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Abstract— This paper studies the hierarchical control of un-
certain discrete-time nonlinear systems under input constraints.
First, the notion of robust approximate simulation relation is
defined. We show that by properly designing a control interface,
the robust approximate simulation relation can be constructed
from a low-complexity, deterministic (abstract) system to the
original system. Then, we apply the hierarchical control ap-
proach to the robust control synthesis under signal temporal
logic specifications. The results show that this approach reduces
the computational complexity of the control synthesis, and
is in some cases applicable to a larger set of initial states.
The effectiveness of the proposed approach is verified by a
simulation example.

I. INTRODUCTION

Hierarchical control has been widely used in the context of
control systems [1] and robotics [2]. The fact that real-world
systems, e.g., intelligent vehicle systems [3], are often non-
linear, high-dimensional, and subject to uncertainties, makes
them difficult to control in order to achieve complex tasks.
This leads naturally to the hierarchical control framework,
in which a simpler system (referred to as abstract system),
is introduced for the purpose of simplifying planning and
control.

Early techniques of hierarchical control were based on
the notion of simulation relations [1], [4]. This relation
requires that the original system (referred to as concrete
system) and its abstraction have exactly the same trajectories.
It was later pointed out that this requirement may be too
strong [5]. To this end, approximate (bi)simulation relations
were introduced [6], [7], which allow the trajectories of the
concrete and abstract systems match only approximately.
Such a relaxation has made hierarchical control applicable
to more general class of systems. In [8]–[12], approximate
(bi)simulation relations have been constructed for transition
systems [8], continuous-time nonlinear systems [9], large-
scale interconnected systems [10], [11], as well as stochastic
hybrid systems [12]. Moreover, to further account for uncer-
tainties (which is crucial for physical systems operating in
the real-world, e.g., robots), the notion of robust approximate
simulation relation has been proposed recently [13], [14].
In [13], continuous-time linear systems subject to additive
disturbances were studied. In [14], uncertain continuous-time
nonlinear systems were considered. However, to the best of
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our knowledge, conditions that enforce robust approximate
simulation relations have not been developed for general
uncertain discrete-time nonlinear systems.

In the area of robot motion planning, increasing attention
has been paid to the control synthesis under high level
specifications, such as linear temporal logic (LTL) and sig-
nal temporal logic (STL) specifications. LTL focuses on
the Boolean satisfaction of properties over given signals
[15]. STL further allows the specification of quantitative
spatial and temporal properties on the system [16], which
is beneficial for cyber-physical systems [17]. In [18]–[20],
hierarchical control approaches have been successfully ap-
plied to the controller synthesis under LTL specifications.
For STL control synthesis, these approaches have not been
investigated so far. Existing methods that deal with STL
control synthesis include optimization-based [21], [22], con-
trol barrier function [23], [24], and learning-based [25], [26]
methods. In our recent work [27], the notion of tube-based
temporal logic tree (tTLT) is proposed for the robust control
synthesis under STL specifications. Nevertheless, most of the
existing methods are either suffering from the computational
complexity issue or not efficient in dealing with uncertainties.

Motivated by the above considerations, this work concerns
the hierarchical control of uncertain discrete-time nonlinear
systems and the application to robust control synthesis under
STL specifications. The main contributions are as follows. i)
For uncertain discrete-time nonlinear systems, we define the
notion of robust approximate simulation relation. It is shown
that with a properly designed control interface, such a rela-
tion can be constructed from a (possibly) low-dimensional,
deterministic abstract system to the concrete system. ii)
The application of the hierarchical control to robust control
synthesis under STL specifications is investigated. It is shown
that this approach can reduce the computational complexity
of the control synthesis, and is in some cases applicable to
a larger set of initial states.

II. PRELIMINARIES

Notation. Let R := (−∞,∞), R≥0 := [0,∞), and N :=
{0, 1, 2, . . .}. Denote Rn as the n dimensional real vector
space, Rn×m as the n×m real matrix space. Throughout this
paper, vectors are denoted in italics, x ∈ Rn, and boldface
x is used for discrete-time signals. Let ‖x‖ and ‖A‖ be the
Euclidean norm of vector x and matrix A. The operators ∪
and ∩ represent set union and intersection, respectively. In
addition, we use ∧ and ∨ to denote the logical operators



AND and OR, respectively. The set difference A \ B is
defined by A \B := {x : x ∈ A ∧ x /∈ B}.

A continuous function γ : R≥0 → R≥0 is said to belong
to class K if it is strictly increasing and γ(0) = 0; γ is said
to belong to class K∞ if γ ∈ K and γ(r)→∞ as r →∞. A
continuous function β : R≥0×R≥0 → R≥0 is said to belong
to class KL if for each fixed s, the map β(r, s) belongs to
class K∞ with respect to r and, for each fixed r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞.

A. System dynamics

We consider an uncertain discrete-time nonlinear system
Σ of the form

Σ :

{
xk+1 = f(xk, uk, wk),

yk+1 = h(xk+1),
(1)

where xk ∈ Rnx , yk ∈ Rny , uk ∈ U ⊆ Rnu , wk ∈
W ⊆ Rl, k ∈ N are the state, output, input, and distur-
bance at time k, respectively. We assume that the functions
f : Rnx × Rnu × Rl → Rnx and h : Rnx → Rny

are continuous maps. The input and disturbance of (1) are
constrained to compact sets U and W , respectively. Assume
that (1) is obtained by sampling of a continuous-time system.
Let τ : N → R≥0 be the corresponding sampling function,
which satisfies τ(0) = 0 and τ(k) < τ(k + 1),∀k ∈ N.
For simplicity, we define τk := τ(k). Then, one has that
xk = x(τk), yk = y(τk), uk = u(τk), and wk = w(τk). For
a given continuous-time interval [a, b], a ≤ b, define the set
Ω(a, b) := {k ∈ N : a ≤ τk ≤ b} as the corresponding
discrete-time counterpart.

Denote by U≥k := {ukuk+1 . . . : ul ∈ U,∀l ≥ k} and
W≥k := {wkwk+1 . . . : wl ∈ W, ∀l ≥ k}. The solution of
(1) is defined as a discrete-time signal x := x0x1 . . .. We call
x a trajectory of (1) if there exists a control signal u ∈ U≥0

and a disturbance signal w ∈ W≥0 satisfying (1). We call
y := y0y1 . . . an output trajectory of (1) if yk = h(xk),∀k ∈
N. We use xu,w

x0
(k) to denote the trajectory point reached at

time k under the control signal u and the disturbance signal
w from initial state x0. In this work, bounded disturbances
are considered. Therefore, we have the following assumption.

Assumption 2.1: There exists a constant w̄ > 0 such that
‖w‖ ≤ w̄,∀w ∈W .

B. Signal temporal logic

STL [16] is a predicate logic consisting of predicates µ,
which are obtained after evaluation of a predicate function
gµ : Rn → R as µ := > if gµ(x) ≥ 0 and µ := ⊥, otherwise.

In [22], it was shown that each STL formula has an
equivalent STL formula in positive normal form (PNF), i.e.,
negations only occur adjacent to predicates. The syntax of
the PNF STL is given by

ϕ ::= > | µ | ¬µ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1UIϕ2 | GIϕ.(2)

where ϕ,ϕ1, ϕ2 are STL formulas and I is a closed or half-
closed interval of the form [a, b] or [a, b) with a, b ∈ R≥0∪∞
and a ≤ b.

Definition 2.1 (STL semantics): [21] The validity of an
STL formula ϕ with respect to a discrete-time signal x at
time k, is defined inductively as follows:

(x, k) � µ ⇔ gµ(xk) ≥ 0,

(x, k) � ¬ϕ ⇔ ¬((x, k) � ϕ),

(x, k) � ϕ1 ∧ ϕ2 ⇔ (x, k) � ϕ1 ∧ (x, k) � ϕ2,

(x, k) � ϕ1U[a,b]ϕ2 ⇔ ∃k′ ∈ Ω(τk + a, τk + b) s.t.
(x, k′) � ϕ2 ∧
∀k′′ ∈ Ω(τk, τk′), (x, k

′′) � ϕ1.
In Definition 2.1, the satisfaction relation (x, k) � ϕ denotes
that the discrete signal x satisfies ϕ from time step k. If
(x, 0) � ϕ, this will be denoted by x � ϕ.

Definition 2.2 (STL robust semantics): [21] The space
robustness of an STL formula ϕ is defined inductively as
follows:

ρµ(x, k) := gµ(xk),

ρ¬ϕ(x, k) := −ρϕ(x, k),

ρϕ1∧ϕ2(x, k) := min{ρϕ1(x, k), ρϕ2(x, k)},
ρϕ1U[a,b]ϕ2(x, k) := max

k′∈Ω(τk+a,τk+b)
min

{
ρϕ2(x, k′),

min
k′′∈Ω(τk,τk′ )

ρϕ1(x, k′′)
}
.

One can conclude that x � ϕ if and only if ρϕ(x, 0) ≥ 0.

C. Tube-based temporal logic tree

In our previous work [27], a notion of tTLT is defined
for STL formulas. In addition, an online control synthesis
algorithm is designed for the robust control synthesis under
STL specifications. We recap here the main elements of [27]
that will be used later.

Definition 2.3: A tTLT is a tree for which
• each node is either a tube node, i.e., a node that maps

from the nonnegative time axis R≥0 to a subset of
Rn, or an operator node, i.e., a node that belongs to
{∧,∨,UI,FI,GI};

• the root node and the leaf nodes are tube nodes;
• if a tube node is not a leaf node, its unique child is an

operator node;
• the children of any operator node are tube nodes.
Lemma 2.1: [27] Given the uncertain system Σ in (1)

and an STL formula ϕ in PNF, a tTLT, denoted by Tϕ, can
be constructed from Σ and ϕ.

III. ROBUST APPROXIMATE SIMULATION RELATION

From now on, we will refer to the uncertain system Σ
defined in (1) as the concrete system. Control of Σ will be
synthesized hierarchically via an abstract system Σ′ and with
a control interface uv . The abstract system is defined by:

Σ′ :

{
zk+1 = g(zk, vk),

qk+1 = κ(zk+1)
(3)

where zk ∈ Rnz , qk ∈ Rny , and vk ∈ U ′ ⊆ Rnv . Note that
we abstract the uncertain system Σ by a deterministic system
Σ′ and g : Rnx × Rnv → Rnx is the abstracted dynamics.



The systems Σ and Σ′ have the same output space (i.e., Rny ),
but may have different state and input spaces. In addition,
the input set U ′ is a design parameter that will be specified
later. The trajectory and output trajectory of (3) are denoted
by discrete-time signals z := z0z1 . . . and q := q0q1 . . .,
respectively. We use zv

z0(k) to denote the trajectory point
reached at time k under the control signal v from initial
state z0.

The control interface uv : Rnv × Rnx × Rnz → Rnu is
given by

uk = uv(vk, xk, zk). (4)

Let ε > 0 be a given precision that we want to maintain
between Σ and Σ′. Define

X0 := {(x0, z0) : ‖h(x0)− κ(z0)‖ ≤ ε}.

In the following, we assume without loss of generality
that ∀x0 ∈ Rnx ,∃z0 ∈ Rnz such that (x0, z0) ∈ X0.
Denote by U[0,k] := {u0 . . . uk : ul ∈ U,∀l = 0, . . . , k},
W[0,k] := {w0 . . . wk : wl ∈ W, ∀l = 0, . . . , k} and
U ′[0,k] := {v0 . . . vk : vl ∈ U ′,∀l = 0, . . . , k}. Then, we
have the following definition.

Definition 3.1: The control interface uv : Rnv × Rnx ×
Rnz → Rnu is called admissible if there exists a set U ′ 6= ∅
such that
• u0 = uv(v0, x0, z0) ∈ U,∀(x0, z0) ∈ X0,∀v0 ∈ U ′,
• uk = uv(vk,x

u,w
x0

(k), zv
z0(k)) ∈ U,∀(x0, z0) ∈

X0,∀u ∈ U[0,k−1],∀v ∈ U ′[0,k−1],∀w ∈
W[0,k−1],∀k ≥ 1.

One can see from Definition 3.1 that if a control interface
uv is admissible, then the synthesized control signal u is
admissible, i.e., u ∈ U≥0.

The robust approximate simulation relation is defined in
terms of a Lyapunov-like simulation function as follows.

Definition 3.2: Given the concrete system Σ in (1) and the
abstract system Σ′ in (3), a function V : Rnx ×Rnz → R≥0

is called a robust simulation function for the system pair
(Σ,Σ′) and uv is the associated control interface if there
exist K∞ functions α, ᾱ, σ and a constant γ > 0 such that:

i) ∀x, x′ ∈ Rnx ,

α(‖h(x)− κ(x′)‖) ≤ V (x, x′) ≤ ᾱ(‖h(x)− κ(x′)‖),
(5)

ii) ∀x, x′ ∈ Rnx ,∀v ∈ U ′,

V
(
f(x, uv(v, x, x

′), w), g(x′, v)
)
− V (x, x′)

≤ −γV (x, x′) + σ(‖w‖),∀w : ‖w‖ ≤ w̄.
(6)

Remark 3.1: In [13], the notion of robust simulation func-
tion is defined for unconstrained continuous-time nonlinear
systems, whereas we here define the robust simulation func-
tion for uncertain discrete-time nonlinear systems under input
constraint. Moreover, in Definition 3 of [13], it is required
that V (x, x′) > γ1(‖v‖) + γ2(‖w‖),∀v, d, where γ1, γ2 are
two class K∞ functions. This means that the design of the
robust simulation function is dependent on the disturbance
w and input v. This requirement is relaxed in Definition 3.2
in this work.

Definition 3.3: Given the concrete system Σ in (1) and
the abstract system Σ′ in (3), we say that Σ robustly ap-
proximately simulates Σ′ with parameters (ε, w̄), denoted
by Σ′ �(ε,w̄)

S Σ, if:

i) ∀x0 ∈ Rnx ,∃z0 ∈ Rnz such that ‖h(x0)− κ(z0)‖ ≤ ε,
ii) ∀x, x′ s.t. ‖h(x) − κ(x′)‖ ≤ ε, ∀v ∈ U ′,∃u ∈ U such

that

‖h(f(x, u, w))− κ(g(x′, v))‖ ≤ ε,∀w : ‖w‖ ≤ w̄.
Then, we have the following result.
Theorem 3.1: Given the concrete system Σ in (1) and

the abstract system Σ′ in (3), suppose that Assumption
2.1 holds and there exists a robust simulation function V
for (Σ,Σ′) with uv being the associated control interface.
Assume furthermore that

i) w̄ < σ−1(α(ε)),
ii) uv is admissible, and

iii) the constant γ satisfies

1− α(ε)− σ(w̄)

ᾱ(ε)
≤ γ ≤ 1, (7)

where α, ᾱ, σ, γ are defined in Definition 3.2, w̄ is defined
in Assumption 2.1, and ε is the desired precision. Then,
Σ′ �(ε,w̄)

S Σ.
Proof: Given x, x′ such that ‖h(x) − κ(x′)‖ ≤ ε and

v ∈ U ′, define x̂ := f(x, uv(v, x, x
′), w) and x̂′ := g(x′, v).

Since the control interface uv is admissible, one has that
uv(v, x, x

′) ∈ U . To prove item ii) of Definition 3.3, it is
sufficient to prove that ‖h(x̂)− κ(x̂′)‖ ≤ ε,∀w : ‖w‖ ≤ w̄.

Since V is a robust simulation function, then (5) and (6)
hold, which gives V (x̂, x̂′) ≤ (1 − γ)V (x, x) + σ(w̄). In
addition, γ satisfies (7), then one has that

V (x̂, x̂′) ≤(1− γ)ᾱ(‖h(x)− κ(x′)‖) + σ(w̄)

≤α(ε)− σ(w̄)

ᾱ(ε)
ᾱ(ε) + σ(w̄)

≤α(ε)

if w̄ < σ−1(α(ε)). Therefore,

‖h(x̂)− κ(x̂′)‖ ≤ α−1(V (x̂, x̂′)) ≤ α−1(α(ε)) ≤ ε

for all w : ‖w‖ ≤ w̄. Item ii) of Definition 3.3 holds. In
addition, one has that item i) of Definition 3.3 holds by
assumption. Therefore, Σ′ �(ε,w̄)

S Σ.
Remark 3.2: From Theorem 3.1, one can see that a prop-

erly designed control interface, i.e., a uv that is admissible
and guarantees the existence of a robust simulation function
V and the satisfaction of condition (7), is crucial for the
existence of the robust approximate simulation relation from
Σ′ to Σ.

IV. APPLICATION TO STL CONTROL SYNTHESIS

In this section, we show the application of the proposed
hierarchical control approach to the robust control synthesis
under STL specifications.



Assume a PNF STL formula ϕ over a set of predicates
{µ1, . . . , µm}. Each predicate µi, i = 1, . . . ,m is defined
over the output signal y. In addition, define

µεi :=

{
>, if gµi(yk) ≥ ε,
⊥, if gµi(yk) < ε.

Then, one can further define the STL formula ϕε, where
ϕε is obtained by replacing each predicate µi with µεi . For
example, given ϕ = F[a1,b1]G[a2,b2]µ1 ∧ µ2U[a3,b3]µ3, then
ϕε = F[a1,b1]G[a2,b2]µ

ε
1 ∧ µε2U[a3,b3]µ

ε
3.

Theorem 4.1: Given the concrete system Σ in (1), the ab-
stract system Σ′ in (3), and the STL formula ϕ, suppose that
Assumption 2.1 holds and there exists a robust simulation
function V for (Σ,Σ′) with uv being the associated control
interface. If furthermore, one has that uv satisfies items ii)-
iii) of Theorem 3.1, then,

κ(zv
z0) |= ϕε ⇒ h(xu,w

x0
) |= ϕ,∀(x0, z0) ∈ X0,∀w ∈ W≥0,

where uk = uv(vk, xk, zk),∀k ∈ N, κ(zv
z0) and h(xu,w

x0
) are

the output trajectories of (1) and (3), respectively.
Proof: From the definition of ϕε and Definition 2.2,

one has that (y, 0) |= ϕε ⇒ ρϕ(y, 0) ≥ ε.
Since there exists a robust simulation function V for

(Σ,Σ′) and uv satisfies items ii)-iii) of Theorem 3.1, one
can get from Theorem 3.1 that Σ′ �(ε,w̄)

S Σ. According to
Definition 3.3, it further implies that ∀(x0, z0) ∈ X0,

‖κ(zv
z0(k))− h(xu,w

x0
(k))‖ ≤ ε, ∀k ∈ N,∀w ∈ W≥0.

Therefore, κ(zv
z0) |= ϕε ⇒ ρϕ(κ(zv

z0 , 0)) ≥ ε ⇒
ρϕ(h(xu,w

x0
, 0)) ≥ 0,∀(x0, z0) ∈ X0,∀w ∈ W≥0 ⇒

h(xu,w
x0

) |= ϕ,∀(x0, z0) ∈ X0,∀w ∈ W≥0.
Remark 4.1: Theorem 4.1 allows us to transform the ro-

bust control synthesis problem for the uncertain system Σ to
the control synthesis problem for the deterministic system Σ′.
The latter one can be solved by many existing approaches.
For instance, a mixed integer program formulation in [22]
when ϕ is bounded can be used, whereas an online control
synthesis algorithm is proposed in [27].

In the following, we outline the procedure of the hi-
erarchical control, where Algorithm onlineControlSyntheis
(Algorithm 5, [27]) is adopted for the control synthesis
of Σ′. We note that other approaches, such as the mixed
integer program in [22], can also be adopted. Firstly, an
initialization process (Algorithm 1) is required, where a tTLT
Tϕε is constructed from Σ′ and ϕε using Algorithm tTLT-
Construction (Algorithm 1, [27]). Then, one round (compute
(vk, zk+1) and (uk, xk+1) given (xk, zk, k)) of the online
control synthesis is outlined in Algorithm 2. Using Algorithm
onlineControlSyntheis, a feasible control input set U(zk, k)
can be obtained at each k given (Tϕε , zk, k) (line 1). The
control input vk can be chosen as any element of U(zk, k)
(line 2), and then one can get zk+1 (line 3). The control input
uk is obtained via the admissible control interface uv (line
4), and then we implement uk and measure xk+1 (line 5).

Now, let us recap the following definitions from [27].

Algorithm 1 Initialization
Input: Σ′ and ϕ.
Return: Tϕε .

1: obtain ϕε from ϕ,
2: Tϕε ← tTLTConstruction(Σ′, ϕε).

Algorithm 2 hierarchicalControlSynthesis
Input: Tϕε ,Σ,Σ′ and (xk, zk, k).
Return: (vk, zk+1) and (uk, xk+1).

1: U(zk, k)← onlineControlSynthesis(Tϕε , zk, k),
2: choose vk ∈ U(zk),
3: zk+1 ← g(zk, vk),
4: uk ← uv(vk, xk, zk),
5: implement uk and obtain xk+1.

Definition 4.1 (Satisfiability): Let the system Σ′ in (3) and
the STL formula ϕ. We say that ϕ is satisfiable from the
initial state z0 if there exists a control signal v ∈ U ′≥0 such
that κ(zv

z0) � ϕ.
Definition 4.2 (Robust satisfiability): Let the uncertain

system Σ in (1) and the STL formula ϕ. We say that ϕ
is robust satisfiable from the initial state x0 if there exists a
control signal u ∈ U≥0 such that h(xu,w

x0
) � ϕ,∀w ∈ W≥0.

Let SΣ′

ϕε := {z0 ∈ Rnz |ϕε is satisfiable for Σ′ from z0}
be the set of initial states of Σ′ from which ϕε is satisfiable.
Denote by v = v0v1 . . . and u = u0u1 . . . the control signals
for Σ′ and Σ, respectively.

Theorem 4.2: Given the concrete system Σ in (1), the
abstract system Σ′ in (3), and the STL formula ϕ. Assume
that the conditions in Theorem 4.1 hold and (x0, z0) ∈ X0.
If z0 ∈ SΣ′

ϕε and κ(zv
z0) |= ϕε, then by implementing the

control interface uv , i.e., uk = uv(vk, xk, zk),∀k, one can
guarantee that,

∀w ∈ W≥0, h(xu,w
x0

) |= ϕ.
Let

SΣ
ϕ := {x0 ∈ Rnx |ϕ is robust satisfiable for Σ from x0}

be the set of initial states of Σ from which ϕ is robust
satisfiable. In the following, we use a simple example to show
that in some cases, one can have {x0 ∈ Rnx : (x0, z0) ∈
X0, z0 ∈ SΣ′

ϕε} ⊇ SΣ
ϕ , i.e., the hierarchical control approach

applies to a larger set of initial states.
Example 4.1: Consider the following uncertain discrete-

time linear system

Σ :

{
xk+1 = 3xk + uk + wk,

yk+1 = xk+1,

where xk, yk ∈ R2, uk ∈ U := {u ∈ R2 : ||u|| ≤ 5.2}, wk ∈
W := {w ∈ R2 : ||w|| ≤ 0.2},∀k ∈ N. Without loss of
generality, we assume that xk = x(τk) = x(k), i.e., τk =
k, ∀k. The task ϕ is given by ϕ = G[5,10]µ, where gµ(yk) =
10− ‖yk‖. Then, one can compute that

SΣ
ϕ = {x ∈ R2 : ||x|| ≤ 10

3
}.



Let the abstract system Σ′ be given by

Σ′ : zk+1 = 3zk + vk, qk+1 = zk+1,

where vk ∈ U ′,∀k. The control interface uv is designed as

uk = uv(vk, xk, zk) = vk − 2.5(xk − zk).

One can verify that V (x, x′) = ‖x−x′‖ is a robust simulation
function for (Σ,Σ′) with α(s) = ᾱ(s) = s, γ = 0.5, δ(s) =
s. Choosing the desired precision ε = 0.5 and the input set
U ′ = {u ∈ R2 : ||u|| ≤ 3.95}, one can verify that items
i)-iii) of Theorem 3.1 hold. Therefore, Σ′ �(ε,w̄)

S Σ. Then,
one can further compute that

SΣ′

ϕε = {z ∈ R2 : ||z|| ≤ 269

60
},

and thus {x0 ∈ R2 : (x0, z0) ∈ X0, z0 ∈ SΣ′

ϕε} ⊃ SΣ
ϕ .

Remark 4.2: We note that for more general uncertain
discrete-time nonlinear systems and STL formulas, similar
results (as in Example 4.1) can be obtained. Therefore, we
argue that a larger set of initial conditions is achievable in
some cases with the proposed hierarchical control approach.

V. SIMULATION

A simulation example is provided in this section to vali-
date the effectiveness of the theoretical results. Consider an
uncertain discrete-time nonlinear system

Σ1 :

xk+1 =

[
1 0.01
0 1

]
xk +

[
0.5 0
0 0.5

]
uk + p(xk) + wk,

yk+1 = xk+1,

where the input set U = [−3.5, 3.5] × [−3.5, 3.5] and the
disturbance set W = [−0.2, 0.2]× [−0.2, 0.2]. The sampling
interval is 0.5s, that is, τ(k) = 0.5k, ∀k ∈ N. The nonlinear
function p(q) = 0.1 sin(q), where the sinusoidal function
sin(·) is defined element-wise.

Fig. 1. Output trajectories y of the concrete system Σ1 (light blue lines)
for 100 realizations of disturbance signals and output trajectory q of the
abstract system Σ′

1 (red line).

The problem is to control Σ1 to move in the bounded
workspace X shown in Fig. 1, where the grey solid poly-
gon O represents an obstacle and the green solid polygons
S1, S2 represent two target regions. The task specification
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Fig. 2. The evolution of the 100 output trajectories y (light blue lines)
with respect to time, where the output trajectories reach S1 at either 29.5s
or 30s, leave S1 at either 36.5s or 37.5s, and reach S2 at either 68s or
68.5s. Recall that the sampling interval is 0.5s.

is expressed as an STL formula ϕ = G[0,∞)(X ∧ ¬O) ∧
F[0,35]G[0,5]S1 ∧ F[50,75]S2.

The abstract system Σ′1 is given by

Σ′1 :

zk+1 =

[
1 0.01
0 1

]
zk +

[
0.5 0
0 0.5

]
vk,

qk+1 = zk+1

with the input set U ′. Let ε = 0.6 be the desired precision.
The control interface uv is designed as

uv(vk, xk, zk) = vk −
[

2 0.01
0.01 2

]
(xk − zk).

Then, by choosing U ′ = [−2.2, 2.2] × [−2.2, 2.2], one can
guarantee that the control interface uv is admissible and
Σ′1 �

(ε,w̄)
S Σ1.

Firstly, a tTLT Tϕε is constructed for Σ′1 using Algorithm
1. Then, the control signals v and u for Σ′1 and Σ1 are
obtained by implementing Algorithm 2 iteratively. The out-
put trajectory q for Σ′1 is plotted in Fig. 1 (solid red line),
where q1,k, q2,k are the two components of qk. Furthermore,
in order to validate robustness, we run 100 realizations of the
disturbance trajectories. The resulting output trajectories y
for Σ1 for these 100 realizations are shown (by the solid light
blue lines) in Fig. 1, where y1,k, y2,k are the two components
of yk. The evolution of the 100 output trajectories y with
respect to time is depicted in Fig. 2. One can see that all
the output trajectories y satisfy the STL formula ϕ. The
evolution of the output error ‖yk−qk‖ for the 100 realizations
of disturbance signals is depicted in Fig. 3, and one can see
that the desired precision ε = 0.6 is preserved at all times.
In addition, the evolution of the input components v1,k, v2,k

and u1,k, u2,k for the abstract system Σ′1 and the concrete
system Σ1 is plotted in Fig. 4, respectively. One can see
that uk ∈ U,∀k ∈ N (i.e., the input constraint is satisfied at
any time). We note that the use of the hierarchical control
approach for uncertain discrete-time nonlinear systems under
STL specifications is novel. In addition, it is shown in
Example 4.1 that this approach can be applied to a larger
set of initial conditions in some cases as compared to [27].
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Fig. 3. The evolution of ‖yk − qk‖ for 100 realizations of disturbance
signals.
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Fig. 4. The evolution of the input components u1,k, u2,k (light blue lines)
for 100 realizations of disturbance signals and v1,k, v2,k (red lines), where
the dash blue and black lines represent the bounds of the input sets U and
U ′, respectively.

Finally, we report the computation time of this example,
which is run in Matlab R2018b on a Dell laptop with
Windows 10, Intel i7-6600U CPU2.80 GHz and 16.0 GB
RAM. We perform reachability analysis for constructing the
tTLT Tϕε offline, which takes 2.4692 seconds. For online
control synthesis, the average computation time at a single
time step over 100 realizations is 0.322 seconds.

VI. CONCLUSION

A notion of robust approximate simulation relation was
proposed for the hierarchical control of uncertain discrete-
time nonlinear systems. First, it was shown that the robust
approximate simulation relation can be constructed with a
properly designed control interface. Then, the application of
the hierarchical control to the robust control synthesis under
STL specifications was investigated. Future work includes
the extension of this approach to other control problems as
well as experimental validation.
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