of the exo-system.
Consider the problem (2) with a certain initial condition. Suppose
that |gk(t, y)| ≤ v < d holds for all t , all y and all k, then the agent
with the smallest opinion shouldnot be ‘‘left behind’’ by all the exo-
opinions if it is connected to at least one of them initially. Namely,
if xmin(0) − ymin(0) > −d initially, then for any t ≥ 0, we can find
some k ∈ Vy (depending on t) such that

xmin(t) − yk(t) > −d.

This can be shown by contradiction. Assume that xmin(0)− ys(0) >

−d for some s ∈ Vy. Suppose that at t∗ > 0, it is the first time that
xmin(t∗)−ys(t∗) ≤ −d for all s ∈ Vy. Because of the continuity, there
must be some k such that xmin(t∗)− yk(t∗) = −d. For ϵ =

d−v
2 > 0,

we can find τ > 0 small enough so that there exists a fixed k ∈ Vy
such that

− d < xmin(t) − yk(t) ≤ −d + ϵ and
xmin(t) − ys(t) ≤ 0, for all s ∈ Vy,

for all t ∈ [t∗ − τ , t∗) and xmin(t∗) − yk(t∗) = −d. If we keep
the notation introduced in the previous section that ÑH

min = {k ∈

Vy : (min, k) ∈ E(x, y) ∪ H}, we can derive that k ∈ ÑH
min for all

t ∈ [t∗ − τ , t∗) and for all H ⊂ ∂E(x, y).
For almost all t ∈ [t∗ − τ , t∗), we have

d
dt

(xmin(t) − yk(t)) =

∑
H⊂∂E(x,y)

α
(x,y)
H

( ∑
j∈NH

min

(xj(t) − xmin(t))

+

∑
s∈ÑH

min

(ys(t) − xmin(t))

)
− gk(t∗, y(t))

≥

∑
H⊂∂E(x,y)

α
(x,y)
H

(
yk(t) − xmin(t)

)
− v

≥d − ϵ − v =
d − v

2
> 0,
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This implies that xmin − yk will not decrease during the interval
[t∗ − τ , t∗), which contradicts the assumption. We can derive
a similar result for the maximum opinion xmax. Since it will be
used frequently in the remaining of the paper, let us introduce the
concept of ‘‘cover’’.

Definition 3.1. We say the opinion x is covered by the exo-opinions
y if xmin > yk − d for some k ∈ {1, 2, . . . ,M} and xmax < ys + d for
some s ∈ {1, 2, . . . ,M}.

We can then summarize the derivation above in the following
lemma:

Lemma 3.1. For the system (2), if we assume that the initial normal
opinions are covered by the initial exo-opinions and that the function
g satisfies |gk(t, y)| ≤ v < d, then for any t ≥ 0 the opinions x(t)
remain covered by the exo-opinions y(t).

Remark. Lemma 3.1 states that if the exo-system evolves slow
enough, the normal opinions will keep being covered by the exo-
opinions, namely xi(t) ∈ (ymin − d, ymax + d) for all i. Note that the
index of ymin and ymax may change over time.

Based on this result, the question that arises is whether we
can design the exo-system so that the agents will reach consensus
asymptotically. Since the coverage maintains if the exo-opinions
move slowly enough, a natural hypothesis is that if the exo-
opinions converge, i.e. |yk(t) − ys(t)| → 0 as t → ∞ for any k and
s, we will have xmax(t) − xmin(t) → 0 as t → ∞. This hypothesis
turns out to be true.

Theorem 3.2. For the system (2), if the following hold:

1. x(0) is covered by y(0);
2. the function g satisfies |gk(t, y)| ≤ v < d;
3. yk(t) − ys(t) → 0 as t → ∞ for any k and s,

then xmax(t) − xmin(t) → 0 as t → ∞.

Proof. The proof will be divided into two phases:

(i). Firstly, we show that for xmin(t) and xmax(t), there exists a
time such that both opinions will be and remain connected
to all the exo-opinions after that time.

(ii). Secondly, we show that if both xmin(t) and xmax(t) remain
connected to all the exo-opinions, they will reach consensus.

We will prove them in a reverse order due to their complexity.
Before that, we can assumewithout loss of generality that the exo-
opinions have already converged to a small difference between
them, meaning that there exists a small ϵ > 0 such that |yk(t) −

ys(t)| < ϵ for all t ≥ 0. The value of ϵ should be very small
(at least smaller than d) and will be determined later. Lemma 3.1
guarantees that x(t) is always covered by y(t) for any t ≥ 0,
meaning thatwe can rewrite the systemby introducing a new time
variable that starts from a positive t .

Proof of (ii): If there exists TF ≥ 0 such that for t ≥ TF , both
|xmin(t) − yk(t)| < d and |xmax(t) − yk(t)| < d hold for all k, and
then for almost all t ≥ TF we have
d
dt

(xmax(t) − xmin(t))

=

∑
H⊂∂E(x,y)

α
(x,y)
H

⎛⎝ ∑
j∈NH

max

(xj(t) − xmax(t)) +

∑
k∈Vy

(yk(t) − xmax(t))

⎞⎠
−

∑
H⊂∂E(x,y)

α
(x,y)
H

⎛⎜⎝ ∑
j∈NH

min

(xj(t) − xmin(t)) −

∑
k∈Vy

(yk(t) − xmin(t))

⎞⎟⎠

≤

∑
H⊂∂E(x,y)

α
(x,y)
H

⎛⎝∑
k∈Vy

(yk(t) − xmax(t)) −

∑
k∈Vy

(yk(t) − xmin(t))

⎞⎠
= −M(xmax(t) − xmin(t))

By the comparison lemma, xmax(t)− xmin(t) ≤ e−M(t−TF )(xmax(TF )−
xmin(TF )) → 0 as t → ∞. ♢

Proof of (i): Since all the exo-opinions have already converged
within a small distance ϵ < d, an opinion xi(t) is connected to all
of them if and only if xi(t) ∈ (ymax − d, ymin + d). We will show the
statement (i) by the following argument:
Claim: we claim that for any t > 0, if xmin(t) ≤ ymax − d + ϵ, then
d
dt (xmin(t) − yk(t)) is strictly larger than a positive constant for any
k (if the derivative exists, which should be the case almost surely).

This implies that there must be a T1 such that for any t > T1,
xmin(t) > ymax(t) − d. A similar argument can be made for xmax
that there exists T2 such that for any t > T2, xmax(t) < ymin(t) + d.
Therefore, we have

ymax(t) − d < xmin(t) < xmax(t) < ymin(t) + d

holds for any t > max{T1, T2}, and hence both xmin(t) and xmax(t)
will keep connected to all the exo-opinions. The remaining of the
proof is to show the Claim.

Proof of the Claim: Suppose that at time t ≥ 0,

xmin(t) ≤ ymax(t) − d + ϵ. (4)

Since the exo-opinions are clustered within distance ϵ, for any k
we have

yk(t) ∈ (ymax(t) − ϵ, ymax(t)]. (5)

If ϵ < d
2 , we additionally have xmin(t) < yk(t) for all k ∈ Vy.

By Lemma 3.1, there always exists κ (depending on t) such that
xmin > yκ − d, meaning that κ ∈ ÑH

min. Moreover, by combining (4)
and (5), we get

yκ (t) − xmin(t) > d − 2ϵ.

Now for all k ∈ Vy we have that

d
dt

(xmin(t) − yk(t)) =

∑
H⊂∂E(x,y)

α
(x,y)
H

( ∑
j∈NH

min

(xj(t) − xmin(t))

+

∑
s∈ÑH

min

(ys(t) − xmin(t))

)
− ẏk(T1)

>
∑

H⊂∂E(x,y)

α
(x,y)
H (yκ (t) − xmin(t)) − v

> d − 2ϵ − v

Now we let ϵ =
d−v
4 < d

2 , and hence get d
dt (xmin(t) − yk(t)) > d−v

2
> 0. ♢

To summarize, if we start with the choice of ϵ =
d−v
4 , then there

is T = max{T1, T2} > 0 such that for any t > T it holds that
xmax(t)− xmin(t) converge to zero exponentially. Therefore, we can
conclude that xmax − xmin → 0 as t → ∞. □

Remark. Although Theorem 3.2 guarantees consensus of the opin-
ions, it does not provide any description of the limit. Especially,
we do not have that xi(t) → yk(t) in general. Nevertheless, we
can give a bound for the synchronized opinions from the following
corollary.

Corollary 3.3. Let the assumptions hold in Theorem 3.2. Then for any
δ > 0 there exists T > 0 such that |xi(t) − yk(t)| < v

M + δ for all
i ∈ Vx, k ∈ Vy, and all t > T .
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Proof. We will prove the corollary for xmin and xmax, and the rest
opinions will be between these two and therefore also satisfy the
statement. In fact, it is enough to show that for any δ > 0, there is
T > 0 such that xmin(t) > yk(t)− v

M −δ and xmax(t) < yk(t)+ v
M +δ

for any k and any t > T .
We can again assume, without loss of generality, that |ys(t) −

yk(y)| < ϵ for all t ≥ 0 for a given positive ϵ. From the proof
Theorem 3.2, if ϵ ≤

d−v
4 , there exists T1 > 0 such that xmin(t) keeps

connected to all the exo-signals for t > T1. For any specific k ∈ Vy
and almost all t > T1,

d
dt

(xmin(t) − yk(t)) =

∑
H⊂∂E(x,y)

α
(x,y)
H

( ∑
j∈NH

min

(xj(t) − xmin(t))

+

∑
s∈Vy

(ys(t) − xmin(t))

)
− ẏk(t)

≥

∑
H⊂∂E(x,y)

α
(x,y)
H

∑
s∈Vy

(
(ys(t) − yk(t))

+ (yk(t) − xmin(t))
)

− ẏk(t)

≥ − M(xmin(t) − yk(t)) − Mϵ − v

If we denote z∗(t, τ , z0) the solution to the system

ż(t) = −Mz(t) − (Mϵ + v)
z(τ ) = z0,

(6)

then it holds that

z∗(t, τ , z0) = e−M(t−τ )(z0 + ϵ +
v

M
) − ϵ −

v

M
→ −ϵ −

v

M
as t → ∞.

We can thus always find T2,k > 0 such that xmin(t) − yk(t) ≥

−2ϵ−
v
M for all t > T2,k due to the comparison lemma.3 Therefore,

if we set ϵ = min{
d−v
4 , δ

4 }, and Tmin = max{T1,maxk{T2,k}}, we
have

xmin(t) ≥ yk(t) −
v

M
−

δ

2
> yk(t) −

v

M
− δ,

for all k, and for all t > Tmin. A similar approach can be used to
prove that xmax(t) < yk(t) +

v
M + δ for all k, and for all t > Tmax

with the corresponding Tmax. The corollary is proven by letting
T = max{Tmin, Tmax}. □

In general, there exists a gap between x(t) and y(t) with width
less, equal, or converging from above to v

M . Additionally. if the exo-
signals converge to a constant value, then the gap disappears.

Corollary 3.4. For the system (2), if we assume that

1. x(0) is covered by y(0);
2. the function g satisfies |gk(t, y)| ≤ v < d;
3. there exists y∗

∈ R such that yk(t) → y∗ as t → ∞ for all k,

then xi(t) → y∗ as t → ∞ for all i.

Proof. From Theorem 3.2 we know that xi(t) → x∗(t) as t → ∞

for some x∗(t). The only thing we need to show is that x∗(t) → y∗

as t → ∞. If we consider the two steps in the proof of Theorem3.2,
all of themwill still hold since the assumptions of the theorem are

3 We can use the comparison lemma or Grönwall’s inequality here because
|xmin − yk| < d for any k.

satisfied. In (ii), for almost all t ≥ TF , we additionally have

d
dt

(xmin(t) − y∗) =

∑
H⊂∂E(x,y)

α
(x,y)
H

( ∑
j∈NH

min

(xj(t) − xmin(t))

+

∑
k∈Vy

(yk(t) − xmin(t))

)
≥

∑
H⊂∂E(x,y)

α
(x,y)
H

∑
k∈Vy

(yk(t) − xmin(t))

= − M(xmin(t) − y∗) +

∑
k∈Vy

(yk(t) − y∗)

and

d
dt

(xmax(t) − y∗) =

∑
H⊂∂E(x,y)

α
(x,y)
H

( ∑
j∈NH

max

(xj(t) − xmax(t))

+

∑
k∈Vy

(yk(t) − xmax(t))

)
≤

∑
H⊂∂E(x,y)

α
(x,y)
H

∑
k∈Vy

(yk(t) − xmax(t))

= − M(xmax(t) − y∗) +

∑
k∈Vy

(yk(t) − y∗)

If we denote z∗(t, z0) as the solution to the system

ż(t) = −Mz(t) + u(t), (7)

with the initial condition z(0) = z0, where u(t) =
∑m

k=1(yk(t) −

y∗) → 0 as t → ∞, then we claim that z∗(t, z0) → 0 as t → ∞

for any initial condition. The claim will be proven in Appendix.
Since both |xmin(t) − y∗

| and |xmax(t) − y∗
| are bounded, thanks to

Lemma 3.1, by the comparison lemma we have

z∗(t, xmin(0) − y∗) ≤ xmin(t) − y∗
≤ xmax(t) − y∗

≤ z∗(t, xmax(0) − y∗)

Both z∗ on the two sides of the inequality converge to zero. Hence,
we have both xmin(t) and xmax(t) converge to y∗. □

Although Theorem 3.2 requires the exo-opinions to reach con-
sensus in order to synchronize the normal opinions, we could
achieve the same goal with non-converging exo-opinions. In fact,
as long as the exo-opinions are constrained in a bounded region
after a certain time, we will still have a consensus result, which
can be formulated by the following theorem.

Theorem 3.5. For the system (2), if we assume that

1. x(0) is covered by y(0);
2. the function g satisfies |gk(t, y)| ≤ v < d;
3. there exist a ∈ R, r ∈ (0, d) , and T > 0 such that yk(t) ∈

[a, a + r] for t > T , and for all k,

then xmax(t) − xmin(t) → 0 as t → ∞.

Proof. The theorem can be proven by the two phase approach
again:

(i). Firstly, we show that for xmin(t) and xmax(t), there exists a
time such that both opinions will be and remain connected
to all the exo-opinions after that time.

(ii). Secondly, we show that if both xmin(t) and xmax(t) remain
connected to all the exo-opinions, they will reach consensus.
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We only prove (i) here, and the proof of (ii) will be identical to that
in the proof of Theorem 3.2.

We only consider t > T . xmin(t) is connected to all the exo-
opinions if it is in the interval (a+r−d, a+d) since yk(t) ∈ [a, a+r]
for all k. We will show that if xmin(t) ≤ a+ r −d+ ϵ for some small
ϵ > 0, then d

dt xmin(t) ≥ c > 0 for some constant c (if the derivative
exists), meaning that if t is large enough, xmin(t) will keep being
larger than a + r − d.

Suppose xmin(t) ≤ a + r − d + ϵ. If we further assume that
ϵ ≤ d − r , we also have xmin(t) ≤ a ≤ yk(t) for all k. Because
x(t) is covered by y(t) due to Lemma 3.1, there exists at least one
exo-opinion yκ (t) connected to it, meaning that κ ∈ ÑH

min. If the
derivative exists at t , we have

d
dt

xmin(t) =

∑
H⊂∂E(x,y)

α
(x,y)
H

( ∑
j∈NH

min

(xj(t) − xmin(t))

+

∑
k∈ÑH

min

(yk(t) − xmin(t))

)

≥

∑
H⊂∂E(x,y)

α
(x,y)
H

(
yκ (t) − xmin(t)

)
≥ a − (a + r − d + ϵ) = d − r − ϵ

If we choose ϵ =
d−r
2 , then we have

d
dt

xmin(t) >
d − r
2

> 0. (8)

There thusmust exist a T1 such that xmin(t) > a+r−d for all t > T1.
We can derive a similar result for xmax(t) so that there exists a T2
such that xmax(t) ≤ a + d for all t > T2. Combining these two we
get that

xi(t) ∈ [xmin(t), xmax(t)] ⊂ (a + r − d, a + d)

for all t > max{T1, T2} and thus stays connected to all the exo-
opinions for all i. □

Remark. In Theorem 3.5, the bound for r is tight, meaning that
we cannot draw the same conclusion for r = d. If r = d, we can
only derive that d

dt xmin(t) ≥ 0 from (8) and there may not exist
such T1 in the proof. There is also a counter example that we do
not have a consensus result for r = d. For instance two static
exo-opinionswith distance d and two normal opinions converge to
them separately from outside. On the other hand, if we only have
the condition that |yk(t)−ys(t)| ≤ r < d for t large enoughwithout
the constraint of a fixed bound, there can be situations that the
normal opinions x(t) keep moving on a certain formation together
with the exo-opinions while keeping fixed distance among each
other.

4. Numerical examples

There are three numerical experiments carried on in this section
to test and illustrate the results of Section 3. In all three simula-
tions, the following settings are shared. We let N = 200 initial
opinions randomly distributed by a uniform distribution on the
interval [0, 1]. The confidence range d among the agents is set to be
0.05. In order to reduce the computational burden, there are only
M = 2 exo-opinions,which is the smallest amount of exo-opinions
that can cover the initial opinions. In each of the three experiments,
we choose different g functions so that the exo-opinions will sat-
isfy the other assumptions and test the evolution of all the normal
opinions. We use ode45 in Matlab as the integrator. In general,
Matlab does not have a guarantee for the performance in terms
of integrating discontinuous functions. We lower the tolerance to

10−6 and the integrator performs well enough comparing with a
fixed step-size integrator. All the following simulations are carried
out in this setting.

4.1. Example one

Set the exo-system as:

ẏk = α(
1
2

+
1
2
sin(2dt) − yk), for k = 1, 2, (9)

with the initial condition

y1(0) = 0, y2(0) = 1,

for a given constant parameter α. Then both exo-opinions will
track the signal 1

2 +
1
2 sin(2dt) for positive α. Meanwhile we need

to choose α small enough in order to fulfill the assumption that
|ẏ| ≤ v < d. If the exo-signals remain in the interval [0, 1], we
have

|ẏk| ≤ α(
1
2

+
1
2

+ 1) = 2α.

We can choose any α < d
2 . Since d = 0.05 in the simulation, α is

chosen to be 0.024 here.
According to Theorem 3.2, since the exo-opinionswill track and

asymptotically converge to the same signal, the normal opinions xi
must reach consensus. Fig. 2 shows the numerical solution to the
differential equation (2) for the given initial conditions. The blue
solid curves represent the opinions xi and the red dashed curves
are the exo-opinions; xi’s rapidly form several clusters for the first
few seconds but follow the exo-opinions when and after they get
close. Thenormal opinions converge to the same curve after awhile
although the curve does not coincide with the exo-opinion. There
is a small gap between them.

4.2. Example two

We test Corollary 3.4 by letting the exo-signal converge to a
constant value in this experiment. Set the exo-system as:

ẏi = β(
1
2

− yi), (10)

y1(0) = 0, y2(0) = 1,

so that the both exo-signalswill converge to the value 1
2 . According

to Corollary 3.4, xi will also converge to 1
2 for all i. Fig. 3 illustrates

the consensus result.

4.3. Example three

Theorem 3.5 can guarantee consensus even for non-converging
exo-opinions.We simulate the scenario that the exo-opinions keep
oscillating in a small region by choosing the exo-system as:

ẏ1 =
d
2
(
1
2

+ 2d sin(2d(t +
π

3
)) − y1)

ẏ2 =
d
2
(
1
2

+ 2d sin(2dt) − y2) (11)

y1(0) = 0, y2(0) = 1.

The two signals generated by this system will be constrained in
the interval ( 12 −

d
2 ,

1
2 +

d
2 ) when time is large enough, and keep a

phase difference between each other. Fig. 4 shows that the normal
opinions converge to the same curve that is also oscillating with
the same frequency but a much smaller amplitude.
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Fig. 2. Evolution of the normal opinions xi (solid blue curves) and exo-opinions yk (dashed red curves) with the system (2) and the choice of the exo-system (9). The normal
opinions reach consensus asymptotically while keeping a small gap to the exo-opinions.

Fig. 3. Evolution of the normal opinions xi (solid blue curves) and exo-opinions yk (dashed red curves) with the system (2) and the choice of the exo-system (10). The normal
opinions reach consensus and converge to the value where the exo-opinions converge.

Remark. The normal opinions converge to different clusters very
fast in the beginning of the simulations although initially they
should be randomly distributed in the interval [0, 1]. Due to nu-
merical errors from the ode solver inMATLAB, the normal opinions
are actually oscillating if zoomed in. If the tolerance of the ODE
solver is decreased, the amplitude of the oscillation will also be
reduced, while the computational cost will be increased.

5. Conclusions and future works

With the help of an exo-system, the opinion consensus with
a bounded confidence model has been analyzed and guaran-
teed. Briefly speaking, if the exo-opinions initially spread widely
enough, move slowly enough, and converge close enough as time
evolves, the normal opinions will be guided to reach consensus.
The specific conditions of the exo-system for guaranteeing consen-
sus are given by the two theorems and we provide two theorems.
These conditions are sufficient but not necessary. For exo-opinions

that do not converge to constant values, there are in general gaps
between the synchronized opinions and exo-opinions.

The exo-system can also help to regulate the opinions not only
to a single cluster but also to other formations. The inverse problem
is: for a given opinion cluster formation, whether we can always
find an exo-system such that the normal opinions converge to
that formation with an arbitrary initial distribution. The inverse
problem is equivalently important and a topic of current research.

Appendix

Proof of the claim in Corollary 3.4. For the system

ż(t) = −Mz(t) + u(t), z(t) ∈ R, M > 0 (12)

with u(t) being continuous, having bounded derivative and con-
verging to zero, we want to show that the solution z∗(t, z0) also
converges to zero with any initial condition z(0) = z0.

Since u(t) converges to zero, for any δ > 0, there exists a T > 0
such that |u(t)| ≤ δ for all t > T . We can also assume that
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Fig. 4. Evolution of the normal opinions xi (solid blue curves) and exo-opinions yk (dashed red curves) with the system (2) and the choice of the exo-system (11). Although
the exo-opinions do not converge to the same curve, the normal opinions reach consensus.

|u(t)| ≤ Ut for all t because u(t) has bounded derivative. According
to the solution to the linear systems we have

|z∗(t, z0)| =

⏐⏐⏐⏐e−Mtz0 +

∫ t

0
e−M(t−s)u(s)ds

⏐⏐⏐⏐
≤ |e−Mtz0| +

⏐⏐⏐⏐∫ T

0
e−M(t−s)u(s)ds

⏐⏐⏐⏐+ ⏐⏐⏐⏐∫ t

T
e−M(t−s)u(s)ds

⏐⏐⏐⏐
≤ |e−Mtz0| +

⏐⏐⏐⏐∫ T

0
e−M(t−s)Usds

⏐⏐⏐⏐+ ⏐⏐⏐⏐∫ t

T
e−M(t−s)δds

⏐⏐⏐⏐
≤ e−Mt

(
|z0| +

U
M

(
TeMT

−
1
M

eMT
+ 1

))
+

1
M

(1 − e−M(t−T ))δ

≤ e−Mt
(

|z0| +
1
M

(
TeMT

+ 1
))

+
δ

M
.

For any ϵ > 0, we let δ =
Mϵ
2 and get a corresponding T . We can

then have

T ′
= max

{
1
M

ln
2(M|z0| + TeMT

+ 1)
ϵ

, 0
}

≥ 0

so that for all t > T ′ we have eMt
(
|z0| +

1
M

(
TeMT

+ 1
))

< ϵ
2 . As a

result, we have

|z∗(t, z0)| <
ϵ

2
+

ϵ

2
= ϵ

for all t > T ′ and thus z∗(t, z0) converges to zero for any z0. □
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