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Abstract

This work focuses on the modeling, control and analysis of a bar, tethered to two unmanned aerial vehicles, which
is required to stabilize around a desired pose. We derive the equations of motion of the system, we close the loop by
equipping each UAV with a PID control law, and finally we linearize the closed-loop vector field around some equilibrium
points of interest. When requiring the bar to stay on the horizontal plane and under no normal stress, we verify that
the bar’s motion is decomposable into three decoupled motions, namely a longitudinal, a lateral and a vertical: for
a symmetric system, each of those motions is further decomposed into two decoupled sub-motions, one linear and one
angular; for an asymmetric system, we provide relations on the UAVs’ gains that compensate for the system asymmetries
and which decouple the linear sub-motions from the angular sub-motions. From this analysis, we provide conditions,
based on the system’s physical parameters, that describe good and bad types of asymmetries. Finally, when requiring
the bar to pitch or to be under normal stress, we verify that there is a coupling between the longitudinal and the vertical
motions, and that a positive normal stress (tension) has a positive effect on the stability, while a negative normal stress
(compression) has a negative effect on the stability.

1. Introduction

Vertical take off and landing rotorcrafts, with hov-
ering capabilities, provide a platform for transporta-
tion of cargos in dangerous and cluttered environ-
ments (AEROWORKS, 2018). In cluttered environments,
transportation with a single UAV may be the only feasible
option, while transportation with multiple UAVs is pri-
marily necessary when the cargo exceeds the individual
UAVs’ payload capacity. However, transportation with
multiple UAVs is inevitable if one wishes to control the
pose of the cargo: in particular, controlling the pose of a
bar requires a minimum of two UAVs, while controlling the
pose of a generic rigid body requires a minimum of three
UAVs (Jiang and Kumar, 2013).

Using tethers in conjunction with UAVs can serve dif-
ferent and distinct purposes. Tethers/cables may be used
to supply power or fuel to the UAV and thus to extend
its flight time, or they may be used to provide an un-
interrupted data transmission link (Nicotra et al., 2017;
Schmidt and Swik, 1974; Tognon et al., 2016). However,
in this paper, the purpose of the cables is to physically
couple one or more UAVs to a cargo: when the cables are
slack, the cargo is free of actuation; on the contrary, when
they are taut, the cables provide an actuation medium for
stabilizing the pose of the cargo. In this work, we assume
that the cables are always taut, and thus that they behave
as massless rigid links. A hybrid model, as in (Cruz et al.,
2015; Marconi et al., 2011; Pounds and Dollar, 2014), can
provide a more complete description of the dynamics of
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tethered transportation by accounting for the hybrid be-
haviour of the cables. However, the focus of this paper is
on the control design and analysis of the local closed-loop
behavior, rendering a complete hybrid model of the system
redundant.

Manipulator-endowed transportation (Korpela et al.,
2013; Nguyen et al., 2015; Suarez et al., 2016) provides
an alternative to tethered transportation. However, teth-
ered transportation is mechanically simple and inexpen-
sive, while robotic manipulators are heavy and therefore
diminish the useful payload capacity a UAV can carry.
Several control strategies for slung-load transportation,
i.e., tethered transportation of a point-mass cargo by a sin-
gle UAV, are found in the literature: the load swing can be
dampened by appropriately planning trajectories, or by us-
ing vision and force measurements (Bisgaard et al., 2010;
Lee and Kim, 2017; Palunko et al., 2012; Tang and Ku-
mar, 2015; Tognon and Franchi, 2017); compensating for
unknown model parameters can also be accomplished (Dai
et al., 2014; Goodarzi and Lee, 2015); and, when the point-
mass cargo exceeds the allowed UAV’s payload, coopera-
tive tethered transportation becomes imperative (Kondak
et al., 2009; Lee et al., 2013; Pereira and Dimarogonas,
2017b).

This paper, on the other hand, focuses on transporta-
tion of a non-point-mass cargo. Control laws with an ex-
tended domain of operation and an extended domain of
attraction are found in the literature (Lee, 2014, 2015;
Pereira and Dimarogonas, 2017c), which can deal with
asymmetries of the system but which lack experimental
validation. On the other hand, cooperative transportation
of rigid body cargos using simpler control laws has been
tested and validated under various symmetry conditions
(where UAVs are identical, cables are of the same length,
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(a) Modeling of the system (given the bar’s orien-
tation, d1 > 0 and d2 < 0).

(b) Symmetric system (Pereira and Di-
marogonas, 2017a).

(c) Non-symmetric system (Pereira
et al., 2018).

Figure 1: Tethered transportation of a rod-like object by two aerial vehicles (in a symmetric system, the UAVs are identical, the cables are
of the same length, and the contact points are equally distanced away from the bar’s center-of-mass).

and contact points are symmetrically distributed on the
cargo) (Gassner et al., 2017; Jiang and Kumar, 2013; Kim
et al., 2014; Lee et al., 2017; Michael et al., 2011). We
emphasize that aerial cooperative tethered transportation
comes with multiple degrees of freedom, which can be ex-
ploited to, for example, minimize the internal forces ap-
plied on the cargo (Masone et al., 2016; Mohammadi et al.,
2016). In this manuscript, we focus on stabilization of a
rod-like object tethered to two UAVs, as pictured in Fig. 1.

This problem has also been considered in (Gassner et al.,
2017; Pereira and Dimarogonas, 2017a; Pereira et al., 2018;
Tagliabue et al., 2017). In (Tagliabue et al., 2017), a
master-slave approach for the two UAVs is adopted, where
the UAV slave estimates the cable force exerted on itself.
In (Gassner et al., 2017), vision is used to autonomously
estimate the bar’s pose. In (Pereira and Dimarogonas,
2017a; Pereira et al., 2018), relations on the UAVs’ PID
gains are provided for which stability – regarding the bar’s
pose stabilization – is guaranteed. We note that (Gassner
et al., 2017; Pereira and Dimarogonas, 2017a; Pereira
et al., 2018; Tagliabue et al., 2017) take the system to
be symmetric and/or stabilize the bar on the horizontal
plane and under no normal stress; whereas, in this paper,
we relax both of these conditions. We perform an analysis
similar to that in (Orsag et al., 2013; Pereira and Dimarog-
onas, 2017d; Pounds and Dollar, 2014), where we linearize
the system, and derive conditions on the gains that guar-
antee exponential stability regarding the stabilization of
the bar’s pose. We note that the state-space of the system
is a manifold, and for that reason we provide an analysis
tool that allows us to linearize the vector field around a
point in the state-space without having to provide a pa-
rameterization of the manifold.

The results of this paper are partially based on (Pereira
and Dimarogonas, 2017a; Pereira et al., 2018), with the
first focusing on the symmetric case, and the second fo-
cusing on the asymmetric case. This paper’s main con-
tributions, which we list next, are also the distinguishing
factors with respect to the latter two works. (i) We derive
the open-loop vector field, which is invariant to transla-
tions and rotations around the vertical direction, and we

describe and parametrize the open-loop equilibrium points
and equilibrium inputs, from which we derive the neces-
sity of integral action terms in the vertical direction of each
UAV’s control law – Section 3. (ii) We construct a PID-
like control law, under which the closed-loop equilibria are
entirely parameterizable with just two parameters, namely
the desired pitch angle of the bar (θ?), and the desired nor-
mal stress to be exerted on the bar (F?) – Section 4. (iii)
When (θ?, F?) = (0, 0), we show that the system’s motion
can be broken down into three decoupled motions (ver-
tical, longitudinal and lateral), with each motion being
composed of two sub-motions (one linear and one angu-
lar) – Sections 6.3 and 6.4. When θ? 6= 0 or F? 6= 0, we
show that the longitudinal and the vertical motions are
no longer decoupled; we also find out that a bar under
tension, as opposed to a bar under compression, is benefi-
cial when it comes to stability – Sections 6.5 and 6.6. For
the latter case, such an analysis is unique and novel among
the literature on aerial transportation. For all the different
cases, we provide conditions on the control law PID gains
that guarantee that each and every motion/sub-motion is
asymptotically stable, and therefore that the equilibrium
of the non-linear system is (locally) exponentially stable.
We also provide conditions, based on the system’s physical
parameters, that describe good and bad types of asymme-
tries: e.g., it is better for the heavier vehicle to be attached
to the shorter cable, in the sense that stability is guaran-
teed by a smaller proportional gain. All the derivations
described in the paper may also be verified in the Mathe-
matica notebook files found in (Pereira and Dimarogonas,
2018).

2. Notation

The map S : R3 → R3×3 yields a skew-symmetric matrix
and it satisfies S (a) b = a × b, for any a, b ∈ R3. S2 :=
{x ∈ R3 : xTx = 1} denotes the set of unit vectors in
R3. We denote A1⊕ · · · ⊕An as the block diagonal matrix
with block diagonal entries A1 to An (square matrices).
df : Rn 3 a 7→ df(a) ∈ Rm×n denotes the derivative of a
function f : Rn → Rm. We denote by e1, · · · , en ∈ Rn the
canonical basis vectors in Rn.
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3. Problem Description

Consider the system illustrated in Fig. 1a, with two
VTOL aerial vehicles, a one dimensional bar and two
cables connecting the aerial vehicles to distinct contact
points on the bar. Fig. 1a provides a two-dimensional pic-
ture of the real system, as shown in Figs. 1b and 1c, but the
modeling we describe next is three dimensional. Hereafter,
and for brevity, we refer to this system as UAVs-bar sys-
tem. We denote by p1, p2, p ∈ R3 and by v1, v2, v ∈ R3 the
UAVs’ and the bar’s center-of-mass positions and veloci-
ties; by n, ω ∈ R3 the bar’s angular position (orientation)
and angular velocity; and by r1, r2 ∈ S2 the UAVs’ thrust
body directions. As for physical constants, we denote by
m1,m2,m > 0 the UAVs’ and bar’s masses; by J > 0 the
bar’s moment of inertia (w.r.t. the bar’s center-of-mass);
by l1, l2 > 0 the cables’ lengths; and, finally, by d1, d2 ∈ R
the distance to the contact points on the bar at which the
cables are attached to (di is positive if it is along +n ∈ S2,
and negative if it is along −n ∈ S2). Finally, we denote
by u1, u2 ∈ R3 the input forces on the UAVs-bar system:
for j ∈ {1, 2}, ūj := Ujrj := uTj rjrj is the UAV’s j input
force, where the throttle Uj is taken as the inner product
between the input uj and the UAV’s thrust direction rj
(one may think of uj as the desired value for ūj).

Consider then the position variables zp, the velocity vari-
ables zv, the thrust body directions r, the state z, and the
input u defined as
zp := (p, n, p1, p2) ∈ (R3)4, zv := (v, ω, v1, v2) ∈ (R3)4, (1a)
r := (r1, r2) ∈ R3+3, z := (zp, zv, r) ∈ R12+12+6, (1b)
u := (u1, u2) ∈ (R3)2, ū := (uT1 r1r1, u

T

2 r2r2) ∈ (R3)2. (1c)
Given the position and the velocity variables in (1a), the
system kinematics Zp are given by

żp = Zp(z) :⇔żp = (I3 ⊕ S (−n)⊕ I3 ⊕ I3) zv, (2)
Consider then the map f : R30 → R8, whose domain
where it vanishes encapsulates the constraints illustrated
in Fig. 1a, defined as

f(z) :=



f1(zp)
f2(zp)
f3(zp, zv)
f4(zp, zv)
f5(zp)
f6(zp, zv)
f7(r1)
f8(r2)


:=



l−2
1 ‖p+ d1n− p1‖2 − 1
l−2
2 ‖p+ d2n− p2‖2 − 1

df1(zp)Zp(z)
df2(zp)Zp(z)
nTn− 1
nTω

rT1 r1 − 1
rT2 r2 − 1


. (3)

Specifically, (the constraints’ nomenclature we adopt here
is the standard one; see, f.e., (Monforte, 2002)): f1 and
f2 are geometric constraints imposed by the cables, which
require that the distance between each contact point on
the bar and the corresponding UAV is equal to the cor-
responding cable length. f3 and f4 are kinematic (holo-
nomic) constraints which follow from differentiation of the
previous two geometric constraints. f5, f7, f8 are geomet-
ric constraints which imply that n, r1, r2 are unit vectors.
And f6 is a kinematic (nonholomonic) constraint, which
implies that the bar’s angular velocity ω is orthogonal to

the bar’s angular position n, and thus that the bar does
not rotate around itself.

The necessity for specifying the constraints is two-fold.
First, when linearizing the closed-loop vector field around
the desired equilibrium, the constraints imposed by f
in (3) play a crucial role in examining whether the Ja-
cobian matrix is Hurwitz or not (see Section 6). Secondly,
it allows us to define the state-space and the tangent set
to each point in the state-space, which, in turn, allows us
to determine the tensions in each cable. Indeed, the con-
straints in (3) give rise to the state space and the tangent
space given by

Z := {z ∈ R30 : f(z) = 08} and (4a)
TzZ := {ż ∈ R30 : df(z)ż = 08}, (4b)

where Z is a manifold of dimension 22 = 30 − 8 (df(z) ∈
R8×30 is the derivative of f at z). For convenience, define
R6

0̄ := (R3\{03}) × (R3\{03}). Then, given an appropriate
input u : R≥0 → R6

0̄, a system’s trajectory z : R≥0 → Z
evolves according to

ż(t) = Z(z(t), u(t)), z(0) ∈ Z, (5a)
where the vector field Z : Z× R6

0̄ 3 (z, u) 7→ Z(z, u) ∈ R30

is given by
ż = Z(z, u) :⇔ (5b)
żp
żv

ṙ1

ṙ2

 :=


Zp(z)

Zv (z, ū) |ū in (1c)

S
(
kr,1S (r1)

u1

‖u1‖

)
r1

S
(
kr,2S (r2)

u2

‖u2‖

)
r2

 =


kinematics
dynamics

kinematics of r1

kinematics of r2

 ,
with the kinematics Zp defined in (2), with the kinemat-
ics of the thrust body directions describing the attitude
dynamics of each vehicle (and where kr,i is the positive at-
titude gain of vehicle i), and with the dynamics Zv corre-
sponding to the linear and the angular accelerations. The
forces and their application points are depicted in Fig. 1a,
which allows us to write down the dynamics Zv of the sys-
tem. For that purpose, and for convenience, consider the
shorthand notations

ni ≡
pi − (p+ din)

li
∈ S2, Ti ≡ Ti(z, ū)ni ∈ R3, (6)

where ni is the unit vector associated to the cable i, and
Ti(z, ū) is the tension on cable i (which depends on the
state z and the input ū). Given the velocity variables, as
introduced in (1a), the dynamics are then given by (below,
g stands for the acceleration due to gravity)
żv = Zv(z, ū) :⇔ (7)
v̇
ω̇
v̇1

v̇2

 =


−ge3

03
ū1

m1
− ge3

ū2

m2
− ge3

+


n1

m
n2

m
d1S(n)n1

J
d2S(n)n2

J
− n1

m1
03

03 − n2

m2

[T1(z, ū)
T2(z, ū)

]
,

where the tensions T1(z, ū), T2(z, ū) are found by solv-
ing the system of two equations d

dt (f3(zp, zv), f4(zp, zv)) =
(0, 0) (the result is found in (Pereira and Dimarogonas,
2018), omitted here for brevity, and without hindering
comprehension). Note that one must verify that the vec-
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tor field at a point lies in the respective tangent space,
i.e., that Z(z, u) ∈ TzZ for all (z, u) ∈ Z × R6

0̄, in or-
der to guarantee that the state space Z is indeed invari-
ant. The latter check is easily performed: take for ex-
ample the fifth constraint, which is indeed satisfied since
d
dtf5(zp, zv) = d

dtn
Tω = ṅTω + nT ω̇ = 0.

3.1. Equilibria and Control Objective

In the previous section, we specified the vector field that
describes the motion of our system, i.e., ż = Z(z, u). In
this section, we specify the open-loop equilibria: that is,
given an input u ∈ R6

0̄, we determine the states z ∈ Z
for which Z(z, u) = 030, leading to the set of equilibria
Eu := {z ∈ Z : Z(z, u) = 030}. The open-loop equilibria
we describe next are illustrated in Fig. 2. As we verify
next, in open-loop, there exists a continuum of equilib-
rium points, and therefore no such point is asymptotically
stable. This provides the motivation for closing the loop,
under an appropriate control law, which we specify in Sec-
tion 4.

Let us then compute the equilibria, i.e., the states z for
which Z(z, u) = 030. It follows from the kinematic of ri
in (5b), that ṙi = 03 ⇔ ūi = ui ⇔ ri = ± ui

‖ui‖ (hereafter,
we only consider ri = + ui

‖ui‖ , as all other possibilities lead
to unstable equilibria). It follows from the first six equa-
tions in (7) that (recall (6) and recall also that the cables
are connected to distinct contact points, i.e., that d1 6= d2)[

v̇
ω̇

]
=

[
03

03

]
⇔

[
T1

T2

]
=

[
d2

d2−d1
mge3 + Fn

d1

d1−d2
mge3 − Fn

]
, (8a)

for any F ∈ R, whose meaning will become clear next. It
follows from the final six equations in (7) that[
v̇1

v̇2

]
=

[
03

03

]
(8a)⇔

[
u1

u2

]
=

[
m1ge3 + d2

d2−d1
mge3 + Fn

m2ge3 + d1

d1−d2
mge3 − Fn

]
(8b)

⇔
[
(δ1 :=)u1 + u2 − (m1 +m2 +m)ge3

(δ2 :=)d1(u1−m1ge3)+d2(u2−m2ge3)
d1−d2

]
=

[
03

Fn

]
. (8c)

That is, (8b)–(8c) describe the conditions an input must
satisfy in order to sustain an equilibrium. (i) Each UAV
needs to cancel its own weight (term mige3 in (8b)). (ii)
Each UAV needs to cancel some part of the bar’s weight
(term di

dj−dimge3 in (8b)), and where the fraction of weight
depends on the contact points on the bar. In particular, if
d1 = −d2, then each UAV carries half of the bar’s weight;
on the other hand, if |di| � |dj| then UAV j carries most of
the bar’s weight. (iii) One UAV applies some force F ∈ R
along the bar’s angular position n, while the other applies
an opposite force. For simplicity, let d1 > 0 and d2 < 0:
if the force F > 0, then the bar is under tension and the
UAVs are further away from each other; if the force F < 0,
then the bar is under compression and the UAVs are closer
to each other; and finally, if F = 0, the bar is under no
normal force/stress – these cases are illustrated in Fig. 2.

Remark 1. Let F = 0 in (8a). If d1, d2 have opposite
signs, then both cables are under tension. If d1, d2 have
the same sign, then the cable with the smallest |di| is under

tension, and the one with the largest is under compression,
which is not possible for a cable. For that reason, hereafter,
we assume that d1 and d2 have opposite signs.

Proposition 2. Let u ∈ R6
0̄ ⇔ (u1, u2) ∈ (R3\{03}) ×

(R3\{03}) be some chosen input, such that eT3 u1 >
m1g and eT3 u2 > m2g. Denote Eu := {z ∈ Z :
zv = 012 and (r1, r2) = (u1/‖u1‖, u2/‖u2‖) and zp =
(p, n, p + d1n + l1n1, p + d2n + l2n2) for some (p, n) ∈
R3 × S2 and some (n1, n2) ∈ S2 × S2} as the equilibria set
for the input u. Consider then δ1, δ2 as defined in (8c).
The following cases follow: (i) If δ1 6= 03, then Eu = ∅.
(ii) If δ1 = 03 and δ2 = 03, then Eu is that above for any
(p, n) ∈ R3 × S2 and with ni = ui−mige3

‖ui−mige3‖ ∈ S2. (iii)
If δ1 = 03 and δ2 6= 03, then Eu is that above for any
(p, n) ∈ R3 × {±δ2/‖δ2‖} and with ni = ui−mige3

‖ui−mige3‖ ∈ S2.

A proof is found in (Pereira and Dimarogonas, 2018).
Proposition 2 provides some insight into the problem.
Firstly, there are two non-binding conditions (inequali-
ties), namely eT3 u1 > m1g and eT3 u2 > m2g which guar-
antee that, at the equilibrium, both cables are point-
ing up (eT3 ni =

eT3 ui−mig
‖ui−mige3‖ > 0). There are however

three binding conditions (equalities), namely δ1 = 03 ⇔
u1 + u2 = (m1 + m2 + m)ge3. It follows from the latter
that eT3 δ1 = 0 ⇔ eT3 (u1 + u2) = (m1 + m2 + m)g, which
states that the combined inputs need to compensate for
the combined weight of the whole system. This binding
condition on the inputs is hard to satisfy since one does
not exactly know the weights of the UAVs and of the bar;
in experiments, it is therefore important to include, on
each UAV, an integrator in the vertical direction so that
the latter binding condition can be satisfied. Two more
binding conditions follow from δ1 = 03, namely eT1 δ1 = 0
and eT2 δ1 = 0: when F = 0 (no normal force applied on
the bar), these conditions are met when eT1 ui = eT2 ui = 0
(no horizontal input from both UAVs), where the latter
conditions are easy to satisfy (and the main reason for not
including integrators in the horizontal components).

Proposition 2 also tells us that no equilibrium is asymp-
totically stable in open-loop, since Eu in (ii) and (iii) cor-
responds to a continuum of equilibria. However, when the
condition δ2 6= 03 is satisfied, the equilibrium angular posi-
tion of the bar (i.e. n) is uniquely determined up to a sign:
intuition suggests that one equilibrium attitude might be
asymptotically stable – the one where the bar is under
tension; while the diametrically opposed attitude might
be unstable – the one where the bar is under compression.

In the experiments, only the scenario δ2 = 03 ⇔ F = 0
has been tested, that is, the scenario where the bar is
under no normal force at the equilibrium. For this sce-
nario (see (8b)), it follows that u1 = m1ge3 + d2

d2−d1
mge3

and that u2 = m2ge3 + d1

d1−d2
mge3. That is, at the equi-

librium, the UAVs do not need to provide any horizontal
input, but only a vertical input. This is the main rea-
son for, later on, including an integrator along the vertical
direction, but not along the horizontal directions.
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Figure 2: Different equilibria possibilities, for different values of the
pitch angle of the bar – θ ∈

(
−π

2
, π
2

)
– and different values of be

the normal force/stress exerted on the bar – F ∈ R. When F > 0,
the bar is under tension; when F < 0, the bar is under compression;
and, when F = 0, the bar is under no normal force.

Let us now parametrize the equilibria with
γ ∈ Γ :⇔ (pγ , nγ , Fγ) ∈ R3 × S2 × R, (9)

where (pγ , nγ) ∈ R3×S2 is the desired pose (desired linear
and angular positions) for the bar; and Fγ ∈ R is the
desired normal force to be exerted on the bar. The variable
γ in (9) is a six-dimensional variable that allows us to
parametrize the equilibrium input and the corresponding
equilibria. That is, any point in the set E := {(z, u) ∈
Z×R6

0̄ : Z(z, u) = 024} can be parametrized by some γ ∈ Γ,
i.e., E = {(zγ , uγ) ∈ Z × R6

0̄ : γ ∈ Γ}, with (zγ , uγ) as
described next. The equilibrium input uγ is parametrized
by nγ and Fγ as

uγ :=

u1,γ

u2,γ

 :=

(m1 + d2

d2−d1
m
)
ge3 + Fγnγ(

m2 + d1

d1−d2
m
)
ge3 − Fγnγ

 , (11)

while the equilibrium state is parametrized as

zγ := (zp,γ , zv,γ , r1,γ , r2,γ) :=

(
zp,γ , 012,

u1,γ

‖u1,γ‖
,
u2,γ

‖u2,γ‖

)
zp,γ := (pγ , nγ , p1,γ , p2,γ) with (12)

pj,γ := pγ + djnγ + lj
djmge3 ± (dj − di)Fγnγ
‖djmge3 ± (dj − di)Fγnγ‖

,

Figure 2 illustrates the different possible equilibrium con-
figurations.

At this point, we can state our control objective, which
consists in designing a control law that guarantees pose
stabilization of the bar around a desired linear position pγ
and around a desired angular position nγ , and such that
the bar is under a desired normal force Fγ .

Problem 1. Let γ ∈ Γ, as in (9), be some chosen desired
configuration. Consider then the vector field Z in (5b),
the equilibrium state zγ in (12), and the equilibrium input
uγ in (11). Design a control law uclγ : Z → R6 satisfying
uclγ (zγ) = uγ and such that zγ is a (locally) exponentially
stable equilibrium point of the closed-loop vector field Z 3
z 7→ Z(z, uclγ (z)) ∈ TzZ.

Hereafter, given some θ? ∈
(
−π2 ,+

π
2

)
and F? ∈ R, instead

of a generic γ in (9), we only consider
γ? := (pγ? , nγ? , Fγ?) := (03, (cos(θ?), 0, sin(θ?)), F?). (13)

In brief, and loosely speaking, this simplification can be
made because the open-loop vector field Z is invariant to
translations and to rotations around the vertical direction,
and because the control laws we provide next are also in-
variant to translations and to rotations: the latter imply
that the closed-loop vector field is invariant to translations
and to rotations, which means we may consider only the
case where we wish to stabilize the bar’s linear position
around the origin and to stabilize the bar’s angular po-
sition aligned with the first inertial axis and titled by an
angle θ?. A formal and detailed description of the latter
points is provided in (Pereira and Dimarogonas, 2018).

4. Control Law

Recall the problem statement in Problem 1, where a
desired pose and normal force are chosen, encapsulated
in γ = (pγ , nγ , Fγ). Whatever control law we design, at
the equilibrium it must match uγ in (11): suppose, for
simplicity, that we wish the bar to be under no normal
force, that is, Fγ = 0; then, it follows from (11) that
u1,γ =

(
m1g + d2

d2−d1
mg
)
e3, that is, UAV 1 needs to have

an exact knowledge of its weight, of the bar’s weight, and of
the contact points on the bar (an interchangeable conclu-
sion may be drawn for UAV 2). Note, however, that only
the third (vertical) component of u1,γ is model dependent,
while the first and second (horizontal) components are zero
and, therefore, model independent. This is the motivation
for including an integral action in the vertical component
of the control laws of each UAV (and to suppress such
integral action in the horizontal components).

For that purpose, and with the latter in mind, define
now the extended state, constraints, and state space

z̃ ∈ R32 :⇔ (z, ξ1,z, ξ2,z) ∈ R30 × R × R, (14a)

f̃(z̃) := f(z)|f in (3), (14b)

Z̃ := {z̃ ∈ R32 : f̃(z̃) = 08} = Z× R × R, (14c)
where ξ1,z, ξ2,z are the integral action terms for UAVs 1
and 2. Then, given an appropriate input u : R≥0 → R6

0̄, a
system’s trajectory z̃ : R≥0 → Z̃ evolves according to

˙̃z(t) = Z̃γ(z̃(t), u(t)), z̃(0) ∈ Z̃, (15a)

where the vector field Z̃γ : Z̃×R6
0̄ 3 (z̃, u) 7→ Z̃γ(z̃, u) ∈ Tz̃Z̃

is given by (the vector field depends on γ, and thus the
reason for indexing γ in Z̃γ)

˙̃z = Z̃γ(z̃, u) :⇔

 ż

ξ̇1,z

ξ̇2,z

 =

 Z (z, u)

eT3 (p1 − p1,γ)

eT3 (p2 − p2,γ)

 , (15b)

where Z is the vector field defined in (5b), and where pj,γ is
defined in (12). The integral action equations in (15b) en-
force that an equilibrium can only be reached if the UAVs
are at the desired height, i.e., if eT3 (pi − pi,γ) = 0.
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For j ∈ {1, 2}, denote ûj,γ as the best estimate of uj,γ
known by UAV j (uj,γ defined in (11)). Given a γ, consider
then the control law upidγ , combining a feed-forward (FF)
term with a proportional-derivative (PD) term and with
an integral (I) term, given by

z̃ 7→ upidγ (z̃) :=

[
û1,γ

û2,γ

]
︸ ︷︷ ︸
FF term

+

[
ũpd1,γ(z)
ũpd2,γ(z)

]
︸ ︷︷ ︸
PD term

+

[
m1k

1
i,zξ1,ze3

m2k
2
i,zξ2,ze3

]
︸ ︷︷ ︸

I term

, (16)

where ξj,z is the integral action term for UAV j, and kji,z
is the respective integral gain; and where ũpdj,γ is the PD
control law given by (below, we only provide the control
law for γ? defined in (13); for a general γ, some rotations
need to be introduced, and the control law in that general
case is found in (Pereira and Dimarogonas, 2018))

ũpdj,γ?(z) :=−mj

(
Kj

p(pj − pj,γ?) +Kj

dvj
)

−mjdje
T

3

(
kjp,ψS (nγ?)n+ kjd,ψω

)
e2,

(17)

and where for j ∈ {1, 2}: (i) pj,γ ∈ R3 is the UAV j
desired equilibrium position given in (12); (ii) Kj

p =
kjp,x⊕kjp,y⊕kjp,z ∈ R3×3 andKj

d = kjd,x⊕kjd,y⊕kjd,z ∈ R3×3 are
positive gains related to the position and velocity feedback
of UAV j; (iii) kjp,ψ ∈ R≥0 and kjd,ψ ∈ R≥0 are gains related
to the angular position and angular velocity feedback.

Let us provide some insight into the control law in (17),
and recall that we wish to steer the linear position of the
bar p to pγ and to steer the angular position of the bar
n to nγ . Finally, and for brevity, let us introduce the fol-
lowing nomenclature: e1 corresponds to the longitudinal
direction, or x-direction; e2 corresponds to the lateral di-
rection, or y-direction; and e3 corresponds to the vertical
direction, or z-direction. The control law in (17) may be
decomposed in two identifiable parts. (i) Along each com-
ponent – longitudinal, lateral and vertical – there are two
terms, one proportional and one derivative, that act as a
spring-damper that brings the UAV to its desired longitu-
dinal/lateral/vertical position. (ii) In addition, along the
lateral component, there are two more terms (one propor-
tional and one derivative) that assist in bringing the bar
to its desired angular position.

As required by Problem 1, the input at the equilibrium
must match uγ : since ũpdγ (zγ) = 06, it follows immediately
that for

z̃γ :=

 zγ
ξ1,z,γ

ξ2,z,γ

 :=

 zγ
1

m1k1
i,z
eT3 (u1,γ − û1,γ)

1
m2k2

i,z
eT3 (u2,γ − û2,γ)

 , (18)

it holds that upidγ (z̃γ) = uγ , and therefore z̃γ is an equilib-
rium point of the closed-loop vector field

Z̃ 3 z̃ 7→ Z̃γ(z̃, u
pid

γ (z̃)) ∈ Tz̃Z̃. (19)
Note that it is the purpose of the integral action terms
to make sure that the equality upidγ (z̃γ) = uγ is satisfied.
Loosely speaking, the integral action terms ξ1,z, ξ2,z evolve
so as to compensate for the model mismatch; in particular,
if all model parameters are exactly known by both UAVs,
then ξ1,z,γ = ξ2,z,γ = 0.

The control law in (16) is unbounded (that is, ‖upidj,γ (z̃)‖

is arbitrarily large when the UAV’s linear position pj is ar-
bitrarily far way from its desired linear position pj,γ): this
motivates the introduction of saturation functions, which
is done in (Pereira and Dimarogonas, 2018). However, in
the next Sections we perform a linearization procedure,
and one can easily show that the saturation functions do
not play a role after the linearization, which is the reason
why we omit them here for brevity.

5. Conditions for Local Stability

In Section 6, we linearize the closed-loop vector field
around the equilibrium, and we verify that the Jacobian
is similar to a block triangular matrix, whose block di-
agonal entries are in controllable form. This section pro-
vides tools for the analysis of the location of the eigenval-
ues of those matrices. Let n ∈ N, and denote Cn(a) :=[
e2 . . . en −a

]T ∈ Rn×n as a matrix in controllable
form, with a ∈ Rn and ei as the ith canonical basis vector
in Rn. It follows from the Routh’s criterion that
C3((a0, a1, a2)) Hurwitz⇔ a0, a1, a2 > 0 ∧ a0 < a1a2, (20)
which we make use of later on. In what follows, denote q ∈
R, f := (fp, fd) ∈ (R≥0)

2, k := (kp, kd) ∈ (R≥0)
2, where,

in later sections, q and f provide physical constants of
interest, and k provides the controller gains (in particular a
proportional and a derivative gain). There are matrices (in
controllable form) that appear several times in Section 6,
and therefore we introduce them here, namely
Γ3(f, k) := C3((fd(kp + fp), fdkd + fp, fd)), (21a)
Γ5(q, f, k) := C5(b1 + b2)|b1≡fd(fpkp,fpkd,kp,kd,1)

b2≡fp(1+q)(0,0,fd,1,0)

, (21b)

Γ̃4(q̃, q, fp, k) := C4((fp(kp + fpqq̃), fpkd, kp + fp(1 + q), kd)),

Γ4(q, fp, k) := Γ̃4(0, q, fp, k), (21c)
and, it follows from the Routh’s criterion that,
Γ3(f, k) is Hurwitz⇔ fd > kp/kd, (22a)
Γ5(q, f, k) is Hurwitz⇔ q > 0 and fd > kp/kd, (22b)

Γ̃4(q̃, q, fp, k) is Hurwitz⇔ q(1− q̃) > 0 and kp > −fpqq̃,
Γ4(q, fp, k) is Hurwitz⇔ q > 0. (22c)

6. Stability Analysis of the Closed-Loop System

6.1. Linearization around a point in a manifold

Before linearizing the closed-loop vector field Z̃cl
γ in (19)

around the equilibrium z̃γ in (18), let us provide a vector
field that serves only the purpose of analysis. Consider
then the constraints, the state space and the vector field

f : Rn 3 y 7→ f(y) ∈ Rm, (23a)
Y := {y ∈ Rn : f(y) = 0m}, (23b)
Y : Y 3 y 7→ Y (y) ∈ TyY, (23c)

where the vector field Y vanishes at y? ∈ Y, and df(y?) ∈
Rm×n is full rank. The following result follows.
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Proposition 3. Let Y be a vector field in Y, as defined
in (23), and with y? ∈ Y as an equilibrium point (e.q.).
Then, y? is an exponentially stable e.q. of Y if and only if
y? is an exponentially stable e.q. of

Y ?(y) := Y (y)− P T

⊥ (P⊥P
T

⊥ )
−1

(df(y)Y (y) + λf(y)) ,(24)

where P⊥ = df(y?) ∈ Rm×n, and where λ is some pos-
itive number. Moreover, given a change of basis P :=[
P T

1 P T
⊥

]T ∈ Rn×n, with P−1 ≡
[
Q1 Q2

]
, it follows that

PdY ?(y?)P−1 =

[
P1ΠP⊥dY (y?)ΠP⊥Q1 ?(n−m)×m

0m×(n−m) −λIm

]
,(25)

where ΠP⊥ := In − P T
⊥ (P⊥P

T
⊥ )
−1
P⊥ ∈ Rn×n .

A proof of Proposition 3 is found in (Pereira and Dimarog-
onas, 2018), and its purpose is simple: in order to de-
termine the stability properties of the equilibrium y?, it
suffices to study whether the upper-left matrix in (25) is
Hurwitz. It is now obvious why we needed to provide the
constraints’ maps f and f̃ defined in (3) and (14).

6.2. Linearization of the closed-loop vector field
Recall now the closed-loop vector field Z̃cl

γ in (19) and
the equilibrium point z̃γ in (18). Hereafter, and for rea-
sons already discussed, we consider only γ? in (13). Given
Proposition 3, we modify the vector field Z̃cl

γ? as in (24),
and obtain the vector field (Z̃cl

γ?
)?, which serves only the

purpose of analysis. We then compute the Jacobian
A := d(Z̃cl

γ?
)?(z̃γ?) ∈ R32×32|(Z̃clγ? )? as defined in (24), (26)

which is sparse, but unstructured. Moreover, the Jacobian
is neither a diagonal nor a triangular matrix, and thus
determining whether it is Hurwitz is not straightforward.
For that purpose, we provide a change of basis matrix
P :=

[
P1 · · · Pk P⊥

]T
, for some k ∈ N, such that

PAP−1 is a block triangular matrix, i.e.,

PAP−1 =

[
A1 ⊕ · · · ⊕Ak ?

0 −λI

]
. (27)

That is, we provide a change of basis that breaks the mo-
tion of the system into k decoupled motions (note that
λ > 0 in (27) is that chosen in (24)). Thus eig(A) =
{−λ} ∪ eig(A1) ∪ . . . ∪ eig(Ak), and, therefore, determin-
ing whether the Jacobian A in (26) is Hurwitz amounts to
checking whether each of the blocks in (27) is Hurwitz.

In the next four subsections, we analyze four sepa-
rate cases: in Section 6.3, we assume that the system is
symmetric and that (θ?, F?) = (0, 0); in Section 6.4, we
let the system be asymmetric, while still requiring that
(θ?, F?) = (0, 0); in Section 6.5, we let θ? 6= 0 and F? = 0;
and, finally, in Section 6.6, we let θ? = 0 and F? 6= 0 (for
simplicity, in both Sections 6.5 and 6.6 we let the UAVs be
fully actuated). Analyzing the most generic of cases (one
where the system is asymmetric, the pitch is non-zero, and
the normal force is also non-zero) may be done following
a similar approach, but it is left for future research.

6.3. Symmetric UAVs-bar system
Let us discuss first the case where the UAVs-bar system

is symmetric, i.e., when the cables have the same length;

when the contacts points on the bar are at the same dis-
tance away from the bar’s center-of-mass (but in opposite
directions); and, when the UAVs are identical, with the
same weights and the same control law gains (and where
we let kjp,ψ = 0 and kjd,ψ = 0 for j ∈ {1, 2}). These condi-
tions are summarized in (42). This case provides us with
intuition on how to decompose the Jacobian into three de-
coupled motions (vertical, longitudinal and lateral), and it
is the basis for the generic case where the system does not
satisfy the symmetry conditions in (42).

Consider then the Jacobian A in (26), and the change
of basis matrix
P :=

[
Pz Pθ Px Pδ Py Pψ P⊥

]T ∈ R32×32, (28)
with its entries listed in Table 1, and where P⊥ :=
(df̃(z̃γ))

T ∈ R32×8 (f̃ in (14b) – see Section 6.1). It can be
calculated that |P | = −d

3g13m3(m+2M)4

4J3L13M4 , which is non-zero
since d 6= 0. Given the state matrix A in (26) and the
change of basis P in (28), it then follows that

PAP−1 =

[
Az ⊕Aθ ⊕Ax ⊕Aδ ⊕Ay ⊕Aψ ?

08×24 −λI8×8

]
,(29)

whose entries are listed in Table 1.

Remark 4. Recall the state decomposition in (14a)
(which builds upon (1b)), and that ˙̃z = Az̃, for the lin-
earized motion around the equilibrium. Then (for brevity,
denote p = (x, y,z) and n = (·, ψ, θ))

P T
x z
P T
δ z
P T
y z
P T
ψ z

 =


(x(0), x(1), x(2), x(3), x(4))
(δ(0), δ(1), δ(2))|δ=eT1 (p1−p2)

(y(0), y(1), y(2), y(3), y(4))
(ψ(0), ψ(1), ψ(2), ψ(3), ψ(4))

 ,
and (the equalities below can only be verified under an ap-
propriate coordinate transformation – see (Pereira and Di-
marogonas, 2017a))[

P T
z z
P T
θ z

]
=

[
(z(−1),z(0),z(1))
(θ(−1), θ(0), θ(1))

]
.

That is, Px is associated with the longitudinal (x) linear
motion of the bar (fifth order system) and Pδ is associ-
ated with the longitudinal linear motion between the UAVs
(third order system); Py is associated with the lateral (y)
linear motion of the bar (fifth order system) and Pψ is as-
sociated with the lateral angular motion of the bar (fifth
order system). And finally, Pz is associated with the ver-
tical (z) linear motion of the bar (third order system) and
Pθ is associated with the vertical angular motion of the bar
(third order system): to be specific, the sum of the inte-
gral errors is associated with the vertical linear position of
the bar, and the difference is associated with the vertical
angular position of the bar.

6.3.1. Longitudinal motion
The matrices Ax and Aδ describe the linear and angular

longitudinal motions and, it follows from (22b), that they
are Hurwitz provided that

kr > kp,x/kd,x. (30)
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i.e., provided that the attitude inner-loop gain is big
enough. Since Pxz = eT1 p =: x and Pδz = eT1 (p1− p2) =: δ,
it follows from (29) that, for the linearized motion, the
bar’s x-position behaves as a fifth-order integrator and
the longitudinal displacement between UAVs behaves as
a third-order integrator, i.e.,

x(5)(t) = (Ax)5,5x
(4)(t) + · · ·+ (Ax)5,1x

(0)(t),

δ(3)(t) = (Aδ)3,3δ
(2)(t) + · · ·+ (Aδ)3,1δ

(0)(t).

6.3.2. Lateral motion
The matrices Ay and Aψ describe the linear and angular

lateral motions and, it follows from (22b), that they are
Hurwitz provided that

kr > kp,y/kd,y, (31)
i.e., provided that the attitude inner-loop gain is big
enough. Since Pyz = eT2 p =: y and Pψz = eT2 n =: ψ,
it follows from (29) that, for the linearized motion, the
bar’s lateral linear motion and the bar’s lateral angular
motion behave as fifth-order integrators, i.e.,

y(5)(t) = (Ay)5,5y
(4)(t) + · · ·+ (Ay)5,1y

(0)(t),

ψ(5)(t) = (Aψ)5,5ψ
(4)(t) + · · ·+ (Aψ)5,1ψ

(0)(t).

6.3.3. Vertical motion
The matrices Az and Aθ describe the linear and angular

vertical motions and, it follows from (20), that they are
both Hurwtiz provided that

ki,z < min(γz, γθ)kp,zkd,z. (32)
i.e., provided that the integral gain is small enough. Note
that, for a standard PID (i.e., ẋ = C3(−(ki, kp, kd))x), it is
required that ki,z < kp,zkd,z, while the constraint above
is more restrictive, since γz < 1 and γθ < 1 (see Ta-
ble 1). Moreover, notice that γθ vanishes when d vanishes
(the distance of the contact points to the bar’s center-of-
mass): as such, it is advisable to have a big d (big com-
pared to

√
J

2M ), because γθ is closer to 1 (and thus the
bound on the integral gain is less restrictive). This also
agrees with intuition, which suggests that controlling the
bar’s attitude when the contact points are too close to
the bar’s center-of-mass is difficult. Under an appropri-
ate coordinate change (Pereira and Dimarogonas, 2017a),
it can be verified that the sum of the integral errors is
related to the vertical linear position of the bar (i.e., if
z(−1) ≡ d2ξ1,z−d1ξ2,z

d2−d1
then z(1) ≡ d2

dt2
d2ξ1,z−d1ξ2,z

d2−d1
= vz),

while the difference between the integral errors is re-
lated to the vertical angular position of the bar (i.e., if
θ(−1) ≡ ξ1,z−ξ2,z

d2−d1
then θ(1) ≡ d2

dt2
ξ1,z−ξ2,z
d2−d1

= ωy). As such,
for the linearized motion,
z(2)(t) = (Az)3,3z

(1)(t) + (Az)3,2z
(0)(t) + (Az)3,1z

(−1)(t),

θ(2)(t) = (Aθ)3,3θ
(1)(t) + (Aθ)3,2θ

(0)(t) + (Aθ)3,1θ
(−1)(t).

At this point, we defer the presentation of our main result
(Theorem 8) till the end on the next subsection, which
considers the generic case where the system is asymmetric.

Remark 5. We emphasize that, for the linearized motion,
and for h ∈ {x, y,z}, the proportional and derivative gains
kp,h and kd,h have an effect on the h-motion only, which
agrees with intuition. This is however not the case when
the bar is required to be under normal stress (F? 6= 0) nor
when the bar is required to have a non-zero pitch (θ? 6= 0) –
see Sections 6.5 and 6.6. Note also that the attitude gains
of the vehicles do not play a role in the linearized vertical
motion.

6.4. Asymmetric UAVs-bar system
Let us now consider the case where the system is not

symmetric, i.e., a system which does not satisfy the con-
ditions in (42) (we assume only that d1, d2 have opposite
signs – see Remark 1). The idea will be to choose the
UAVs’ gains so as to compensate for the asymmetries, in
such a way that, if the system degenerates into a sym-
metric one, then the results of the previous section are
recovered.

Consider again the similarity matrix P ∈ R32×32 as de-
fined in (28) (which will be different than the P obtained
in the previous section, which relied on the symmetry con-
ditions), and whose determinant |P | is non-zero when d1

and d2 have opposite signs.
Given the state matrix A in (26) and the similarity ma-

trix P in (28), it then follows that

PAP−1 =

[
Az,θ ⊕Ax,δ ⊕Ay,ψ ?

08×24 −λI8×8

]
∈ R32×32. (33)

Similarly to the symmetric system, described in the previ-
ous section, there are three decoupled motions, namely
a vertical, a longitudinal and a lateral. However, for
the symmetric system, each of those motions was in turn
composed of two decoupled sub-motions, one linear and
one angular; that is not the case for the asymmetric sys-
tem. The main idea explored next is to choose the con-
trol gains such that the linear sub-motion of the verti-
cal/longitudinal/lateral motion is decoupled from the an-
gular sub-motion. The difference with the case where the
system is symmetric lies in that the linear and angular
sub-motions are not decoupled. This will produce a state
matrix that is similar to a block triangular matrix, which
we are still able to analyze.

6.4.1. Longitudinal motion
Recall Remark 4, and note that Px and Pδ are asso-

ciated to Ax,δ ∈ R8×8 in (33). As such, Ax,δ is associ-
ated with the longitudinal motion, namely the longitu-
dinal linear motion of the bar, and the longitudinal an-
gular motion (corresponding to the longitudinal relative
motion between the two UAVs). In what follows denote
Fx ≡ Fx(k

1
p,x, k

2
p,x, k

1
d,x, k

2
d,x, k

1
r , k

2
r) ∈ R3, where Fx is some

function of the listed gains (found in the mathematica files
in (Pereira and Dimarogonas, 2018)). Note then that Ax,δ

has a specific structure, namely (below ? denotes a vector
in R5)

Ax,δ =

[
Ax e5F

T
x

e3?
T Aδ

]
∈ R(5+3)×(5+3). (34)
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l2 = 2L l1 = L

m2 = M

m1 = 2M

bad asymmetry for longitudinal motiongood asymmetry for longitudinal motion

d1 = dd2 = −d

l2 = L l1 = 2L

m2 = M

m1 = 2M

d1 = dd2 = −d

It suffices that kp,x > 0 for both gains to be positive

barbar

UAV 2

UAV 1UAV 2

UAV 1

k1
p,x − k2

p,x = fp,x∆x where ∆x = m
2Mk1

p,x − k2
p,x = fp,x∆x where ∆x = 0

kp,x > 1
8

g
L

m
M > 0 for both gains to be positive

Figure 3: Good and bad asymmetries: it is better for the heavier
UAV to be attached to the shorter cable as it minimizes |∆x|. A
good asymmetry only requires the gains kp,x, kd,x to be positive, and
a bad asymmetry requires both the proportional and the derivative
gains to be strictly positive.

Notice that Ax,δ can be rendered block triangular, if one
chooses the gains such that Fx in (34) vanishes. That is ac-
complished if the longitudinal gains are chosen as in (43),
for some positive kp,x, kd,x, and kr. That is, the propor-
tional and derivative gains of each vehicle must be the
same up to some difference that is proportional to the
asymmetry of the system, as quantified by ∆x described
in (43). If the gains are chosen as in (43), then Fx = 03

and Ax,δ in (34) is block lower-triangular. The matrices
Ax and Aδ are those in Table 1 (all parameters in Table 1
are positive, since d1 and d2 have opposite signs), which
are both Hurwitz provided that

kr > kp,x/kd,x, (35)
i.e., provided that the attitude inner-loop gain is big
enough. This constraint can be comprehended intuitively:
fast tracking along the longitudinal direction requires a
fast attitude inner-loop.

Remark 6. In (43), if one requires that k1
p,x, k

2
p,x > 0,

then one must impose that kp,x > −fp min
(
d1l1∆x,d2l2∆x

d1l1−d2l2

)
,

where ∆x encapsulates some measure of asymmetry of the
system. As illustrated in Fig. 3, there are good and bad
asymmetries: in good asymmetries ∆x = 0 and, therefore,
it is only required that kp,x be positive; and, in bad asym-
metries ∆x 6= 0 and, therefore, it is required that kp,x be
strictly positive.

Remark 7. Recall Remark 4. It follows from (34) with
Fx = 03 that, for the linearized motion, (denote X :=
(x(0), · · · , x(4)) and ∆ := (δ(0), · · · , δ(2)))[

Ẋ

∆̇

]
=

[
Ax 05×3

?3×5 Aδ

] [
X
∆

]
, (36)

i.e., the longitudinal linear motion behaves as a fifth order
integrator and it is decoupled from the longitudinal angu-
lar motion; while the longitudinal angular motion behaves
as a third order integrator, cascaded after the longitudinal
linear motion (Ax and Aδ are those in Table 1).

6.4.2. Lateral motion
Recall Remark 4, and note that Py and Pψ are as-

sociated to Ay,ψ ∈ R10×10 in (33). As such, Ay,ψ is
associated with the lateral motion, namely the lateral

linear motion of the bar, and the lateral angular mo-
tion of the bar (yaw motion). In what follows denote
Fy ≡ Fy(k

1
p,y, k

2
p,y, k

1
d,y, k

2
d,y, k

1
p,ψ, k

2
p,ψ, k

1
d,ψ, k

2
d,ψ, k

1
r , k

2
r) ∈

R5, where Fy is some function of the listed gains (found
in the mathematica files in (Pereira and Dimarogonas,
2018)). Note then that Ay,ψ has a specific structure,
namely

Ay,ψ =

[
Ay e5F

T
y

e5F̃
T
y Aψ

]
∈ R(5+5)×(5+5). (37)

Notice that Ay,ψ can be rendered block triangular, if one
chooses the gains such that Fy in (37) vanishes (no choice
of gains makes F̃y vanish). That is accomplished if the
lateral gains are chosen as in (44), for some positive kp,y,
kd,y, and kr. That is, the proportional and derivative gains
of each vehicle must be the same up to some difference
that is proportional to the asymmetry of the system, as
quantified by ∆y (and |l2 − l1|). If the gains are chosen
as in (44), then Fy = 05 and Ay,ψ in (37) is block lower-
triangular. The matrices Ay and Aψ are those in Table 1,
which are both are Hurwitz provided that

kr > kp,y/kd,y, (38)
i.e., provided that the attitude inner-loop gain is big
enough. Note that similar remarks to Remarks 6 and 7
can be made at this point regarding the lateral motion.

6.4.3. Vertical motion
Recall Remark 4, and note that Pz and Pθ are as-

sociated to Az,θ ∈ R6×6 in (33). As such, Az,θ is as-
sociated with the vertical motion, namely the vertical
linear motion of the bar, and the vertical angular mo-
tion of the bar (pitch motion). In what follows denote
Fz ≡ Fz(k

1
p,z, k

2
p,z, k

1
d,z, k

2
d,z, k

1
i,z, k

2
i,z) ∈ R3, where Fz is some

function of the listed gains. Note then that Az,θ has a
specific structure, namely

Az,θ =

[
Az e3F

T
z

e3F̃
T
z Aθ

]
∈ R(3+3)×(3+3). (39)

Notice that Az,θ can be rendered block triangular, if one
chooses the gains such that either Fz or F̃z in (39) vanish.
We choose to cancel Fz, implying that we decouple the
vertical-linear motion from the vertical-angular motion.
That is accomplished if the vertical gains are chosen such
that (45) is satisfied. That is, the proportional, derivative
and integral gains of each vehicle must respect a ratio,
which is exactly 1 under symmetry conditions (see (42)).
In order to satisfy the conditions above, let, for h ∈ {p, i, d}
and j ∈ {1, 2},

kjh,z =
2∆z,j

∆z,1 + ∆z,2

kh,z, (40)

for some positive kp,z, ki,z, and kd,z, and with ∆z,1,∆z,2

as defined in (45) (∆z,1

∆z,2
> 0 because d1, d2 have opposite

signs). If the gains are chosen as in (40), then Fz = 03 and
Az,θ in (39) is block lower-triangular. The matrices Az and
Aθ are those in Table 1, which are both Hurwitz provided
that (γz, γθ are positive)

ki,z < min(γz, γθ)kp,zkd,z, (41)
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i.e., provided that the integral gain is small enough. Note
that, for a standard PID, it is required that ki,z < kp,zkd,z,
while the constraint above is more restrictive, since γθ < 1.
Moreover, notice that γθ vanishes when either d1 or d2 van-
ish (the distance of the contact points to the bar’s center-
of-mass): as such, it is advisable to have a large |d1| and
|d2| (large in the sense that J(d1m1−d2m2)

(−d1d2)m1m2(d1−d2) � 1), be-
cause γθ is closer to 1 (and thus the bound on the integral
gain is less restrictive). This also agrees with intuition,
which suggests that controlling the bar’s attitude when the
contact points are too close to the bar’s center-of-mass is
difficult.

We can now present our main result.

Theorem 8. Consider the UAVs-bar system, with its vec-
tor field in (5b), the dynamic control law (16) whose in-
ternal (integral) states evolve as in (15b), and the result-
ing closed-loop vector field Z̃cl

γ in (19). Consider also the
equilibrium z̃γ in (18), and let d1 and d2 have opposite
signs, and the desired configuration be γ = γ? with θ? = 0
and F? = 0 (i.e., the bar is to be stabilized on the hor-
izontal plane and under no normal stress). Finally, let
the longitudinal, lateral and vertical gains of the control
laws be chosen as in (43), (44) and (45), respectively, and
such that (i) the attitude gain is big enough, as quantified
in (35) and (38); and such that (ii) the integral gain is
small enough, as quantified in (41). It then follows that
the equilibrium z̃γ is exponentially stable.

Our main result, in Theorem 8, states that pose stabiliza-
tion of the bar is accomplished, provided that the UAVs-
bar system starts in some neighborhood of the equilibrium.
The experiments provided in (Pereira and Dimarogonas,
2017a; Pereira et al., 2018) provide insight into the region
of attraction of the equilibrium; in particular, convergence
to the equilibrium was verified after impulsive disturbances
were applied on both the bar and the UAVs.

6.5. Bar with non-zero pitch

In this subsection, we study the effect of requiring the
angular position of the bar to have a non-zero vertical
component (non-zero pitch angle), i.e., when γ? in (13) is
chosen with θ? ∈

(
−π2 ,

π
2

)
and F? = 0. This equilibrium

configuration corresponds to the bottom left configuration
shown in Fig. 2. For this purpose, and for simplicity, we
assume that the UAVs are fully-actuated, that the system
is symmetric (as defined in (42)), and that no integral
action is being used. Let us anticipate the results that
follow, where we find out that the vertical angular motion
is coupled with the longitudinal angular motion.

For this system, the Jacobian A = d(Zcl
γ?

)?(zγ?) ∈ R24×24

is computed, where Zcl
γ?

(z) := Z(z, updγ?(z)), with Z in (5b)
(ri = ui/‖ui|‖ and ṙi ignored), zγ in (12) and updγ in (16)
(integral states ignored). We then compute the change of
basis matrix P ∈ R24×24, with entries listed in Table 2 (and
where P⊥ := (df(zγ?))T ∈ R24×6 with f as defined in (3)
– constraints invoking ri are ignored), which renders the
matrix PAP−1 in block triangular form (just like in (27)).

We note that |P | = − 2d2g6m2 cos2(θ?)
J2L10 is non-zero since θ? ∈(

−π2 ,
π
2

)
, and thus P is indeed a valid change of basis.

The diagonal entries of the matrix PAP−1 are listed in
Table 2, and it follows that there are 5 decoupled motions,
and that all matrices are Hurwitz for all θ? ∈

(
−π2 ,

π
2

)
.

Indeed, it follows that the vertical linear, the longitudinal
linear, the lateral linear and the lateral angular motions
are all decoupled. On the other hand, it follows from Aθ,δ

that the vertical angular motion is coupled to the longi-
tudinal angular motion when θ? 6= 0. This coupling is,
nonetheless, not detrimental to the stability of the equi-
librium configuration, as the matrix Aθ,δ is Hurwitz for
all θ? ∈

(
−π2 ,

π
2

)
. However, this conclusion is only valid

for fully actuated UAVs; for under-actuated UAVs or for
UAVs with vertical integral action, stricter conditions on
the allowed interval for θ? may be required.

6.6. Bar under non-zero normal force

In this subsection, we study the effect of requiring the
bar to be under a non-zero normal force/stress, i.e., when
γ? in (13) is chosen with θ? = 0 and F? = rmg2 , for some
r ∈ R. This equilibrium configuration corresponds to the
top right configurations shown in Fig. 2. We note that F?
is twice the normal stress exerted on the bar and, for that
reason, r represents the ratio of the normal force exerted on
the bar with respect the the bar’s weight. In studying this
scenario, and for simplicity, we assume that the UAVs are
fully-actuated, that the system is symmetric (as defined
in (42)), and that no integral action is being used. Let us
anticipate the results that follow, where we find out that
the vertical and longitudinal motions are coupled, and that
requiring the bar to be under tension is more beneficial
than requiring the bar to be under compression.

For this system, the Jacobian A = d(Zcl
γ?

)?(zγ?) ∈ R24×24

is computed, where Zcl
γ?

(z) := Z(z, updγ?(z)), with Z in (5b)
(ri = ui/‖ui|‖ and ṙi ignored), zγ in (12) and updγ in (16)
(integral states ignored). We then compute the change of
basis matrix P ∈ R24×24, with entries listed in Table 3 (and
where P⊥ := (df(zγ?))T ∈ R24×6 with f as defined in (3)
– constraints invoking ri are ignored), which renders the
matrix PAP−1 in block triangular form (just like in (27)).
We note that |P | = − 2d2g6m2(1+r2)3

J2L10 is non-zero for any
r ∈ R, and thus P is indeed a valid change of basis.

The diagonal entries of the matrix PAP−1 are listed
in Table 3, and it follows that there are four decoupled
motions. The point p = e1 − d J

d2mre6 in Pp,θ, defined in
Table 3, is special in the sense that its position, velocity,
acceleration and jerk (i.e., A0p, A1p, A2p and A3p) do not
depend on any controller gains; this in turn guarantees
that the change of basis matrix P also does not depend on
any controller gains1. It follows from the matrices listed
in Table 3 that, when the bar is under normal force, the
linear vertical motion is coupled with the angular longitu-
dinal motion (where the coupling vanishes when r = 0);

1In particular, when r = 0, then p = e1 which corresponds to the
longitudinal linear position of the bar.
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(a) Three snapshots (at 0, 12, 24 s) of
system: top view.

(b) Three snapshots (at 0, 12, 24 s) of
system: side view.

(c) UAVs’ positions.

(d) Bar’s linear position. (e) Bar’s angular position. (f) UAVs’ inputs.
Figure 4: Simulation with two set-points with a non-zero pitch angle.

the motion of the point p (which corresponds to the linear
longitudinal motion when r = 0) is coupled with the an-
gular vertical motion (where the coupling vanishes when
r = 0); where the only influence of the normal force in the
linear lateral motion is to increase the frequency fp,y (Ay

in Table 3 is Hurwitz regardless of r); and, finally, where
the lateral angular motion is significantly influenced by the
normal force, i.e., Aψ in Table 3 is Hurwitz iff (note that
qψ(1− q̃ψ) = J

d2m
m

2M
1
δ2 > 0, as required by (22c))

kp,y > −fp,ψqψ q̃ψ = −g
l

m

2M

l

d
r

(
1 +

l

d

r√
1 + r2

)−1

.

This result confirms our intuition (next, and w.l.o.g., we
assume that d > 0). For simplicity, let d > l. Then, when
we want the bar to be under tension (r > 0), it suffices for
the proportional gain kp,y to be positive; on the other hand,
when we want the bar to be under compression (r < 0),
the proportional gain kp,y needs to be strictly positive (and
arbitrarily large, if |r| is arbitrarily large). As such, one
can say that requiring the bar to be under compression
is less stable than requiring the bar to be under tension,
because a bar under tension tends to restore the yaw po-
sition of the bar, while a bar under compression tends to
destabilize the yaw position of the bar. This conclusion
confirms the comments drawn during the analysis of the
open-loop equilibria (see discussion after Proposition 2).

7. Experimental Results

In this Section, we provide simulations which illustrate
the results discussed in Sections 6.5 and 6.6, where the bar
is required to be under either a non-zero pitch angle or a
non-zero normal force. Experiments illustrating the results
discussed in Sections 6.3 and 6.4 are found and described

in (Pereira and Dimarogonas, 2017a; Pereira et al., 2018):
the symmetric system is that illustrated in Fig. 1b, and
the asymmetric is that illustrated in Fig. 1c, and videos
of the experiments are found at youtu.be/ywwPvZuVpF0
and at youtu.be/rgweowQ8fAE.

We present two simulations, in Figs. 4 and 5, illus-
trating, respectively, the results discussed in Sections 6.5
and 6.6. For both simulations, we consider a system with
parameters m = 1kg; J = 1.05kgm2; m1 = m2 = 1.7kg;
l1 = l2 = 1.2m; +d1 = −d2 = 1.1m; and for l ∈ {x, y,z},
kp,l = 2.56s−2 and kd,l = 5.44s−1 (the control laws also
have saturations, as discussed at the end of Section 4).
For the initial condition, we let p(0) = (0, 0, 0)m, n(0) =
(1, 0, 0), p1(0) = (d1, 0, l1)m and p2(0) = (d2, 0, l2)m, with
vanishing linear and angular velocities. In both simula-
tions, we let the simulation run for 24s, with one desired
equilibrium γ1 ∈ Γ (see (9)) active from 0s to 12s, and a
different desired equilibrium γ2 ∈ Γ active from 12s to 24s.

For both simulations, we show six figures. In Figs. 4a,5a,
a top view of the system’s trajectory is shown: with the
bar’s linear position path in blue, with the UAV’s 1 po-
sition path in green, with the UAV’s 2 position path in
purple; and with the physical system shown at the ini-
tial time instant (initial condition described before), at
the time instant when the desired equilibrium is changed,
and at the final time instant. In Figs. 4b,5b, a view
of the system’s trajectory is shown from a different per-
spective. In Figs. 4c,5c, the UAVs’ linear positions are
shown. In Figs. 4d,5d, the bar’s linear position is shown,
and in Figs. 4e,5e the bar’s angular position is shown
parametrized by a yaw angle ψ and a pitch angle θ
(n = (cos(θ) cos(ψ), cos(θ) sin(ψ),− sin(θ))). Finally, in
Figs. 4f, 5f, the UAVs’ inputs, coming from the proposed
control laws, are shown.
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(a) Three snapshots (at 0, 12, 24 s) of
system: top view.

(b) Three snapshots (at 0, 12, 24 s) of
system: side view.

(c) UAVs’ positions.

(d) Bar’s linear position. (e) Bar’s angular position. (f) UAVs’ inputs.
Figure 5: Simulation with two set-points with a non-zero normal force.

For the case where the bar is required to be un-
der a non-zero pitch angle, in Fig. 4, we consid-
ered γ1 = (p, n, F ) with p = (2, 0, 0.5)m, n =
(cos(θ) cos(ψ), cos(θ) sin(ψ),− sin(θ))|ψ=30◦,θ=15◦ and F =
0N ; and γ2 = (p, n, F ) with p = (0, 2, 1)m, n =
(cos(θ) cos(ψ), cos(θ) sin(ψ),− sin(θ))|ψ=0◦,θ=−10◦ and F =
0N . As discussed in Section 6.5, there is a coupling be-
tween the longitudinal-linear and the vertical-angular mo-
tions, but this coupling is not harmful to the stability. In
Fig. 4b, one can visually see the positive pitch of the bar
(halfway time instant) as well as the negative pitch of the
bar (final time instant). Finally, in Fig. 4f, one verifies,
as expected, that the vertical input force component of
each UAV compensates for the UAV’s weight plus half of
the bar’s weight; one also verifies that the horizontal in-
put forces oscillate around zero, as the bar is not being
stretched nor compressed.

For the case where the bar is required to be under a non-
zero normal force, in Fig. 5, we considered γ1 = (p, n, F )
with p = (2, 0, 0.5)m, n = (cos(ψ), sin(ψ), 0)|ψ=30◦ and
F = 0.5N ; and γ2 = (p, n, F ) with p = (0, 2, 1)m,
n = (cos(ψ), sin(ψ), 0)|ψ=0◦ and F = 1N . With these
choices, it follows that the conditions kp,y > −0.24 for
γ1 and kp,y > −0.44 for γ2 must be satisfied, which is in-
deed the case. In Fig. 5b, one can visually see that the
bar is under positive normal stress, i.e., the bar is being
pulled apart by the UAVs, the latter being more evident
at the final time instant (when F = 1N) as opposed to
the halfway time instant (when F = 0.5N). Finally, com-
paring Figs. 4f with 5f, one notes, as expected, that the
horizontal forces are much larger when the bar is under
normal stress: loosely speaking, the horizontal components
of each UAV cancel each other (i.e., if one is very positive,

the other is very negative), since one UAV is pulling the
bar in a certain direction, while the other UAV is pulling
the bar in the opposite direction.

In conclusion, both simulations demonstrate that the
different desired equilibria are asymptotically stable, either
with a non-zero pitch angle or with a non-zero normal
force. Finally, we also note that the commanded inputs,
as shown in Figs. 4f, 5f, suffer a discontinuity when the
desired equilibrium is changed. A smooth transition shall
be considered in future work.

8. Conclusions

We proposed a control law for pose stabilization of a
bar-cargo tethered to two UAVs. We modeled the system,
found all its open-loop equilibria, and we closed the loop
with a PID-like control law. We then provided conditions
on the PID gains that guarantee that pose stabilization is
accomplished. Furthermore, we described good and bad
types of asymmetries, and we inferred that requiring the
bar-cargo to be under tension is better for stability, as op-
posed to requiring the bar-cargo to be under compression.
The stability properties of the equilibitum are inferred af-
ter a linearization procedure, and therefore the conclusions
drawn here only hold for the original (non-linear) system
on some neighborhood of the equilibrium. As such, the
proposed control law is meant to be used as a back-up con-
trol law (easy to implement and tune), to be used when a
more complex control law (harder to implement and tune)
is being developed and tested. Future work includes ex-
perimental validation of the case where the bar is required
to be pitching and under non-zero normal stress.
AEROWORKS (2018).
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