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Distributed motion coordination for multi-robot
systems under LTL specifications

Pian Yu and Dimos V. Dimarogonas

Abstract—This paper investigates the online motion coordina-
tion problem for a group of mobile robots moving in a shared
workspace, each of which is assigned a linear temporal logic
specification. Based on the realistic assumptions that each robot
is subject to both state and input constraints and can have
only local view and local information, a fully distributed multi-
robot motion coordination strategy is proposed. For each robot,
the motion coordination strategy consists of three layers. An
offline layer pre-computes the braking area for each region
in the workspace, the controlled transition system, and a so-
called potential function. An initialization layer outputs an
initially safely satisfying trajectory. An online coordination layer
resolves conflicts when one occurs. The online coordination
layer is further decomposed into three steps. Firstly, a conflict
detection algorithm is implemented, which detects conflicts with
neighboring robots. Whenever conflicts are detected, a rule
is designed to assign dynamically a planning order to each
pair of neighboring robots. Finally, a sampling-based algorithm
is designed to generate local collision-free trajectories for the
robot which at the same time guarantees the feasibility of the
specification. Safety is proven to be guaranteed for all robots at
any time. The effectiveness and the computational tractability of
the resulting solution is verified numerically by two case studies.

Index Terms—Multi-robot systems; motion coordination;
safety; distributed control; constraints.

I. INTRODUCTION

ONE challenge for multi-robot systems (MRSs) is the
design of coordination strategies between robots that

enable them to perform operations safely and efficiently in
a shared workspace while achieving individual/group motion
objectives [1]. This problem was originated from the 80s and
has been extensively investigated since. In recent years, the
attention that has been put on this problem has grown signifi-
cantly due to the emergence of new applications, such as smart
transportation and service robotics. The existing literature can
be divided into two categories: path coordination and motion
coordination. The former category plans and coordinates the
entire paths of all the robots in advance (offline), while the
latter category focuses on decentralized and online approaches
that allow robots to resolve conflicts online when one occurs1

[2]. This paper aims at developing a fully distributed strategy
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1In some literature these two terms are used interchangeably. In this paper,
we try to distinguish between the two as explained above.

for multi-robot motion coordination (MRMC) with safety
guarantees.

Depending on how the controller is synthesized for each
robot, the literature concerning MRMC can be further clas-
sified into two types: the reactive approach and the planner-
based approach. Typical methods that generate reactive con-
trollers consist of the potential-field approach [3], [4], slid-
ing mode control [5], [6] and control barrier functions [7],
[8]. These reactive-style methods are fast and operate well
in real-time. However, it is well-known that these methods
are sensitive to deadlocks that are caused by local minima.
Moreover, although these reactive-style methods work well in
relatively unconstrained situations, guidance for setting control
parameters is not analyzed formally when explicit constraints
on the system states and/or inputs are presented [2]. Apart
from the above, other reactive methods include the generalized
roundabout policy [9] and a family of biologically inspired
methods [10].

An early example of the planner-based method is the work
of Azarm and Schmidt [11], where a framework for online
coordination of multiple mobile robots was proposed. In this
framework, MRMC was solved as a sequential trajectory
planning problem, where priorities are assigned to robots when
conflicts are detected, and then a motion planning algorithm
is implemented to generate conflict-free paths. Based on this
framework, various applications and different motion planning
algorithms are investigated. Guo and Parker [12] proposed a
MRMC strategy based on the D∗ algorithm. In this work, each
robot has an independent goal position to reach and know all
path information. In [13], a distributed bidding algorithm was
designed to coordinate the movement of multiple robots, which
focuses on area exploration. In the work of Liu [14], conflict
resolution at intersections was considered for connected au-
tonomous vehicles, where each vehicle is required to move
along a pre-planned path. A literature review on MRMC can
be found in [1].

No matter which type of controllers is implemented, safety
has always been a crucial issue for MRMC. In [7], MRSs
with double-integrator dynamics were studied, control barrier
functions were proposed to solve the motion coordination
problem and safety guarantees were established. However, the
velocity constraints are not dealt with. In [14], safety was
stated by assuming that the deceleration that each robot can
take is unbounded, yet this assumption may not be realistic
for practical applications. In addition, most of the above
mentioned literature concerning MRMC considers relatively
simple tasks for each robot (e.g., an arrival task from initial
state to goal state). However, as robots become more capable,
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a recent trend in the area of robot motion planning is to assign
robots more complex, high-level tasks, such as temporal logic
specifications.

In the last few years, multi-robot control under linear
temporal logic (LTL) specifications has been investigated in
[15]–[20]. Most of them consider that the MRS is subject
to a global LTL specification, and then an offline motion
planning problem is solved in a centralized manner [15]–[18].
In [19], unknown moving obstacles were taken into account.
Therefore, online coordination with the moving obstacles was
further required. In this work, safety is shown under the
assumptions that each robot is moving at a constant velocity
and that the local motion planning is feasible. In [20], multi-
robot plan reconfiguration under local LTL specifications was
investigated. A potential-field-based navigation controller was
implemented for each robot to guarantee safety. However, the
approach is not applicable when state and input constraints are
considered.

Motivated by the above observations, this paper investigates
the MRMC problem for a group of mobile robots moving in a
shared workspace, each of which is assigned a LTL specifica-
tion. Robots are assumed to have limited sensing capabilities
and constraints in both state and input are considered. To
cope with these setups, a fully distributed MRMC strategy
is proposed. The contributions of this paper are summarized
as follows.

i) A framework for distributed MRMC under LTL specifi-
cations is proposed for each robot, which consists of three
layers: an offline pre-computation layer, an initialization
layer, and an online coordination layer. The online co-
ordination layer is further decomposed into three steps.
Firstly, conflicts are detected within the sensing area of
each robot. Once conflicts are detected, a rule is applied
to assign dynamically a planning order to each pair of
neighboring robots. Finally, a sampling-based algorithm
is implemented for each robot that generates a local
collision-free trajectory which at the same time satisfies
the LTL specification.

ii) Safety is established under all circumstances by com-
bining the planner-based controller with an emergency
braking controller.

iii) As the motion coordination strategy is designed to be
fully distributed and each robot considers only local
information of neighboring robots, it is totally scalable
in the sense that the computational complexity of the
strategy does not increase with the number of robots in
the workspace.

A comparison between this work and the related literature
[15]–[20] is summarized in Table I.

A preliminary version of this work was accepted by the
2020 American Control Conference [21]. Here, we expand this
preliminary version in two main directions. Firstly, the frame-
work is generalized to LTL specifications. In the conference
version, only reach-avoid type of tasks are considered, and
the replanning problem can be formulated as an optimization
problem. However, as the verification of an LTL formula is
in general difficult to be conducted online, a local trajectory
generation algorithm is designed in this work. Secondly, safety

TABLE I: Comparison of this work to related literature.

Literature Task1 Plan
synthesis

Online
coordination Safety2

[15]–[18] global centralized no offline safety

[19] global centralized yes additional
assumptions

[20] local distributed yes
no state and

input constraints
are considered

This work local distributed yes

no additional
assumptions,

state and input
constraints

are considered
1 Global means that a team LTL specification is assigned to all robots, local

means that an individual LTL specification is assigned to each robot.
2 Safety means robot-robot and robot-obstacle collision avoidance.

guarantees are established without the assumption that each
robot can take unbounded input in case of emergency. This
is done by considering a braking distance at both the conflict
detection and coordination steps.

The remainder of the paper is organized as follows. In Sec-
tion II, notation and preliminaries on transition systems, LTL
and product automaton are introduced. Section III formalizes
the (online) motion coordination problem. Section IV presents
the proposed solution in detail, which is verified by two case
studies in Section V. A summary of this work is given in
Section VI.

II. PRELIMINARIES

A. Notation

Let R := (−∞,∞), R≥0 := [0,∞), R>0 := (0,∞),
and N := {0, 1, 2, . . .}. Denote Rn as the n-dimensional real
vector space, Rn×m as the n×m real matrix space. Through-
out this paper, vectors are denoted in italics, x ∈ Rn, and
boldface x is used for continuous-time signals or a sequence
of states. Given a continuous-time signal x, x(t) denotes the
value of x at time t. 0n denotes a n-dimensional column vector
with all elements equal to 0. [a, b] and [a, b) denote closed
and right half-open intervals with end points a and b. For
x1 ∈ Rn1 , . . . , xm ∈ Rnm , the notation (x1, x2, . . . , xm) ∈
Rn1+n2+···+nm stands for [xT1 , x

T
2 , . . . , x

T
m]T . Let |λ| be the

absolute value of a real number λ, ‖x‖ and ‖A‖ be the
Euclidean norm of vector x and matrix A, respectively. Given
a set Ω, 2Ω denotes its powerset and |Ω| denotes its cardinality.
Given two sets Ω1,Ω2, the set F(Ω1,Ω2) denotes the set of all
functions from Ω1 to Ω2. The operators ∪ and ∩ represent set
union and set intersection, respectively. In addition, we use
∧ to denote the logical operator AND and ∨ to denote the
logical operator OR. The set difference A \ B is defined by
A \B := {x : x ∈ A ∧ x /∈ B}.

Given a vector x ∈ Rn, define the projection operator
projm(x) : Rn → Rm as a mapping from x to its first
m,m ≤ n components. Given a signal x : [t1, t2] →
Rn, define projm(x) := {x′ : [t1, t2] → Rm|x′(t) =
projm(x(t)), t ∈ [t1, t2]}. In addition, we use dom(x) to
represent the domain of a signal x. Given two signals x1 :
[t1, t2] → Rn and x2 : [t2, t3] → Rn, denote by x1 ] x2 :=
{x : [t1, t3] → Rn|x(t) = xi(t), t ∈ dom(xi), i = 1, 2}.
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Given a point c ∈ Rn, a set A ⊆ Rn and a constant r ≥ 0,
dist(c, A) := infy∈A{‖c − y‖} represents the point-to-set
distance and B(c, r) represents a ball area centered at point c
and with radius r. Denote by B(A, r) := ∪c∈AB(c, r). Given
two sets A,B, define dist(A,B) := infx∈A,y∈B{‖x− y‖}.

B. Graph Theory
Let G = {V, E} be a graph with the set of nodes V =

{1, 2, . . . , N}, and E ⊆ {(i, j) : i, j ∈ V, j 6= i} the set
of edges. If (i, j) ∈ E , then node j is called a neighbor of
node i and node j can receive information from node i. The
neighboring set of node i is denoted by Ni = {j ∈ V|(i, j) ∈
E}. Define N+

i = Ni ∪ {i}. The graph G is called undirected
if j ∈ Ni ⇒ i ∈ Nj ,∀j 6= i. Given an edge ek := (i, j) ∈ E ,
i is called the head of ek and j is called the tail of ek. An
undirected graph is called connected if for every pair of nodes
(i, j), there exists a path which connects i and j, where a path
is an ordered list of edges such that the head of each edge is
equal to the tail of the following edge.

C. LTL and Büchi automaton
Let AP be a set of atomic propositions. LTL is based on

atomic propositions (state labels a ∈ AP ), Boolean connectors
like negation ¬ and conjunction ∧, and two temporal operators
© (“next”) and U (“until”), and is formed according to the
following syntax [22]:

ϕ ::= true|a|¬ϕ|ϕ1 ∧ ϕ2| © ϕ|ϕ1Uϕ2, (1)

where ϕ,ϕ1, ϕ2 are LTL formulas. The Boolean connector
disjunction ∨, and temporal operators ♦ (“eventually”) and
� (“always”) can be derived as ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2),
♦ϕ := trueUϕ and �φ := ¬♦¬φ. Formal definitions for the
LTL semantics and model checking can be found in [22].

Definition 1 (Büchi automaton [23]): A nondeterministic
Büchi automaton (NBA) is a tuple B = (S, S0, 2

AP , δ, F ),
where
• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• 2AP is the input alphabet,
• δ : S × 2AP → 2S is the transition function, and
• F ⊆ S is the set of accepting states.

An infinite run s of a NBA is an infinite sequence of states
s = s0s1 . . . generated by an infinite sequence of input
alphabets σ = σ0σ1 . . . ∈ (2AP )ω , where s0 ∈ S0 and
sk+1 ∈ δ(sk, σk),∀k ≥ 0. An infinite run s is called accepting
if Inf(s) ∩ F 6= ∅, where Inf(s) is the set of states that
appear in s infinitely often. Given a state s ∈ S, define

Post(s) := {s′ ∈ S : ∃σ ∈ 2AP , s′ ∈ δ(s, σ)}. (2)

Given an LTL formula ϕ over AP , there is a union of infinite
words that satisfy ϕ, that is,

Words(ϕ) = {σ ∈ (2AP )ω|σ |= ϕ},
where |=⊆ (2AP )ω × ϕ is the satisfaction relation [22].

Lemma 1: [24] Any LTL formula ϕ over AP can be
algorithmically translated into a Büchi automaton Bϕ over the
input alphabet 2AP such that Bϕ accepts all and only those
infinite runs over AP that satisfy ϕ.

D. Transition system as embedding of continuous-time systems

Consider a continuous-time dynamical system{
ẋ = f(x, u),

y = g(x),
(3)

where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm is the control,
f : Rn × Rm → Rn describes the dynamics, y ∈ Y ⊆ Rl is
the output, and g : Rn → Rl is the output function.

Let U be the set of all measurable functions that take their
values in U and are defined on R≥0. A curve ξ : [0, τ) →
Rn is said to be a trajectory of (3) if there exists an input
signal u ∈ U satisfying ξ̇(t) = f(ξ(t), u(t)) for almost all
t ∈ [0, τ). A curve ζ : [0, τ) → Rl is said to be an output
trajectory of (3) if ζ(t) = g(ξ(t)) for almost all t ∈ [0, τ),
where ξ is a trajectory of (3). We use ξ(ξ0,u, t) and ζ(ζ0,u, t)
to denote the trajectory and output trajectory point reached
at time t under the input u ∈ U from initial condition ξ0
and ζ0, respectively. In addition, when u is a constant signal,
i.e., u(t) ≡ û,∀t ∈ dom(u) for a û ∈ U , then we define
ξ(ξ0, û, t) := ξ(ξ0,u, t) and ζ(ζ0, û, t) := ζ(ζ0,u, t).

The continuous-time system (3) can be represented as an
(infinite) transition system T = (X,X0,Σ,→, f, O, g), where
• X is the set of states,
• X0 ⊆ X is the set of initial states,
• Σ = U is the set of input functions,
• →: X × Σ→ 2X is the transition relation,
• O = Y is the set of observations, and
• g is the observation map.

The transition relation x′ ∈→ (x, u) if and only if x′ =
ξ(x, u, τ), where τ > 0 is a given constant. For convenience,
x′ ∈→ (x, u) will be denoted as x u−→ x′.

Definition 2 (Controlled transition system): Given a transi-
tion system T = (X,X0,Σ,→, f, O, g) and a set of atomic
propositions AP , we define the controlled transition system
(CTS) Tc = (X,X0, AP,→, Lc), where
• Lc : X → 2AP is a labelling function.

The labelling function Lc(x) maps a state x to the finite set
of AP which are true at state x. Given a state x ∈ X , define

Post(x) := {x′ ∈ X : ∃u ∈ U, x u−→ x′}. (4)

An infinite path of the CTS Tc is a sequence of states
% = x0x1x2 . . . generated by an infinite sequence of inputs
u = u0u1u2 . . . such that x0 ∈ X0 and xk

uk−→ xk+1 for
all k ≥ 0. Its trace is the sequence of atomic propositions
that are true in the states along the path, i.e., Trace(%) =
Lc(x0)Lc(x1)Lc(x2) . . .. The satisfaction relation % |= ϕ if
and only if Trace(%) ∈ Words(ϕ).

E. Product automaton and potential functions

Definition 3 (Product Büchi automaton [22]): Given
a CTS Tc = (X,X0, AP,→, Lc) and a NBA
B = (S, S0, 2

AP , δ, F ), the product Büchi automaton
(PBA) is P = Tc × B = (Sp, S0,p, 2

AP , δp, Fp), where
Sp := X × S, S0,p := X0 × S0, Fp := (X × F ) ∩ Sp and
• δp ⊆ Sp × Sp, defined by ((x, s), (x′, s′)) ∈ δp if and

only if x′ ∈ Post(x) and s′ ∈ Post(s).
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Given a state p ∈ Sp, define the projection operator
pjX(p) : Sp → X as a mapping from p to its first
component x ∈ X . Given a state x ∈ X , define the function
βP : X → 2S , given by

βP(x) := {s ∈ S : (x, s) ∈ Sp}, (5)

as a mapping from x to the subset of Büchi states S that
correspond to x. Denote by D(p, p′) the set of all finite runs
between state p ∈ Sp and p′ ∈ Sp, i.e.,

D(p, p′) := {p1p2 . . . pn : p1 = p, p′ = pn,

(pk, pk+1) ∈ δp,∀k = 1, · · · , n− 1;∀n ≥ 2}.
The state p′ is said to be reachable from p if D(p, p′) 6= ∅.
The length of a finite run p = p1p2 . . . pn in P , denoted by
Lg(p), is given by

Lg(p) :=

n−1∑
i=1

‖pjX(pi+1)− pjX(pi)‖.

For all p, p′ ∈ Sp, the distance between p and p′ is defined as
follows:

d(p, p′) =

{
minp∈D(p,p′) Lg(p), if D(p, p′) 6= ∅
∞, otherwise.

(6)

The following definitions of self-reachable set and potential
functions are given in [25].

Definition 4: A set A ⊆ Sp is called self-reachable if and
only if all states in A can reach a state in A, i.e., ∀p ∈ A,∃p′ ∈
A such that D(p, p′) 6= ∅.

Definition 5: For a set B ⊆ Sp, a set C ⊆ B is called
the maximal self-reachable set of B if each self-reachable set
A ⊆ B satisfies A ⊆ C.

Definition 6 (Potential function of states in P): The
potential function of a state p ∈ Sp, denoted by VP(p) is
defined as:

VP(p) =

{
minp′∈F∗p {d(p, p′)}, if p /∈ F ∗p
0, otherwise,

where F ∗p is the maximal self-reachable set of the set of
accepting states Fp in P and d(p, p′) is defined in (6).

Definition 7 (Potential function of states in Tc): Let a state
x ∈ X and a set Mp ⊆ βP(x), where βP(x) is defined in (5).
The potential function of x with respect to Mp, denoted by
VTc(x,Mp) is defined as

VTc(x,Mp) = min
s∈Mp

{VP((x, s))}.

Remark 1: If VTc(x,Mp) < ∞, it means that ∃s ∈ Mp

such that starting from (x, s), there exists a run that reaches
a self-reachable accepting state of P .

III. PROBLEM FORMULATION

Consider a group of robots moving in a bounded workspace
W ⊂ Rl. The dynamics of robot i is given by

ẋi = Fi(xi, ui), i ∈ V, (7)

where
xi := (pi, ζi) ∈ Rn

represents the state of robot i, which contains its position state
pi ∈ Rl and non-position state ζi ∈ Rn−l (e.g., orientation
and/or velocity), and ui ∈ Rm represents the input of robot i.
The function Fi : Rn×Rm → Rn describes the state evolution
of robot i. The output of robot i is the position state, i.e.,
yi = projl(xi) = pi,∀i.

The state and input of robot i are constrained to the
following compact sets

xi(t) ∈ Xi, ui(t) ∈ Ui,∀t ≥ 0. (8)

It is assumed that the set Ui contains the origin for all i.
Denote by ξi : [0,∞) → Rn the trajectory of robot i

with dynamics given by (7). Then, we further define pi :
[0,∞) → Rl as the position trajectory of robot i, where
pi(t) = projl(ξi(t)),∀t ∈ dom(ξi). Given a time interval
[t1, t2], t1 < t2, the corresponding trajectory and position tra-
jectory are denoted by ξi([t1, t2]) and pi([t1, t2]), respectively.
Denote by ξi([t,∞)) and pi([t,∞)) the trajectory and the
position trajectory of robot i from time t onwards, respectively.

Supposing that the sensing radius of each robot is the same,
given by R > 0, then the communication graph formed by the
group of robots is undirected. The neighboring set of robot i
at time t is given by Ni(t) = {j ∈ V : ‖xi(t) − xj(t)‖ ≤
R, j 6= i}, so that j ∈ Ni(t)⇔ i ∈ Nj(t),∀i 6= j,∀t.

The group of robots are working in a common workspace
W, which is populated with a set of closed sets Oi, corre-
sponding to obstacles. Let O = ∪iOi, then the free space F
is denoted by F := W \O.

Each robot i is subject to its own specification ϕi, which
is in the form of a LTL−X formula that is defined over the
workspace W. LTL−X [26] is a known fragment of LTL, in
which the © (“next”) operator is not allowed. The choice of
LTL−X over LTL is motivated by the fact that LTL (given
in (1)) increases expressivity (over LTL−X) only over words
with a finite number of repetitions of a symbol, and a word
corresponding to a continuous signal will never have a finite
number of successive repetitions of a symbol.

Suppose that a cell decomposition is given over the
workspace W. The cell decomposition is a partition of W
into finite disjoint convex regions Φ := {X1, . . . , XM} with
W = ∪Ml=1Xl. Given a point p ∈ W, define the map
Q : W→ Φ as

Q(p) := {Xl ∈ Φ : p ∈ Xl},

which maps a point p into a cell Xl ∈ Φ that contains it. Let
APϕi

be the set of atomic propositions specified by ϕi. Define
AP = ∪i∈VAPϕi . Then, we have the following assumption.

Assumption 1: The cell decomposition over the workspace
W satisfies

Lc(x) = Lc(x
′),∀x, x′ : Q(x) = Q(x′),

where Lc given in Definition 2 is the labelling function.
Assumption 1 means that for all points that are contained

in the same cell, the subset of AP that is true at these points
is the same. We note that the required cell decomposition can
be computed exactly or approximately using many existing
approaches (Chapters 4-5 [27]).
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Given a trajectory ξi, the notation ξi |= ϕi means that the
trajectory ξi satisfies the specification ϕi. Given the position
pi of robot i, we refer to its footprint φi(xi) as the set of points
in W that are occupied by robot i in this position. We note
that the footprint of robot i can take into account not only the
shape of robot i but also practical issues such as measurement
errors.

The objective of this paper is to find, for each robot i, a
trajectory ξi such that ξi |= ϕi on the premise that safety (no
collisions with static obstacles and no inter-robot collisions)
is guaranteed. Let t = 0 be the task activation time of robot
i,∀i. Then, the centralized and offline version of the MRMC
problem is formulated below:

find {ξi([0,∞))}i∈V (9a)
subject to

(7) and (8),∀i ∈ V, (9b)
ξi([0,∞)) |= ϕi,∀i ∈ V, (9c)
φi(pi([0,∞)) ⊂ F,∀i ∈ V, (9d)
φi(pi(t)) ∩ φj(pj(t)) = ∅,∀i, j ∈ V, i 6= j,∀t. (9e)

Constraint (9d) means that the footprint of each robot will
not collide with the static obstacles at any time. Constraint
(9e) means that the footprint of two different robots can
not intersect at any time, thus guaranteeing no inter-robot
collision occurs. Note that in this paper, each robot has only
local view and local information, i.e., each robot considers
only robots in its neighborhood Ni(t) at each time t and
can have only local information of its neighbors. Therefore,
centralized motion coordination can not be conducted. Under
these settings, the MRMC problem (9) is broken into local
distributed motion coordination problems and solved online
for individual robots. Let pj([t, t∗j (t)]) be the local position
trajectory of robot j that is available to robot i at time t, where
t∗j (t) := mint′>t{xj(t′) /∈ B(xi(t), R)}. Then, the (online)
motion coordination problem for robot i is formulated as

find ξi([t,∞)) (10a)
subject to

(7) and (8), (10b)
ξi([0, t] ∪ [t,∞)) |= ϕi, (10c)
φi(pi([t,∞))) ⊂ F, (10d)
φi(pi(t)) ∩ φj(pj(t)) = ∅,∀j ∈ Ni(t),∀t′ ∈ [t, t∗j (t)],(10e)

where ξi([0, t]) is the history trajectory.

IV. SOLUTION

The proposed solution to the motion coordination problem
(10) consists of three layers: 1) an offline pre-computation
layer, 2) an initialization layer, and 3) an online coordination
layer.

A. Structure of each robot

Before explaining the solution, the structure of each robot
is presented (see Fig. 1). Each robot i is equipped with five
modules, the conflict detection, the planning order assignment,

C
om

m
unication

Confilict detection

Planning order assignment

Trajectory planning

Controller

ξ
(+)
i ([tc,→))

Robot i

ξ
(+)
j ([tc,→))

ξ
(+)
i ([tc,→))

Fig. 1: The structure of robot i.

the trajectory planning, the control, and the communication
module. The first four modules work sequentially while the
communication module works in parallel with the first four.

During online execution, robot i tries to satisfy its specifi-
cation safely by resolving conflicts with other robots. This is
done by following some mode switching rules encoded into
a finite state machine (FSM), see Fig. 2. Each FSM has the
following three modes:
• Free: Robot moves as planned. This is the normal mode.
• Busy: Robot enters this mode when conflicts are detected.

In this mode, the planning order assignment module and
the trajectory planning module are activated.

• Emerg: Robot starts an emergency stop process.

Free Busy Emerg

Fig. 2: The three modes of robot i and the transitions among
them.

In Fig. 2, the transitions between different modes of the
FSM are depicted. Initially, robot i is in Free mode. The
conflict detection module is activated when the online execu-
tion starts. Once conflict neighbors (will be defined later) are
detected, robot i enters to Busy mode and the planning order
assignment and the trajectory planning modules are activated
to solve the conflicts, otherwise, robot i stays in Free mode.
When robot i is in Busy mode, it switches back to Free mode
if the trajectory planning module returns a feasible solution,
and the solution will be broadcasted to the robot’s neighboring
area as well as sent to the controller for execution, otherwise
(e.g., no feasible plan is found), robot i switches to Emerg
mode and a braking controller (defined later) is applied. Note
that when robot i switches to Emerg mode, it will come to a
stop but with power-on. This means that robot i will continue
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monitoring the environment and restart (switches back to Free
mode) when it is possible.

B. Offline pre-computation

1) Braking controller: As stated in the previous subsection,
when robot i enters Emerg mode, it starts an emergency stop
process. In our previous work [21], safety in Emerg mode is
guaranteed by assuming that each robot can take unbounded
input when switching to Emerg mode. In this work, we
consider bounded input in all modes for all robots. Due to
this, a braking controller needs to be designed for each robot,
and the notions of braking (position) trajectory and braking
time and distance are introduced.

Given the initial state xi ∈ Xi of robot i, define

t∗i (xi) := min T (11a)
subject to

xi(0) = xi, (11b)
ẋi(t) = Fi(xi(t), ui(t)), (11c)
xi(t) ∈ Xi, ui(t) ∈ Ui, t ∈ [0, T ) (11d)
ṗi(T ) = 0l, (11e)

as the minimal time needed to decelerate robot i to zero
velocity (i.e., ṗi(t) = 0l). Let u∗i (xi) be the optimal solution
of (11). Then, the braking controller ubr

i (xi) is designed as

ubr
i (xi)(t) =

{
u∗i (xi)(t), if ṗi(t) 6= 0l,

0m, if ṗi(t) = 0l.
(12)

Denote by ξbr
i (xi) the braking trajectory of robot i starting at

xi. Then we have

ξbr
i (xi)(t) = ξi(xi,u

br
i (xi), t), t ∈ [0, t∗i (xi)]. (13)

The braking position trajectory of robot i, denoted by pbr
i (xi),

is then given by

pbr
i (xi) = projl(ξ

br
i (xi)). (14)

Let d∗i (xi) := maxp∈pbr
i (xi) ‖p− projl(xi)‖. Then, we have

the following assumption.
Assumption 2: Define the braking time T br

i and the braking
distance Dbr

i as

T br
i := max

xi∈Xi

{t∗i (xi)}, (15)

Dbr
i := max

xi∈Xi

{d∗i (xi)}. (16)

Then, we have 0 ≤ T br
i <∞ and 0 ≤ Dbr

i <∞,∀i.
Remark 2: Assumption 2 means that for any given initial

state xi ∈ Xi, the maximal time and distance needed for
braking with the braking controller (12) are finite. We note that
this assumption is not conservative as it is satisfied by many
real-life robots. For robots with first-order dynamics (e.g.,
omni-directional robots, differential drive robots), i.e., the
velocity of the robot is controlled, one can derive that T br

i = 0
and Dbr

i = 0 with the braking controller ubr
i ≡ 0m. For robots

with second-order dynamics (e.g., automated vehicles), i.e.,
the acceleration of the robot is controlled, the braking time

T br
i and the braking distance T br

i are usually determined by
the maximum velocity and acceleration.

Example 1: Consider a homogeneous MRS, where the dy-
namics of each robot i is given by

ṗix = vi cos θi,

ṗiy = vi sin θi,

θ̇i = ωi,

v̇i = ai,

(17)

where pi := (pix, p
i
y) ∈ R2 is the position of robot i,

ζi := (θi, vi) represents the non-position state of robot i,
which contains its orientation θi ∈ R and velocity vi ∈ R. The
input ui is given by ui := (ωi, ai), where ωi is the turning
rate and ai is the acceleration.

The velocity and input of robot i are subject to the hard
constraints

|vi(t)| ≤ vi,max, |ωi(t)| ≤ ωi,max, |ai(t)| ≤ ai,max, (18)

where vi,max, ωi,max, ai,max > 0. Then, the state and input
sets are given by

Xi := {(pi, θi, vi) : pi ∈W, θi ∈ R, |vi| ≤ vi,max}, (19)
Ui := {(ωi, ai) : |ωi| ≤ ωi,max, |ai| ≤ ai,max}. (20)

In this example, we consider two different braking con-
trollers. First, design the braking controller ubr, 1

i as

ubr, 1
i (t) =


(

0,−ai,max
vi(t)

|vi(t)|

)
, if |vi(t)| 6= 0,

02 , if |vi(t)| = 0.

(21)

Then, one can derive the braking time T br, 1
i = |vi,max|/ai,max

and the braking distance Dbr, 1
i = |vi,max|2/2ai,max.

Alternatively, one can design the braking controller ubr, 2
i as

ubr, 2
i (t) =


(

(−)ωi,max,−ai,max
vi(t)

|vi(t)|

)
, if |vi(t)| 6= 0,

02 , if |vi(t)| = 0.
(22)

Then, one can derive the braking time T br, 2
i = |vi,max|/ai,max

and the braking distance

Dbr, 2
i =

g(vi,max, ωi,max, ai,max)

ω2
i,max

,

where g(vi,max, ωi,max, ai,max) = v2
i,maxω

2
i,max +

2a2
i,max

(
1 − cos(vi,maxωi,max/ai,max)

)
−

2vi,maxωi,maxai,max sin (vi,maxωi,max/ai,max). Note that
using the braking controller (22), one can prove that the
minimal braking distance is achieved.

2) Workspace discretization: Given the set of AP , Assump-
tion 1 guarantees that there exists an observation preserving
cell decomposition Φ = {X1, . . . , XM} over the workspace
W. In general, Xl1 , Xl2 , l1 6= l2 are of different shapes and
sizes. For the sake of online coordination, we propose to
further discretize each cell Xl ∈ Φ into smaller regions. Let
Ξ(Xl) := {X̂1

l , . . . , X̂
Ml

l } be a partition of Xl into Ml disjoint
convex regions. Then, we define Ξ := ∪Xl∈ΦΞ(Xl). Ξ can be
seen as a finer discretization over the workspace W.
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Given a set S ⊆W, let

Q̂(S) := {X̂ ∈ Ξ : X̂ ∩ S 6= ∅}, (23)

which represents the set of regions in Ξ that intersect with S.
3) Pre-computation of braking area, CTS, NBA, PBA, and

potential functions: Given the position pi of robot i, define

Si(pi) := {xi ∈ Xi : projl(xi) = pi}

as the subset of states in Xi that correspond to pi. In addition,
we define the braking area of robot i at position pi as

Φ(pi) := ∪xi∈Si(pi)φi(p
br
i (xi)), (24)

where φi(p
br
i (xi)) is the footprint of the braking position

trajectory pbr
i (xi). Let

ψi(pi) := B(φi(pi), D
br
i ). (25)

Then, we have the following result.
Proposition 1: The braking area of robot i at position pi

can be over-approximated by the set ψi(pi), that is,

Φ(pi) ⊆ B(φi(pi), D
br
i ),∀pi ∈W.

In addition, for each region X̂l ∈ Ξ, define

ψi(X̂l) := ∪pi∈X̂l
ψi(pi). (26)

Each robot i will compute offline a map Mi : Ξ→ 2Ξ, where

Mi(X̂l) := Q̂
(
ψi(X̂l)

)
,∀X̂l ∈ Ξ. (27)

Intuitively, Mi projects a region X̂l into a set of regions that
might be traversed by the braking position trajectory of robot
i if robot i starts an emergency stop process inside X̂l.

Due to the continuity of the dynamics, the state and the
input spaces, the transition system that represents (7) is infinite
for each robot i. To this end, a probabilistically complete
sampling-based algorithm is proposed in [25] to approximate
(7) by a finite transition system. Given a sampling interval τs,
the finite transition system that represents (7) is denoted by
Ti := (X̂i, X̂0

i ,Ui,→c,i, Fi,W, h), where
• X̂i collects all sampling points in Xi that are safe (with

respect to the static obstacles), i.e., ψi(projl(xi)) ⊆
F,∀xi ∈ X̂i),

• X̂0
i ⊆ X̂i,

• →c,i⊆ X̂i × Ui × X̂i,
Fi is given in (7), W is the workspace as well as the
observation space, and h(·) = projl(·) is the observation
map. Here, Xi,Ui are the set of states and inputs, which are
defined in (8). The transition relation (xi, ui, x

′
i) ∈→c,i if and

only if x′i = ξi(xi, ui, τs). Similarly to (4), define

Post(xi) := {x′i ∈ X̂i : ∃ui ∈ Ui, xi
ui−→ x′i}. (28)

Once Ti is obtained, one can further construct the NBA
Bi := (Si, S

0
i , 2

APϕi , δi, Fi) for the specification ϕi (Defini-
tion 1), the CTS Tc,i := (X̂i, X̂0

i , APϕi
,→c,i, Lc,i) (Definition

2), and then form the PBA Pi = Tc,i×Bi (Definition 3). After
that, the potential function for Pi can be computed according
to Definition 6.

Remark 3: The cell decomposition Φ of the workspace sat-
isfies Lc(x) = Lc(x

′),∀Q(x) = Q(x′). In addition, APϕi ⊆
AP,∀i ∈ V . Therefore, one has Lc,i(x) = Lc,i(x

′),∀Q(x) =
Q(x′),∀i ∈ V and thus βPi

(x) = βPi
(x′),∀Q(x) =

Q(x′),∀i ∈ V . Then, according to Definition 6, one can
get that if VPi

((x, βPi
(x))) < ∞, then VPi

((x′, βPi
(x′))) <

∞,∀x′ ∈ Q(x).

C. Initialization

Before proceeding, the following definition is required.
Definition 8: We call a trajectory ξi of (7) safely satisfy

an LTL formula ϕi if i) ξi |= ϕi and ii) ψi(pi) ⊆ F,∀pi ∈
projl(ξi).

At the task activation time t = 0, robot i first finds a trajec-
tory ξ0

i that safely satisfy ϕi. The trajectory planning problem
for a single robot can be solved by many existing methods,
such as search- or sampling-based [28], [29], automata-based
[30], and optimization-based methods [31], [32]. We note that
the initial trajectory planning is not the focus of this paper.
For details about this process, we refer to interested readers
to corresponding literatures and the references therein.

The following assumption is needed to guarantee the feasi-
bility of each task specification ϕi.

Assumption 3: Initially, for each robot i, there exists a
trajectory ξ0

i that safely satisfy ϕi.

D. Online motion coordination

The initially planned trajectory of each robot does not
consider the motion of other robots. Moreover, each robot has
only local view and local information (about other robots).
Therefore, motion coordination is required during online im-
plementation. Based on the sensing information (about the
workspace) and broadcasted information (from neighboring
robots), each robot can detect conflicts within its neighborhood
and then conduct motion replanning such that conflicts are
avoided. In this work, we consider that the conflict detection
is conducted at a sequence of sampling instants {tk}k∈N for
each robot i, where tk+1 − tk ≡ ∆.

1) Conflict detection: Before proceeding, the following
notation is introduced. Given a position trajectory pi([t1, t2])
and a region X̂l ∈ Ξ, the function Γ : F(R≥0,Rl)×Ξ→ 2R≥0 ,
defined as

Γ(pi([t1, t2]), X̂l) := {t ∈ [t1, t2] : pi(t) ∈ X̂l}, (29)

gives the time interval that the position trajectory pi([t1, t2])
occupies the region X̂l.

Given the position pi(tk), B(pi(tk), R) represents the sens-
ing area of robot i at time tk and Q̂(B(pi(tk), R)) represents
the set of regions in Ξ that intersect with B(pi(tk), R). Let

tfli (tk) := min
t>tk
{pi(t) /∈ B(pi(tk), R)}

be the first time that robot i leaves its sensing area
B(pi(tk), R). Then, define

Si(tk) := Q̂
(
pi([tk, t

fl
i (tk)])

)
(30)

as the set of regions traversed by robot i within B(pi(tk), R)
until it leaves it at tfli (tk). Moreover, for each X̂l ∈ Si(tk),
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the braking area of robot i is contained in ψi(X̂l). Then, we
define

Resi(X̂l) := Mi(X̂l) (31)

as the set of reserved regions by robot i in order to safely
brake when robot i is within X̂l. According to (29), the time
interval that robot i occupies the region X̂l ∈ Si(tk) is given
by Γ(pi([tk, t

fl
i (tk)]), X̂l). In addition, by the continuity of

pi([tk,∞)), one can conclude that Γ(pi([tk, t
fl
i (tk)]), X̂l) is

given by one or several disjoint time interval(s) of the form
[a, b), a < b. Supposing that

Γ(pi([tk, t
fl
i (tk)]), X̂l) = ∪ml=1[al, bl), (32)

where m is the number of disjoint intervals in
Γ(pi([tk, t

fl
i (tk)]), X̂l). Denote by Ti(X̂l) the time interval

that robot i reserves the area Resi(X̂l). Then, it can be
over-approximated by

Ti(X̂l) := ∪ml=1[al, bl + T br
i ), (33)

where T br
i is defined in (15). Then, we have the following

definition.
Definition 9: We say that there is a spatial-temporal conflict

between robot i and j at time tk if ∃X̂l ∈ Si(tk), X̂l′ ∈ Sj(tk)
such that Resi(X̂l)∩Resj(X̂l′) 6= ∅ and Ti(X̂l)∩Tj(X̂l′) 6= ∅.

Based on Definition 9, we define the set of conflict neigh-
bors of robot i at time tk, denoted by Ñi(tk), as

Ñi(tk) := {j ∈ Ni(tk) : ∃X̂l ∈ Si(tk), X̂l′ ∈ Sj(tk) s.t.

Resi(X̂l) ∩Resj(X̂l′) 6= ∅ ∧ Ti(X̂l) ∩ Tj(X̂l′) 6= ∅}.
(34)

Then, we have the following Proposition.
Proposition 2: For robot i, if Ñi(tk) = ∅, then one has
i) ψi(pi(t))∩ψj(pj(t)) = ∅,∀j ∈ Ni(tk),∀t ∈ [tk, t

fl
i (tk)];

ii) φi(pi(t))∩φj(pj(t)) = ∅,∀j ∈ Ni(tk),∀t ∈ [tk, t
fl
i (tk)].

Proof: Since T br
i is the maximum time required to deceler-

ate robot i to zero velocity under the braking controller (12),
one has that Γ(pbr

i (pi(t)), X̂l) ⊆ Ti(X̂l),∀t ∈ [tk, t
fl
i (tk)].

In addition, according to (26), (27), and (31), one has that
ψi(pi(t)) ⊆ Resi(X̂l),∀pi(t) ∈ X̂l. That is to say, Ñi(tk) = ∅
implies i).

For each region X̂l ∈ Ξ, define

φi(X̂l) := ∪pi∈X̂l
φi(pi).

Then, one has φi(X̂l) ⊆ ψi(X̂l). The time interval
that the footprint of robot i occupies X̂l is given by
Γ(pi([t, t

fl
i (tk)]), X̂l) and Γ(pi([t, t

fl
i (tk)]), X̂l) ⊆ Ti(X̂l).

Thus, one can further get that i) implies ii). �
Robot i switches to Busy mode if and only if the set of

conflict neighbors is non-empty (i.e., Ñi(tk) 6= ∅). The conflict
detection process is outlined in Algorithm 1.

Remark 4: To implement Algorithm 1, each robot i needs
only to broadcast to its neighboring area local information
about its plan. To be more specific, which region (e.g., X̂l)
within the sensing area B(pi(tk), R) is occupied by robot i
and when that happens (i.e., Γ(pi([t, t

fl
i (tk)]), X̂l)). Note that

the non-position information (i.e., ζi(t)) of each robot is not
required to be broadcasted to the neighbors.

Algorithm 1 conflictDetection

Input: Sj(tk),Γ(pj([tk, t
fl
j (tk)]), X̂l),∀X̂l ∈ Sj(tk) for

each j ∈ N+
i (tk).

Return: Set of conflict neighbors Ñi(tk).
1: Initialize Ñi(tk) = ∅.
2: Compute Resj(X̂l), Tj(X̂l) for each j ∈ N+

i (tk), X̂l ∈
Sj(tk),

3: for j ∈ Ni(tk) do
4: if ∃X̂l ∈ Si(tk), X̂l′ ∈ Sj(tk) s.t. Resi(X̂l) ∩
Resj(X̂l′) 6= ∅ ∧ Ti(X̂l) ∩ Ti(X̂l′) 6= ∅ then

5: Ñi(tk) = Ñi(tk) ∪ {j},
6: end if
7: end for

2) Determine planning order: Based on the neighboring
relation and conflict relation, the graph G(tk) = {V, E(tk)}
formed by the group of robots is naturally divided into one or
multiple connected subgraphs, and the motion planning is con-
ducted in parallel within each subgraph in a sequential manner.
In order to do that, a planning order needs to be decided for
each connected subgraph. In this work, we propose a simple
rule to assign priorities between each pair of neighbors.

The number of neighbors and conflict neighbors of robot
i at time tk are given by |Ni(tk)| and |Ñi(tk)|, respectively.
Then, we have the following definition.

Definition 10: We say that robot i has advantage over robot
j at time tk if Ñj(tk) 6= ∅ and

1) |Ni(tk)| > |Nj(tk)|; OR
2) |Ni(tk)| = |Nj(tk)| and |Ñi(tk)| > |Ñj(tk)|.
Let Yi(tk) be the set of neighbors that have higher priority

than robot i at time tk. The planning order assignment process
is outlined in Algorithm 2.

For each neighbor j ∈ Ni(tk), if j is in Emerg mode (and
thus will be viewed as a static obstacle) or Ñj(tk) = ∅, then
robot j has higher priority (lines 3-5). Otherwise, robot j has
higher priority in motion planning if robot j has advantage
over robot i (lines 6-8). However, for the special case, i.e.,
|Ni(tk)| = |Nj(tk)| and |Ñi(tk)| = |Ñj(tk)|, neither robot i
nor j has advantage over the other. In this case, the priority is
determined by the initially uniquely assigned priority score for
each robot i (i.e., P 0

i 6= P 0
j ,∀i, j). Denote by P 0

i the priority
score of robot i. We say that robot i has priority over j if
P 0
i > P 0

j (lines 9-11).
Proposition 3 (Deadlock-free in planning order assignment):

The planning order assignment rule given in Algorithm 2
will result in no cycles, i.e., @{qm}K̂1 , K̂ ≥ 2 such that
qK̂ ∈ Yq1(tk) and qm−1 ∈ Yqm(tk),∀m = 2, . . . , K̂.

Remark 5: The rationale behind the rule can be explained
as follows. Since the motion planning is conducted sequen-
tially within each subgraph based on the priority order ob-
tained in Algorithm 2, then the total time required to complete
the motion planning is given by KO(dt), where O(dt) repre-
sents the time complexity of one round of motion planning and
K represents the number of rounds (if multiple robots conduct
motion planning in parallel, it is counted as one round), which
is determined by the priority assignment rule being used (e.g.,
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Algorithm 2 planningOrderAssignment

Input: Nj(tk), Ñj(tk), P 0
j , j ∈ Ni(tk) ∪ {i}.

Return: Set of higher priority neighbors Yi(tk).
1: Initialize Yi(tk) = ∅.
2: for j ∈ Ni(tk) do,
3: if j is in Emerg mode or Ñj(tk) = ∅ then,
4: Yi(tk) = Yi(tk) ∪ j,
5: else
6: if j has advantage over i then,
7: Yi(tk) = Yi(tk) ∪ j,
8: else
9: if neither robot i nor j has advantage over the

other and P 0
j > P 0

i then,
10: Yi(tk) = Yi(tk) ∪ j,
11: end if
12: end if
13: end if
14: end for

1 2

37

4 5

6

Fig. 3: Communication and conflict graph, where both the
black and red lines represent communication relation and the
red lines represent conflict relation.

if fixed priority is used, the number of rounds is K = N ).
In our rule, we assign the robot with more neighbors or more
conflict neighbors the higher priority, and in this way, we try
to minimize the number of rounds needed.

Example 2: Consider a group of 7 robots, whose communi-
cation relation and conflict relation (at time tk) are depicted in
Fig. 3. According to the proposed planning order assignment
rule, the motion planning can be completed in 3 rounds, where
robots 1 and 3 are in the first round, robots 2, 4 and 7 are in
the second round, and robot 5 is in the third round. Note that
no motion planning is required for robot 6 since robot 6 has
no conflict neighbor.

E. Motion planning

Before starting to plan, robot i needs to wait for the updated
plan from the set of neighbors that have higher priority than
robot i (i.e., j ∈ Yi(tk)) and consider them as moving obsta-
cles. For those neighbors j ∈ Yi(tk), denote by ξ+

j ([tk,∞))

(correspondingly p+
j ([tk,∞))) the updated trajectory (position

trajectory) of robot j at time tk and let tfl+j (tk) be the first
time that robot j leaves its sensing area B(pj(tk), R) according
to the updated position trajectory p+

j ([tk,∞)). Then, similar
to (30), one can define

S+
j (tk) := Q̂(p+

j ([tk, t
fl+
j ]))

as the updated set of regions traversed by robot j within
B(pj(tk), R). For each X̂l ∈ S+

j (tk), the time inter-
val that robot j occupies the region X̂l is given by
Γ(p+

j ([tk, t
fl+
j ]), X̂l). Supposing that Γ(p+

j ([tk, t
fl+
j ]), X̂l) =

∪m̂l=1[âl, b̂l), where m̂ is the number of disjoint intervals in
Γ(p+

j ([tk, t
fl+
j ]), X̂l). Denote by T +

j (X̂l) the time interval
that robot j reserves the area Resj(X̂l) according to the
updated position trajectory p+

j ([tk,∞)). Similarly to (33), it
can be over-approximated by T +

j (X̂l) := ∪m̂l=1[âl, b̂l + T br
i ].

Then, the trajectory planning problem (TPP) can be formu-
lated as follows:

find ξi([tk,∞)), (35a)
subject to

(7) and (8), (35b)
ξi([0, tk] ∪ [tk,∞)) |= ϕi, (35c)
ψi(projl(ξi([tk,∞)))) ⊂ F, (35d)
ψi(projl(ξi(t))) ∩Resj(X̂l) = ∅, t ∈ T +

j (X̂l),

∀j ∈ Yi(tk),∀X̂l ∈ S+
j (tk).

(35e)

Constraints (35d) and (35e) guarantee respectively that there
will be no robot-obstacle collisions and inter-robot collisions
for robot i.

When relatively simple specifications, e.g., reach-avoid type
of tasks, are considered, various existing optimization tool-
boxes, e.g., IPOPT [33], ICLOCS2 [34], and algorithms,
e.g., the configuration space-time search [35], the Hamilton-
Jacobian reachability-based trajectory planning [36], RRTX

[37], and the fast robot motion planner [38] can be utilized
to solve (35). However, if the specifications are complex LTL
formulas, the constraint (35c) is not easy to be verified online
using the methods mentioned above (the PBA Pi can be used
to verify (35c), however, it can not deal with the spatial-
temporal collision avoidance constraint (35e) at the same
time). Recently, an online RRT-based algorithm is proposed
in [39] to generate local paths that guarantee the satisfaction
of the global specification. Motivated by this work, an online
motion replanning structure is proposed in this paper, which
contains a local and a global trajectory generation algorithms.

Before proceeding, the following notations are required.
Denote by

NIi(tk) := {Resj(X̂l), T +
j (X̂l),

∀X̂l ∈ S+
j (tk),∀j ∈ Yi(tk)} (36)

the set with respect to robot i which contains all local
trajectory information of higher priority neighbors at time tk.
Given a state si ∈ X̂i, define the function Bi : X̂i → 2Si

as a map from a state si ∈ X̂i to a subset of valid Büchi
states which correspond to si (i.e., Bi(si)) ⊆ βPi

(si), where
βPi

(si) is defined in (5)). Function Bi is used to capture
the fact that given a partial trajectory, not all Büchi states
in βPi are valid. At the task activation time 0, one has
Bi(ξi(0)) = βPi

(ξi(0)). During the online implementation,
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Bi(ξi(tk)), tk > 0 is updated by

Bi(ξi(tk)) = βPi
(ξi(tk))

∩ {Bi(ξi(tk−1)) ∪ Post(Bi(ξi(tk−1)))}
(37)

where

Post(Bi(ξi(tk−1))) = ∪si∈Bi(ξi(tk−1))Post(si). (38)

Firstly, the local trajectory generation process is outlined
in Algorithm 3. At each time instant tk, Algorithm 3 takes
the state ξi(tk) of robot i, Bi(ξi(tk)),Post(Bi(ξi(tk))), the
offline computed PBA Pi, potential function VPi

, the set of
static obstacles O, and the local trajectory information of
higher priority neighbors, i.e., NIi(tk) as input. The output
is a local CTS T Lc,i := (SLi , S

L
i,0, APϕi

,→L
c,i, Lc,i) that is

constructed incrementally and a leaf node ξfi .

Algorithm 3 localTrajectoryGeneration

Input: ξi(tk), Bi(ξi(tk)),Post(Bi(ξi(tk))), Pi, VPi
, O, and

NIi(tk).
Return: A local transition system T Lc,i and a leaf node ξfi .

1: Initialize T Lc,i = (SLi , S
L
i,0, APϕi ,→L

c,i, Lc,i) and ξfi = ∅,
where SLi = SLi,0 = ξi(tk) and →L

c,i= ∅, St(ξi(tk)) = 0.
2: for k = 1, . . . , Nmax

i do,
3: ξs ← generateSample(SAi(tk)),
4: ξn ← nearest(SLi , ξs),
5: Solve the optimization program P(ξn, ξs, τs), which

returns (ξr, u
∗
i ),

6: Bi(ξr)← βPi(ξr) ∩ {Bi(ξn) ∪ Post(Bi(ξn))},
7: if Bi(ξr) 6= ∅ ∧ VTc,i(ξr, Bi(ξr)) <∞ then,
8: Oi(tk) ← updateObstacle(O, NIi(tk), [St(ξn)τs,

(St(ξn) + 1)τs]),
9: if dist(projl([ξn, ξr]),Oi(tk)) ≥ Dbr

i then,

10: SLi ← SLi ∪ {ξr};→L
c,i=→L

c,i ∪{ξn
u∗i−→ ξr},

11: St(ξs)← St(ξn) + 1,
12: end if
13: end if
14: if projl(ξr) /∈ B(projl(ξi(tk)), R), then
15: k = Nmax

i + 1,
16: ξfi ← ξr,
17: end if
18: end for

In line 5, the optimization program P(ξn, ξs, τs) is given
by

min
ui∈Ui

‖ξr − ξs‖, (39a)

subject to
ξi(0) = ξn, (39b)

ξn +

∫ t

0

Fi(ξi(s), ui)ds ∈ Xi,∀t ∈ [0, τs], (39c)

ξr = ξn +

∫ τs

0

Fi(ξi(s), ui)ds, (39d)

and the optimal solution is u∗i .
The root state of T Lc,i is robot i’s state ξi(tk). The function

st : SLi → N maps a state x ∈ SLi to the number of time steps

needed to reach the root state ξi(tk). Initially, T Lc,i contains
one state ξi(tk) and 0 transitions, i.e., st(ξi(tk)) = 0, and
the leaf node ξfi = ∅ (line 1). In each iteration (lines 2-18),
a new state ξs is generated randomly from the set SAi(tk)
using the generateSample procedure (line 3), where SAi(tk)
is the sampling area around robot i, given by

SAi(tk) := {(p, ζ) ∈ Xi : p ∈ B(projl(ξi(tk)), R+ η)},
where η > 0 is an offline chosen constant, which guaran-
tees that there exists s ∈ SAi(tk) such that projl(s) /∈
B(projl(ξi(tk)), R). This condition is essential for checking
the terminal condition (line 15). The nearest function (line 4)
is a standard RRT primitive [29] which returns the nearest
state in SLi to the new sample ξs. Then, one further finds,
within the set of states that are reachable from ξn at time
τs, the closest one to the new sample ξs, i.e., ξr, and the
corresponding input u∗i (line 5). Here, τs is the sampling
interval (the same one used for constructing the transition
system Ti in Section IV-B3). Once ξr is obtained, we further
compute the subset of valid Büchi states which correspond
to ξr, i.e., Bi(ξr), according to (37) (line 6). After that, if
both conditions Bi(ξr) 6= ∅ and VTc,i(ξr, Bi(ξr)) < ∞ are
satisfied (which guarantees that there exists a path, starting
from ξr, that reaches a self-reachable accepting state of Pi,
recall Remark 1), obstacles that appear during the time interval
[st(ξn)τs, (st(ξn)+1)τs] are added into the workspace using
the function updateObstacles (Algorithm 4). Finally, the state

ξr is added into SLi and the transition relation ξn
u∗i−→ ξr

is added into →L
c,i if the distance between the line segment

projl([ξn, ξr]) and the obstacles is no less than the braking
distance of robot i (lines 9-10), and then the time step needed
for ξr to reach the root state ξi(tk) is recorded (line 11). The
algorithm is terminated when the local sampling tree reaches
the outside of the sensing area of robot i, and the leaf node
ξfi is then given by the corresponding state ξr (line 14-17).

Algorithm 4 updateObstacle

Input: O, NIi(tk) and a time interval [t1, t2].
Return: Oi(tk).

1: Oi(tk)← O,
2: for j ∈ Yi(tk), do
3: for X̂l ∈ S+

j (tk), do
4: if T +

j (X̂l) ∩ [tk + t1, tk + t2] 6= ∅, then
5: Oi(tk)← Oi(tk) ∪ (Resj(X̂l) ∩ SAi(tk)),
6: end if
7: end for
8: end for

Remark 6: The complexity of one iteration of Algorithm
3 is the same as for the standard RRT. The functions gen-
erateSample and nearest are standard RRT primitives (one
can refer to [29] for more details). The complexity of the
updateObstacle process (Algorithm 4) at time tk is O(1) since
|Yi(tk)| ≤ N − 1 and |S+

j (tk)| ≤ |Q̂(B(pj(tk), R))|,∀j,
where |Q̂(B(pj(tk), R))| represents the number of regions
contained in the sensing area B(pj(tk), R). The computation
of dist(projl([ξn, ξr]),Oi(tk)) can be formulated as a
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convex optimization problem and solved in O(1) since there
is a limited number of obstacles in SAi(tk) and each obstacle
is of the form of a convex region. Moreover, the calculations
of Bi(ξr) and VTc,i(ξr, Bi(ξr)) are of the complexity of O(1)
since Pi, VPi

are computed offline.
After the local CTS T Lc,i is obtained, we further need to find

a path, starting from the leaf node ξfi , that reaches one of the
maximal self-reachable accepting states F ∗p,i of Pi. Define

Pi(ξ
f
i ) := ∪si∈Bi(T L

c,i)
(ξfi , si)

as the set of states in the PBA Pi that correspond to ξfi .
Then, the global trajectory generation process is outlined in
Algorithm 5. Algorithm 5 takes the set Pi(ξ

f
i ) and the the PBA

Pi as input. It first finds the state p∗i in Pi(ξ
f
i ) that has the

minimum potential (line 1). Then, if p∗i ∈ F ∗p,i, the function
DijksCycle(Pi, source) (defined in [20]) is used to compute
a shortest cycle from the source state back to itself (line
3); otherwise, the function DijksTargets(Pi, source, targets)
(defined in [20]) is used to compute a shortest path in Pi
from “source” state to one of the state belonging to the set
“targets” (line 5). The required path is then the projection of
pi on the state space of Tc,i (line 7).

Algorithm 5 globalTrajectoryGenration

Input: Pi(ξfi ) and Pi.
Return: a path ρi.

1: p∗i = minpi∈Pi(ξ
f
i ){VPi(pi)},

2: if p∗i ∈ F ∗p,i then
3: pi ← DijksCycle(Pi, p∗i ),
4: else
5: pi ← DijksTargets(Pi, p∗i , F ∗p,i),
6: end if
7: ρi = pjX̂i

(pi),

It is possible that after the maximum number of iterations
(i.e., Nmax

i ), there exists no local path that reaches the outside
of the sensing area of robot i. In this case, the TPP (35) is
considered infeasible, robot i switches to Emerg mode and
the braking controller (12) is applied. When robot i is in
Emerg mode, it will continue monitoring the environment (by
updating T Lc,i). Once a feasible local path is found, it will
switch back to Free mode. The whole motion coordination
process is summarized in Algorithm 6.

The following result shows hat safety is guaranteed under
all circumstances.

Theorem 1 (Safety): If the sensing radius of the robots
satisfies R > 2 maxi∈V{Dbr

i + ∆ maxpi∈W{‖ṗi‖}}, where ∆
is the conflict detection interval, then the resulting real-time
plan of Algorithm 6 guarantees that there will be no obstacle-
robot and inter-robot collisions for robot i.

Proof: If the TPP (35) is feasible (robot i will be in
Free mode after the trajectory planning process), the local
trajectory generation algorithm (Algorithm 3) and the global
trajectory generation algorithm (Algorithm 5) guarantees that
the constraints (35d) and (35e) of (35) are satisfied. That is to
say, there will be no obstacle-robot and inter-robot collisions

Algorithm 6 motionCoordination

Input: (offline) Mi(X̂l),∀X̂l ∈ Ξ, Tc,i, Bi,Pi, and VPi
.

Return: Real-time plan ξ+
i ([tk,∞)), tk ≥ 0.

1: Initialize: ξ−i ([0,∞)) ← ξ0
i , Bi(ξi(0)) ← βPi(ξi(0)),

Post(Bi(ξi(0))) ← ∪si∈Bi(ξi(0))Post(si), and Robot
i is in Free mode.

2: while tk > 0 and ϕi is not completed do,
3: Compute Bi(ξi(tk)) and Post(Bi(ξi(tk))) according

to (37) and (38),
4: Ñi(tk)← conflictDetection(),
5: if Ñi(tk) 6= ∅ then
6: Robot i switches to Busy mode,
7: Yi(t)← planningOrderAssignment(),
8: (T Lc,i, ξfi )← localTrajectoryGeneration(),
9: if ξfi 6= ∅, then

10: ρi ← globalTrajectoryGeneration(),
11: ξ+

i ([tk,∞))← DijksTargets(T Lc,i, ξi(tk), ξfi ) ] ρi,
12: Robot i switches to Free mode,
13: else
14: Robot i switches to Emerg mode,
15: ui ← ubr

i (ξi(tk)),
16: ξ+

i ([tk,∞))← ξi(ξi(tk),ui, [0,∞)),
17: end if
18: else
19: ξ+

i ([tk,∞))← ξ−i ([tk,∞)),
20: end if
21: end while

for robot i. If the TPP (35) is infeasible (robot i will switch to
Emerg mode), robot i would apply the braking controller ubr

i

until it stops. Since R > 2 maxi∈V{Dbr
i +∆ maxpi∈W{‖ṗi‖}},

it guarantees that conflict between any pair of robots (i, j) will
be detected at the time that both robot i and j are outside of
the braking area of the other. This means that there will be no
inter-robot collision during the emergency stop process. On the
other hand, when constructing Ti, one has ψi(projl(pi)) ⊆
F,∀pi ∈ X̂i), i.e., dist(pi,O) ≥ Dbr

i ,∀pi ∈ X̂i. Moreover,
in the replanning process, it also requires that the distance
between projl([ξn, ξr]) and static obstacles O is no less
than Dbr

i (line 10, Algorithm 3). Therefore, there will be no
obstacle-robot collision during the emergency stop process.
Thus, no collision will occur for the whole process. �

Theorem 2 (Correctness): Let ξrt
i ([0,∞)) be the real-time

moving trajectory of robot i. Then, ξrt
i ([0,∞)) |= ϕi if robot

i never enters the Emerg mode or stays in Emerg mode for
a finite time.

Proof: If robot i never enters the Emerg mode, then one has
from Algorithm 6 that robot i never detects a conflict or the
local trajectory generation algorithm (Algorithm 3) is always
feasible for robot i. Then, one can conclude that ξrt

i ([0,∞)) |=
ϕi. Otherwise, since robot i stays in Emerg mode for a finite
time, it means that robot i can always switch back to Free
mode, which implies the existence of a satisfying trajectory.
In the light of Algorithm 6, the real-time moving trajectory
ξrt
i ([0,∞)) |= ϕi. �
Remark 7: Due to the distributed fashion of the solution
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and the locally available information, the proposed motion
coordination strategy is totally scalable in the sense that the
computational complexity of the solution is not increasing
with the number of robots. In addition, it is straightforward
to extend the work to MRS scenarios where unknown static
obstacles and moving obstacles are presented.

Remark 8: The workspace discretization, the planning or-
der assignment, and the over-approximation of the braking
area and time influence the completeness (the ability to find a
solution when one exists) of the proposed solution. To improve
completeness, online refinement of the discretization of the
workspace, searching the space of the prioritization scheme
(e.g., the randomized search approach with hill-climbing [40]),
and less-conservative approximation of the braking area and
time (using the real-time non-position information) can be
utilized. The disadvantage is that the resulting approach will
be computationally more complex.

F. Discussion of livelocks and deadlocks
In this subsection, the possibilities for livelocks and dead-

locks are discussed. Firstly, the definitions of deadlock and
livelock are given.

Definition 11: We say that a robot i is in a deadlock if it
remains in Emerg mode for an indefinite period (stop forever).
We say that a robot i is in a livelock if it is in Free mode
(thus can move in the workspace) but unable to satisfy its
specification.

Livelocks never occur. The reason is that according to our
motion coordination algorithm (Algorithm 6), if a robot i finds
during execution that its specification is not satisfiable, then
it will switch to Emerg mode and thus comes to a stop.
In addition, it switches back to Free mode only when the
task becomes satisfiable again. Therefore, there will be no
livelocks.

Before discussing deadlocks, the definition of mutual sat-
isfiability is provided. Denote by PG := P1 ⊗ . . . ⊗ P|V| the
global PBA, which is the product of all local PBAs Pi, i ∈ V .

Definition 12: We say that the set of LTL specifications
{ϕ1, . . . , ϕ|V|} is mutually satisfiable if there exists an ac-
cepting run pG of PG such that

φi(projl(ξi(t))) ∩ φj(projl(ξj(t))) = ∅,
∀i, j ∈ V, i 6= j,∀t ≥ 0,

where ξi is the projection of pG onto the local CTS Ti.
When the set of LTL specifications {ϕ1, . . . , ϕ|V|} is not

mutually satisfiable, deadlocks can happen because the LTL
specifications of two or multiple robots can not be satisfied
simultaneously in a collision-free manner. This type of dead-
locks is unresolvable. When the set of LTL specifications
{ϕ1, . . . , ϕ|V|} is mutually satisfiable, deadlocks can also
happen due to the incompleteness of the motion coordination
algorithm (Remark 8) or the locally available information
of the neighboring robots. Existing methods such as path
refinement [41] and simultaneous trajectory planning [42]
(instead of the sequential trajectory planning used in this
work), can be invoked to resolve this type of deadlocks. To
detect a possible deadlock, one can a priori specify a maximum
time tmax allowed for a robot to stay in Emerg mode.

V. CASE STUDIES

In this section, two case studies are provided to illustrate the
effectiveness and computational tractability of the proposed
framework. All simulations are carried out in Matlab 2018b on
a Dell laptop with Windows 10, Intel i7-6600U CPU2.80GHz
and 16.0 GB RAM.

A. Example 1

Consider a MRS consisting of N = 4 robots, the dynamics
of robot i is given by (17), and the velocity and input
constraints are given by (18). For robots i ∈ {1, 2}, one has
that vi,max = 1m/s, ωi,max = 0.5rad/s, and ai,max = 2m/s2.
For robots i ∈ {3, 4}, one has that vi,max = 1m/s, ωi,max =
0.5rad/s, and ai,max = 1.5m/s2. Then, using the braking con-
troller (21), one can get that T br

i = 0.5s, Dbr
i = 0.25m, i = 1, 2

and T br
i = 0.5s, Dbr

i = 0.33m, i = 3, 4. The sensing radius of
each robot is R = 3.5m and the conflict detection period is
∆ = 0.1s. Then one has that R > 2 maxi∈V{Dbr

i + ∆vi,max}.
As shown in Fig. 4, the workspace W we consider is a

20×20m2 square, where the gray areas, marked as O1, O2, O3,
represent three static obstacles, the colored small circles repre-
sent the initial position of the robots, and the light blue areas,
marked as T1, T2, . . . , T5, represent a set of target regions in
the workspace. Initially, θi = 0, vi(0) = 0,∀i.

10 

5

百
言

。

-5

。

T1 T5 

。

0

0

0

0

 

．

 

Robot 1 

Robot 2 

Robot 3 

Robot 4 

T4 

。

T2 
-10

-10 -5 。

Px[m] 
5

。

T3

10 

Fig. 4: The workspace for the group of robots in Example 1.

Each robot is assigned to persistently survey two of the
target regions in the workspace. In LTL formulas, the specifi-
cation for each robot is given by
• ϕ1 = �(W ∧ ¬O) ∧�♦T1 ∧�♦T2,
• ϕ2 = �(W ∧ ¬O) ∧�♦T1 ∧�♦T5,
• ϕ3 = �(W ∧ ¬O) ∧�♦T2 ∧�♦T4,
• ϕ4 = �(W ∧ ¬O) ∧�♦T3 ∧�♦T5,

where O = O1 ∪O2 ∪O3. Firstly, a rough cell decomposition
is given over the workspace W such that Assumption 1 is
satisfied. Then, for each cell Xl ⊂W\O, a grid representation
with grid size 0.5m is implemented as a finer workspace
discretization. The NBA Bi associated with ϕi,∀i has 3 states
and 8 edges by [24]. The CTS Ti and the PBA Pi for each
robot are constructed using LTLCon toolbox [43]. Finally, the
map Mi (defined in (27)) and potential function for each Pi
(Definition 6) are computed.
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(a) (b)

(c) (d)

Fig. 5: The real-time position trajectory of each robot, where the small circle represents the initial position of each robot.

Fig. 6: The evolution of the position trajectories with respect
to time.

Initially, each robot i finds a safely satisfying trajectory ξ0
i

(in the form of prefix-suffix). Then, the motion coordination
algorithm (Algorithm 6) is implemented for each robot during
online execution. The real-time position trajectory of each
robot is depicted in Fig. 5 (a)-(d), respectively. It can be
seen that during the simulation time [0, 120]s, the surveillance

task of each robot is satisfied at least once. Fig. 6 shows the
evolution of the position trajectories of all robots with respect
to time. One can see that the real-time position trajectories
are collision-free. During the simulation time, conflicts are
detected in total 11 times. Whenever conflicts are detected, the
planning order assignment module and the trajectory planning
module are activated to resolve the conflicts. In Fig. 7 (a)-(d),
4 cases of local motion replanning are depicted, respectively.
In each of the subfigures, the circle, marked as dotted line,
represents the sensing area of the robot that replans, the
dashed lines represent the planned local position trajectories
of the robots, the colored small squares represent its (over-
approximated) braking areas, the yellow squares represent the
conflict region, and the solid line represents the replanned local
position trajectory. A video recording of the real-time imple-
mentation can be found here: https://youtu.be/7Xjt62psZe0.

The real-time evolution of velocity vi and inputs (ai, ωi) of
each robot i are plotted in Fig. 8 and Fig. 9, respectively. One
can see that the velocity constraints and the input constraints
are satisfied by all robots at any time.

Finally, we report the computation times of this example.
For the 11 local replannings, the average computation time
is 1.51s and the maximum computation time is 3.30s. The
computation of the global trajectory (Algorithm 5) is quite fast
(less than 0.1s). Note that after the local and global trajectories
are obtained, the toolbox ICLOCS2 [34] is further employed
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(a) (b)

(c) (d)

Fig. 7: The local motion replanning between different conflict robots. The circle, marked with a dotted line, represents the
sensing area of the robot that replans, the dashed lines represent the planned local position trajectories of the robots, the colored
small squares represent its (over-approximated) braking areas, the yellow squares represent the conflict region, and the solid
line represents the replanned local position trajectory.
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Fig. 8: The real-time evolution of velocity vi for each robot,
where vi,max = 1m/s, i ∈ {1, 2, 3, 4}.

for trajectory smoothness. In addition, it is worth to point
out that we have tried 10 different sets of initial states and
specifications for the group of robots, and we find that the
initial states and the specifications have little effect on the
average time and maximum time of local replanning. There is
no change of order of magnitude in the computation time for
all trials.
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Fig. 9: The real-time evolution of inputs (ai, ωi) for each
robot, where ai,max = 2m/s2, ωi,max = 0.5rad/s, i ∈ {1, 2}
and ai,max = 1.5m/s2, ωi,max = 0.5rad/s, i ∈ {3, 4}.
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B. Example 2

This example aims at demonstrating the computational
tractability of the approach with respect to the number of
robots.

Fig. 10: The workspace for the group of robots in Example 2.

As depicted in Fig. 10, the workspace W considered now is
a 80× 80m2 square, where the gray area, marked as O is the
obstacle, and the light blue areas, marked as T1, T2, . . . , T4,
represent 4 target regions in the workspace. We consider
respectively the cases where 2, 4, 8 and 16 robots are working
in the workspace. The dynamics of robot i is given by a
double-integrator, i.e.,

ṗi = vi

v̇i = ui,∀i
where pi, vi, ui ∈ R2 represent the position, velocity, and
input of robot i, respectively. The velocity and input of robot
i are subject to the hard constraints ||vi(t)|| ≤ vi,max =
3m/s, ||ui(t)|| ≤ ui,max = 6m/s2,∀i. The braking controller
ubr
i is designed as

ubr
i (t) =

−ui,max
vi(t)

||vi(t)||
, if ||vi(t)|| 6= 0,

02 , if ||vi(t)|| = 0.

Then, one can derive the braking time T br
i =

||vi,max||/||ui,max|| = 0.5s and the braking distance
Dbr
i = ||vi,max||2/2||ui,max|| = 0.75m,∀i. The sensing radius

of each robot is R = 6m and the conflict detection period is
∆ = 0.1s.

For simplicity, we consider that half of the robots are
assigned to persistently survey target regions T1 and T3, and
the other half are assigned to persistently survey target regions
T2 and T4. In LTL formulas, the specification for each robot
is given by
• ϕi = �(W ∧ ¬O) ∧�♦T1 ∧�♦T4, i = 1, 3, . . . , 15,
• ϕi = �(W ∧ ¬O) ∧�♦T2 ∧�♦T3, i = 2, 4, . . . , 16.

A grid representation with grid size 2m is implemented as the
workspace discretization.

For each of the cases (2, 4, 8 or 16 robots), the simula-
tion time is 150s. The simulation results are summarized in
TABLE II, where the total number of conflict times (CT), the

average computation time for local replanning (ATLR), and
the maximum computation time for local replanning (MTLR)
are reported. It can be seen that as the number of robots grows
(exponentially), the CT grows significantly (the reason is that
the workspace is the same). The ATLR and MTLR grow, but
not significantly. One can see that even when there are 16
robots, the local replanning is still efficient.

TABLE II: The CT, ATLR, and MTLR with respect to the
number of robots.

number of robots CT ATLR (s) MTLR (s)
2 0 - -
4 6 0.23 2.99
8 19 0.31 3.80
16 72 0.63 4.94

VI. CONCLUSION

In this paper, the online MRMC problem for a group of
mobile robots moving in a shared workspace was considered.
Under the assumptions that each robot has only local view
and local information, and subject to both state and input
constraints, a fully distributed motion coordination strategy
was proposed for steering individual robots in a common
workspace, where each robot is assigned a LTL specification. It
was shown that the proposed strategy can guarantee collision-
free motion of each robot. In the future, MRMC under both
team and individual tasks will be of interest. In addition, the
experimental validation of the proposed strategy by real-world
robots will be pursued.

REFERENCES

[1] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, no. 12, p. 399, 2013.

[2] L. E. Parker, “Path planning and motion coordination in multiple mobile
robot teams,” Encyclopedia of complexity and system science, pp. 5783–
5800, 2009.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[4] D. Panagou, “Motion planning and collision avoidance using navigation
vector fields,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 2513–2518.

[5] L. Gracia, F. Garelli, and A. Sala, “Reactive sliding-mode algorithm for
collision avoidance in robotic systems,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 6, pp. 2391–2399, 2013.

[6] H. Farivarnejad, S. Wilson, and S. Berman, “Decentralized sliding mode
control for autonomous collective transport by multi-robot systems,” in
2016 IEEE 55th Conference on Decision and Control (CDC), 2016, pp.
1826–1833.

[7] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates
for collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[8] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE control systems letters,
vol. 1, no. 2, pp. 310–315, 2017.

[9] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE
Transactions on Robotics, vol. 23, no. 6, pp. 1170–1183, 2007.

[10] G. A. Bekey, Autonomous Robots: from Biological Inspiration to Imple-
mentation and Control. MIT press, 2005.

[11] K. Azarm and G. Schmidt, “Conflict-free motion of multiple mobile
robots based on decentralized motion planning and negotiation,” in
Proceedings of International Conference on Robotics and Automation,
vol. 4, 1997, pp. 3526–3533.



16

[12] Y. Guo and L. E. Parker, “A distributed and optimal motion planning ap-
proach for multiple mobile robots,” in Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 3, 2002, pp. 2612–2619.

[13] W. Sheng, Q. Yang, J. Tan, and N. Xi, “Distributed multi-robot coordi-
nation in area exploration,” Robotics and Autonomous Systems, vol. 54,
no. 12, pp. 945–955, 2006.

[14] C. Liu, C.-W. Lin, S. Shiraishi, and M. Tomizuka, “Distributed conflict
resolution for connected autonomous vehicles,” IEEE Transactions on
Intelligent Vehicles, vol. 3, no. 1, pp. 18–29, 2017.

[15] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic con-
straints,” The International Journal of Robotics Research, vol. 32, no. 8,
pp. 889–911, 2013.

[16] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli,
S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear temporal logic
motion planning for teams of underactuated robots using satisfiability
modulo convex programming,” in 2017 IEEE 56th annual conference
on decision and control (CDC), 2017, pp. 1132–1137.

[17] Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with
counting temporal logics,” IEEE Transactions on Robotics, 2019.

[18] Y. Kantaros and M. M. Zavlanos, “STyLuS*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” The
International Journal of Robotics Research, vol. 39, no. 7, pp. 812–
836, 2020.

[19] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-
Gazit, “Reactive mission and motion planning with deadlock resolution
avoiding dynamic obstacles,” Autonomous Robots, vol. 42, no. 4, pp.
801–824, 2018.

[20] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[21] P. Yu and D. V. Dimarogonas, “A fully distributed motion coordination
strategy for multi-robot systems with local information,” arXiv preprint
arXiv:2004.10437, 2020.

[22] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press,
2008.
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