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In social and industrial facilities of the future like hospitals,

hotels, and warehouses, teams of robots will be deployed

to assist humans accomplish everyday tasks such as object

handling, transportation, or pickup and delivery operations. In

such a context, different robots (e.g., mobile platforms, static

manipulators, or mobile manipulators) with different actuation,

manipulation, and perception capabilities must be coordinated

in order to achieve various complex tasks (e.g. cooperative

parts assembly in automotive industry, or loading and unload-

ing of palettes in warehouses) that require collaborative actions

with each other and with human operators (Figure 1).

The efficient supervision and coordination of a heteroge-

neous system mandates a decentralized framework that inte-

grates high-level task-planning, low-level motion planning and

control, and robust real-time sensing of the robots dynamic

environment. Decentralization in multi-agent robotic systems

is of utmost importance, since it provides flexibility, scalability

and fault-tolerance capabilities. In this work, we present the

architecture of the decentralized framework developed within

the context of EU Project Co4Robots and its application

in a multi-tasking collaboration scenario involving various

heterogeneous robots and humans.

I. BACKGROUND

Multiple robots are commonly used in cooperative applica-

tions, such as exploration, surveillance, service robotics and

cognitive factories [1]. However, dealing with the collabora-

tion of heterogeneous multi-robot systems is a rather tricky

under tacking owing to the different kinematic and sensing

capabilities of each robot. One issue of utmost importance in

coordination of robotic teams is the multi-agent task planning

and control. Towards this direction, significant efforts have

been devoted in the last decades resulting in a number of high

complexity algorithms [2].
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Fig. 1: Cooperative Tasks of Heterogeneous Agents

A standard classification that arises in multi-agent planning

and control is centralized versus decentralized schemes, de-

pending on whether the assignment of actions to the agents is

performed by a central computer unit or locally by each agent.

Current practice in coordination of robotic teams is at a great

deal based on offline, centralized planning and related tasks are

almost exclusively fulfilled in a predefined manner, allowing

little room for real-time and coordinated decentralized actions.

Centralized planning schemes with global and local tasks,

usually provided satisfactory results [3], however are proven

computationally expensive. On the other hand, decentralized

planning, reduces significantly the computational complexity,

[4]. A rather important issue in heterogeneous decentralized

task-planning is the role assignment and the task allocation,

where each agent’s capabilities diverse and depend on its

teammate and/or their mutual state [5].

From the control point of view, multi-robot cooperative

object manipulation and transportation has been well-studied

in the literature, especially in a centralized framework [6].

Despite its performance, centralized control is less robust,

since all units rely on a central system, and its complexity in-

creases rapidly as the number of participating robots becomes

large. On the other hand, decentralized control approaches

usually depend on heavy inter-robot explicit communication

and global offline knowledge of the desired task [7]. Never-

theless, in such tasks implicit inter-robot communication arises

naturally as a side-effect of robot’s physical interactions (e.g.

the interaction forces between the object and the robot) which

can be easily acquired by appropriate sensors attached on the

robots [8]. However, limited studies have been conducted in

cooperative object manipulation and transportation via hetero-
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geneous robotic systems [9].

Hence, our work is motivated by the need of having multi-

robot decentralized systems, where a significant amount of in-

formation can be implicitly acquired via physical interactions

and processed locally, reducing in this way the need for ex-

haustive inter-robot explicit communication. More specifically,

we present a complete decentralized framework consisting

of: i) a set of perceptual algorithms that enables cooperating

robots to estimate the state of their highly dynamic environ-

ment, ii) a set of control schemes appropriate for the mobility

and manipulation capabilities of the considered robotic plat-

forms, iii) a systematic real-time decentralized methodology

to accomplish complex mission specifications given to a team

of heterogeneous robots, and iv) the corresponding systematic

integration of the above modalities at both conceptual and

software implementation levels. The efficacy of the overall

framework is demonstrated via a complex scenario, which

involves three heterogeneous robots and humans cooperating

in loading and transportation tasks.

II. SYSTEM COMPONENTS

Our purpose is to develop a decentralized framework that

will be able to support logistic tasks in an automated manner

by efficiently allocating a set of heterogeneous robotic agents,

as well as humans that collaborate appropriately according

to the specifications of each task. Hence, we envision the

employment of: i) a dexterous 7 DOF static manipulator

able to perform loading and unloading actions of light and

heavy objects, ii) a mobile manipulator to extend the motion

flexibility and reachability of the overall framework, and iii) a

mobile robot for the transportation of objects across different

areas of the workspace, endowed with the ability to ease

the loading and unloading procedures by properly adjusting

its position and orientation with respect to the manipulator,

human or mobile manipulator.

Our focus is on the integration of Perception, Control and

Planning modules that realize the successful cooperation of

the heterogeneous agents in object manipulation and trans-

portation tasks. The integration of these modules is facili-

tated by the adopted layered and component-based software

architecture, called SERA [10] (a “Self-adaptive dEcentralized

Robotic Architecture”). This architecture instantiates robotic

applications by encapsulating different robotic functionalities

within components. The components communicate in SERA

by means of well-defined interfaces. SERA was developed to

structure robotic applications formed by teams of (possibly)

heterogeneous robots in a decentralized way during execution

time. The robots must inter-communicate with the rest of the

team and share data in order to achieve the global mission in

a collaborative way. The intercommunication can be handled

by the ROS’ infrastructure. An overview diagram of SERA,

which depicts components and their interfaces is presented in

Figure 2.

A. Perception

The role of the perception module is to provide the robotic

agents with the essential perceptual capabilities in order to

accomplish the required missions. Three different methodolo-

gies have been developed for: i) Multiple objects detection and

tracking, ii) Human detection and tracking, and iii) Human

posture estimation as shown in Figure 3. The object detection

and tracking algorithm is able to handle multiple objects

and perform efficiently under occlusions using either RGB or

RGB-D input. By employing a 3D model for each object, the

algorithm initially learns the object appearance by detecting

local features and registering them onto the surface of the

3D object model. Then, the features detection and matching

procedure is performed and employing the RANSAC method

[11] the object pose is estimated considering the 3D model.

A novel hybrid human 3D body pose estimation method [12]

that uses RGB-D input is deployed that relies on a deep

neural network to get an initial 2D body pose. Using depth

information from the sensor, a set of 2D landmarks on the body

are transformed in 3D. Then, a multiple hypothesis tracker

uses the obtained 2D and 3D body landmarks to estimate the

3D body pose using a gradient descent optimization scheme.

Each human pose hypothesis is constructed using a different

subset of the detected body landmarks. This way we safeguard

from observation errors (i.e. misdetection of some of the

landmarks) since we expect that some of these hypotheses

will be free of misdetected landmarks.

Posture recognition builds upon the detected pose of each

human. A given posture is detected by measuring the euclidean

distance between the template posture pose and the pose of

each frame. A simple temporal filtering step is also used

to ensure that the posture is detected in several consecutive

frames before accepting it as valid, thus avoiding spurious

detection.

B. Control

A set of control modules is developed providing efficient

solutions for robot navigation and manipulation tasks.

1) Navigation: Dealing with unstructured environments

with unexpected obstacles (i.e. humans, other moving robots

etc.) is essential for robot navigation. However, this type of

environment is challenging for a robot to navigate because it

must be capable of identifying and adapting to these changes.

For this reason, the implemented control scheme guarantees

collision avoidance for either dynamic or static obstacles and

it is responsible for regulating the motion of the platforms

as they travel towards the different regions in the workspace.

More specifically, the navigation methodology consists of two

main algorithms integrated with the ROS 2D navigation stack

[13].

The first one, which is used as a global planner, is based

on Harmonic Potential Fields [14]. This technique is selected

due to its reduced computational requirement and the ability

to handle large and complex workspaces. Additionally, it

guarantees collision free navigation with the goal configuration

being the sole stable equilibrium. The proposed control scheme

is based on the construction of a suitable transformation Tm

which maps: i) the robot’s workspace Wmp to the punctured

Euclidean plane, ii) the outer boundary Ci,0 of the workspace

to infinity, iii) all obstacle boundaries Ci,1,Ci,2, . . . ,Ci,N
mp
obs

and

goal positions pd
mp to distinct points qi

mp,o,∀i ∈ (1,2, . . . ,Nmp
obs)
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Fig. 2: The SERA architecture

Fig. 3: Perception Modules

Fig. 4: Navigation Algorithm: The left figure depicts the transformation of a robot 2D map to a punctured disk, where T is

the workspace transformation, Ci is the obstacles’ boundary and qi is the corresponding distinct points on the punctured disk.

The middle figure shows the Ri regions of interest in the 2D robots’ map. The 2D trajectory of the TG on the aforementioned

map can be shown in the right figure.

Fig. 5: Grasping Procedure

and qd
mp as shown in Figure 4. Thus, a feasible path can be

computed that connects the current configuration of the robot

with the desired one.

Time Elastic Band [15] approach is adopted for the local

planner. The initial path generated by the Harmonic Maps

technique is optimized with respect to minimizing the tra-

jectory execution time, obstacle avoidance and compliance

with kinodynamic constraints such as satisfying input and



4

(a) Mobile Platform and Static Manipulator

(b) Mobile Platform, Mobile Manipulator and Static Manipulator

Fig. 6: Cooperative Loading Procedure

Fig. 7: Human-Robot Cooperative Object Transportation

state constraints. Moreover, it complies with non-holonomic

kinematic constraints by solving a sparse scalarized multi-

objective optimization problem.

2) Manipulation: In the proposed decentralized framework,

the cooperative manipulation procedure among heterogeneous

agents is crucial. In this context, the following control modali-

ties have been implemented within the overall system architec-

ture: i) An object grasping algorithm which computes on-line

the optimal grasping area, ii) a decentralized cooperative con-

trol scheme for automated loading tasks, iii) a decentralized

leader-follower cooperative object manipulation methodology.

The grasping method, described in [16], has been selected

due to its fast and robust performance. Moreover, it does not

depend on off–line training data or 3D model of the object.

The grasp planner relies only on the visible point cloud of the

object and the characteristics of the robotic gripper such as

maximum opening, length and height to calculate the optimal

grasping area as shown in Figure 5. This methodology is

decoupled from the machine learning based object detection

algorithm due to the real-time feedback requirements during

the reach-to-grasp phase. Moreover, when the robot is ap-

proaching the detected object, the object’s point cloud noise

acquired by the sensor is reduced and its density is increased

making the aforementioned analytical methodology suitable

for robust and reliable real-time grasping regions computation.

The decentralized motion planning and control solution

for the automated load exchange task among heterogeneous

robots is described in a recent study [17]. More precisely,

a motion planning algorithm based on Probabilistic Road

Maps (PRMs) calculates a connected graph G . This graph

consists of feasible configurations for the robotic system—

which is holding the object to be loaded on a mobile platform

(MP)—to facilitate the loading procedure, given the workspace

constraints, its structure limitations, and the geometric charac-
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teristics of the mobile platform. The robotic system follows

a feasible trajectory generated by a path finding algorithm

which is employed on the computed graph G (Figure 6a).

In the meanwhile, the mobile platform moves autonomously

towards the object using the motion control scheme described

in Sec. II-B1. When the mobile platform reaches the loading

area, the object is successfully placed on it. The previous

presented method in [17] is extended for three agents (a static

manipulator, a mobile manipulator and a mobile platform).

Initially, the mobile manipulator (TG) and the static manipu-

lator (SM) are cooperatively grasping the object. Then, the

TG, acting as the leader, calculates a graph G consists of

connected feasible loading configurations of the object taking

into account the system limitations (i.e., SM workspace limita-

tions, obstacles, mobile platform’s geometrical characteristics).

Then, it calculates the optimal one and performing a path

finding algorithm computes a feasible path that connects the

initial object configuration with the desired one. Finally, TG

leads the way to cooperatively transport the object with the

SM in a decentralized fashion by following the calculated

path (Figure 6b). The decentralized cooperative manipulation

methodology is described below.

A leader-follower decentralized scheme is implemented for

the cooperative object manipulation tasks. The follower is

charged with the estimation of the desired trajectory utilizing a

prescribed performance estimator following a similar strategy

as in [18]. In this context, we adopt a robust prescribed

performance estimator that guarantees ultimate boundedness

of the position and orientation estimation errors e(t) ,
[

e
⊤
p (t) ,e

⊤
r (t)

]⊤
= [e1(t), . . . ,e6(t)]

⊤ between the actual and the

desired object configuration. The mathematical representation

of prescribed performance for each element is given by the

following inequalities:

−ρ j (t)< e j (t)< ρ j (t) , ∀t ≥ 0, j ∈ {1, ...,6} (1)

where ρ j (t) denotes the corresponding performance func-

tion that encapsulates the desired transient and steady state

performance specifications (e.g., convergence rate, maximum

steady state error). We choose as the exponential performance

function the following one:

ρ j(t) = (ρ j,0 −ρ j,∞)e
−s jt +ρ j,∞ (2)

where the constant s j dictates the exponential convergence

rate, ρ j,∞ denotes the ultimate bound at the steady state

and ρ j,0 is chosen to satisfy ρ jo >
∣

∣e j (0)
∣

∣. Hence, following

the prescribed performance control methodology provides the

desired motion intention trajectory profile. Notice that, the

estimation law is capable of estimating position, velocity and

acceleration based only on the actual position and velocity

measurements. Then, the estimated trajectory is fed in an

impedance/admittance control scheme to facilitate the trans-

portation/manipulation task and limit the interaction wrenches.

As the method relies exclusively on the robot’s force/torque,

position as well as velocity measurements and no explicit data

is exchanged on-line between the robots, the object dynamics

-which are considered known- along with the estimated accel-

eration are employed to compute the leader’s applied wrench.

As a leader could be consider either a human (Figure 7) or

a robotic agent (Figure 6b). An abstraction of the proposed

methodology is depicted in Figure 8 and Figure 9 for the SM

and TG, respectively.

C. High-level Planning

Multi-agent task planning of heterogeneous robots is an-

other part of utmost importance when it comes to coordinat-

ing robotic teams. Thus, a systematic real-time decentralized

methodology to accomplish complex mission specifications

given to a team of heterogeneous robots is employed.

1) Graphical User Interface: To support users when speci-

fying missions for their robotic applications, we strived to raise

the levels of abstractions of our framework. To this purpose,

we identified and formalised a catalogue of mission specifica-

tion patterns containing recurrent specifications of missions1.

Each pattern in the catalogue is formulated both in structured

English and in LTL. Then, to enable the specification of more

complex and sophisticated missions, we created a Domain

Specific Language (DSL), called Promise [19]. Promise2 uses

the mission specification patterns as basic building blocks and

enable the specification of a mission via the use fo composition

operators. According to the SERA [10] architecture described

above, a global mission specification is then decomposed into

local missions, which are then individually forwarded to the

robots. Thanks to Promise and the specification patterns, a mis-

sion can be specified in a user-friendly and graphical way and

can be then automatically translated into LTL formulations.

2) Temporal Logic Formulation: The Planning Module

follows the ideas described in [20] and [21] and it consists

of two main functionalities: firstly, it synthesizes the motion

and action plan that fulfills an assigned task, which might be

partially infeasible initially; then, it incorporates new features

in the workspace model and revises the discrete plan accord-

ingly.

The basic ingredients of an LTL formula are a set of atomic

propositions and several Boolean and temporal operators,

which are formed accordingly. More specifically, we model the

motion and actions for the robots as finite transition systems

Mi,∀i ∈ (1,2, . . . ,NR) as follows. The internal states of the

robots, e.g. “The robot has grasped object 1”, are represented

by sets of boolean variables Ψi,∀i ∈ (1,2, . . . ,NR). Then, we

model the action maps of the robots as the finite transition

systems Bi,∀i∈ (1,2, . . . ,NR) which are based on precondition

and effect functions for the actions (e.g., the robot can grasp

an object in a region only if the object is in that region). Based

on the aforementioned maps, we model the coupled behavior

of each robot as the coupled transition system Ri = Mi ×Bi,

which is the product of the motion and action tuples. More

details can be found in [21].

In order to find a plan over R that satisfies the assigned

task, we employ standard techniques from formal verifica-

tion methodologies. First, the assigned task is expressed as

a Linear Temporal Logic (LTL) formula ϕ , which is then

converted to a Nondeterministic Büchi Automaton Aϕ . Then,

we construct the product AP = R ×Aϕ and by using graph

search algorithms, we obtain a least-violating plan over R.

The plan is least-violating in the sense that it satisfies most of

1Mission specification patterns: http://roboticpatterns.com/
2Promise: https://promisedsl.wixsite.com/promise
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Fig. 8: Block Diagram of the Follower Robotic Agent’s Control Scheme for the Desired Trajectory Estimation and Tracking.

Fig. 9: Block Diagram of TG Control Scheme during Human-Robot Cooperative Transportation Procedure.

the formula ϕ , given the initially partially known workspace.

While the plan is executed, the robot obtains new information

based on its sensing, and updates its knowledge about the

workspace and hence the transition system R. A new plan

is then computed to improve the satisfiability of the assigned

task, given the new workspace information.

III. APPLICATION

A. Experimental Setup & Scenario

We propose a single scenario, which encapsulates all key

concepts. More specifically, the scenario revolves around three

(3) robotic entities: i) a mobile manipulator (PAL TIAGo),

ii) a static manipulator (Mitsubishi PA-10), and iii) a mobile

platform (Summit XL-HL), interacting with each other as

well as with objects of various sizes that can be grasped,

the environment and the humans. In this scenario, objects

of different sizes are loaded autonomously on top of the

mobile platform. The latter transports the loaded object into

a different room, where the unloading procedure is realized.

Task allocation, planning, and the role of the engaged robotic

entities are modified accordingly for heavy and light objects.

During the scenario, the static manipulator is located next

to a table with objects on top. The manipulator grasps the

objects, one at a time. If the object is heavy, the mobile

manipulator is additionally called for help and the grasp-

ing and loading procedure is followed cooperatively by the

two robots. At the same time, the mobile platform travels

autonomously towards the loading area, where the object

is loaded on top of the mobile platform. Next, the mobile

platform travels to another room where a human waits in the

unloading area. If the object is heavy, also the human calls

the mobile manipulator for help via an appropriate posture

which is performed in front of the mobile platform. The human

and the mobile manipulator grasp together the object and

cooperatively unload it on top of a table. When the procedure

is completed, the mobile manipulator returns to its surveillance

tasks, until another loading procedure is initiated. In case the

object is light, the same procedure is followed, but without

engaging the mobile manipulator, which is left operating in

surveillance mode. A video of the demonstration is available

at: https://youtu.be/q7dMLawf0y0.

B. Experimental Results

One of our industrial partners, Bosch, provided benchmarks

for measuring the research success driven by market and prod-

uct needs. Within the project, certain measurable quantities

are evaluated to track the success of the research activites.

Following the objectives of the project, the three main criteria

for evaluation were i) Flexibility, ii) Robustness, and iii)

Efficiency. Objectives relating to these three goals are defined

separately for each of the modules described in section II and

the measures of success for these key objectives are specified

in Table I.

Perception Module

The perception module performs the tasks of object pose

estimation, human body pose estimation and gestures recog-

nition. The object pose estimation system was trained to detect

the two objects shown in Figure 3. Training for each object

requires a 3D model and some annotated RGB-D frames from

different viewpoints. For the purpose of this scenario, the

system was able to successfully detect and track in 3D the two
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Flexibility Robustness Efficiency

Control Module
Variability of object types and transfer
goals.

Ratio of successful object grasping and
loading/unloading missions.

Time for cooperative loading and
unloading procedures.

Perception Module
Number/types of objects that can be
recognized.

Accuracy of human and object
detection/pose estimation under
occlusions.

Computational cost.

Planning Module
Number of different workspace
configurations.

Number and type of external events
that can be handled.

Time required for plan synthesis.

TABLE I: Measures of success for the proposed architecture.

objects that were involved. The method can handle objects of

various sizes and shapes given that they have some appropriate

textured faces.

Quantitative results of the human and object pose estimation

modules’ accuracy require ground truth pose (e.g. provided

by a motion capture system) that was not available during

the experiments. However, we provide test results of the

proposed methods, with datasets that provide ground truth

pose measurements. The Table II presents the accuracy and

the computation cost of the perception algorithms.

Control Module

The grasping procedure runs on both heterogeneous ma-

nipulators (TIAGo and PA-10) for two different object types

(heavy and light object) in order to realize the loading and

unloading tasks. The ratios of successfully grasped objects that

were recorded during the experiments are depicted in Table III.

Moreover, the errors of the six DoFs between the robots’ end

effectors and the calculated grasping poses as recorded during

three different successful grasps are shown in Figure 10.

Figure 6a depicts the initial pose of the static manipulator

(SM) and the mobile platform (MP) with green colored circles,

the mobile platform’s obstacle-free path with a blue line and

the calculated loading region with a magenta colored circle.

Similarly, Figure 6b depicts the initial pose of the SM, the TG

and the MP with green colored circles, the mobile platform’s

obstacle free path with a blue line, the calculated loading

region with a magenta colored circle and the final TG’s base

pose with the red line circle. Required time and the ratio of

successful loading tasks using the light and heavy objects are

shown in Table IV.

In Figure 11 and Figure 12, the actual interaction forces

are depicted to support the fact that the trajectory estimation

along with the impedance control succeeded in the cooperative

execution of a common trajectory while keeping the interaction

wrenches limited. Moreover, the force estimation depicted in

Figure 11 reveals that as long as the object dynamics are

approximately known, the wrench of the leader can be effec-

tively estimated. Thus, explicit communication between the

robots is not necessary neither for the leader’s trajectory nor

for the wrench. As Figure 12 shows, the follower’s (TIAGo)

end-effector errors between the current pose and the estimated

remain generally close to zero during the task. Thus, the values

of the wrench applied by the leader on the object are in general

small enough, making the human effort inconsiderable during

the transportation mission.

Planning Module

The time taken for a new task to be set up is less than 0.1

seconds, for the plan derivation that satisfies the task is less

than 0.1 seconds, and for plan synthesis and reconfiguration

is also less than 0.1 seconds. The time taken for the execution

of the task depends on the respective continuous control

algorithms. Typically, the time taken for navigation among the

regions of interest as well as single or cooperative loading and

unloading is ∼ 10−30 seconds. The planner can handle any

number of workspace and initial configurations.

The execution of the plan might be jeopardized by sig-

nificant disturbances in the state feedback. Modeling errors

might also affect the plan, for instance, in cases the robots

cannot execute an action they are modeled to. However, no

such events occurred in the tested scenario, the plan was

successfully executed despite of the noisy measurements,

and plan reconfiguration was successfully performed in the

modeled cases of new environment information.

IV. DISCUSSION

The proposed decentralized framework was tested in a

scenario which included a sufficient number of tasks in order

to assess the performance of each individual component, as

well as the performance of the overall architecture. How-

ever, the multi-agent system consisted only of one agent

per category (i.e mobile platform, static, mobile manipulator

and a human). Therefore, even if the proposed framework

is by design scalable, the actual scalability has not yet been

efficiently demonstrated. In the future, we intend to address

scalability by adding more agents, both robotic and humans,

objects of various geometries and an expanded set of high-

level tasks. Moreover, an important issue that we have not yet

addressed is the on–line re-configuration of planning in the

presence of actuation or sensor faults, which also mandates for

an increase in the number the involved agents. Additionally,

a significant attribute that we intend to incorporate in the

future is the one pertaining the aspects of cognitive safety

in human-robot collaboration tasks. More specifically, we aim

to tackle issues such as human-situation awareness, motion

intention (inside the workspace), as well as inherited compliant

behaviour during cooperative manipulation tasks. In this way,

we will be able to assure that robots and humans can safely

and effectively co-exist in a real dynamic environment.
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Pose Accuracy Computational Cost

Object Detection ∼ 1 cm ∼ 8 fps (on a 2.8GHz Intel Core i7-7700HQ CPU)

Human Detection ∼ 6.6 cm ∼ 5 fps (on a Nvidia GeForce GTX 1070)

TABLE II: Perception Module: Human and object detection/pose estimation evaluation.

Heavy Box Light Box

PA-10 91% (11 successful out of 12 attempts) 83% (10 successful out of 12 attempts)

TIAGo 80% (8 successful out of 10 attempts) Not Needed.

TABLE III: Ratio of Successful Object Grasping.

Ratio of Success Time Needed

PA-10 & SUMMIT 90% (9 successful out of 10 attempts) 38.5 sec

PA-10, TIAGo & SUMMIT 83% (10 successful out of 12 attempts) 48.2 sec

TABLE IV: Ratio and Time Needed of Successful Cooperative Loading Procedures.

Fig. 10: Manipulators’ End-Effector Errors Performing Grasping Tasks.

Fig. 11: Force/Torque Sensing-Estimation and Trajectory Estimation During Cooperative Loading Task: The left figure depicts

the interaction forces during cooperative transportation task. The leader’s (TG) interaction force as estimated by the follower

(SM) and the actual one are depicted in the middle figure. The right figure shows the leader estimated 2D trajectory and the

actual one.
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Fig. 12: Force/Torque Sensing and Trajectory Estimation in Cooperative Human-TIAGo Unloading Task

V. CONCLUSIONS

In this work, we propose a decentralized framework for

the efficient cooperation of heterogeneous robotic agents and

humans in manipulation and transportation tasks, within semi-

structured work-spaces. This framework consists of separate

modules responsible for perception, motion and manipula-

tion control, as well as high-level planning. We evaluated

the integrated system in a multi-tasking scenario involving

various heterogeneous robots and humans for the cooperative

loading/unloading and transportation of objects. A series of

metrics such as accuracy, ratio of success and computational

cost justify the robustness, flexibility and efficiency of the

overall framework.
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