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Abstract—We propose a dynamic controller for position track-
ing of a point-mass load attached to an omni-directional aerial
vehicle by means of a cable. Both the load and the aerial
vehicle are subject to unknown wind forces. We model the
dynamics of the slung-load system and put it into canonical
form, i.e., a form which is independent of the system’s physical
parameters. Following a backstepping strategy, we design a
dynamic control law for the canonical system that contains four
estimators, since each of the two wind disturbances has two
separate effects: an effect on the linear acceleration and another
on the angular acceleration. Loosely speaking, the difference
between the wind forces is an input-additive disturbance, while
the wind force on the load is not, which makes removing the
wind force on the load non-trivial. We identify conditions on the
desired position trajectory and on the wind on the load which
guarantee that a well-defined equilibrium trajectory exists. The
designed controller guarantees simultaneously that (i) the latter
trajectory is asymptotically tracked and (ii) the cable remains
taut, provided that the system is initialized in a suitable set.
Simulations illustrate our results.

I. INTRODUCTION

Vertical take off and landing rotorcrafts with hover capa-
bilities, hereafter UAVs, are vehicles whose popularity stems
from their ability to be used in small spaces, their reduced
mechanical complexity, and inexpensive components. Slung-
load transportation consists of a UAV physically coupled to a
point-mass load. The general aim is to make the load position
track a given desired trajectory. Slung-load transportation
has been considered in prior work, but not while formally
accounting for the presence of unknown wind forces acting
on the load and on the aerial vehicle, which is an inevitable
reality if such a transportation is to be accomplished outdoors.

Different solutions to slung-load transportation can be found
in the literature [1]-[15]. Different modeling approaches have
been pursued, such as Euler-Lagrange formulations, Hamil-
tonian formulations, or Kane’s method [1]-[5]. The slung-
load system, as a mechanical system, is known to be under-
actuated. Most works rely on local parametrizations of the
configuration space, while others provide a coordinate-free
modeling as well as a coordinate-free control law [6]-[9].
Some works have focused on the simpler problem of position
stabilization [3], [4], [7], [8], while others have examined
simplified two-dimensional settings [4], [16]. Vision has been
used to estimate the load position with respect to the UAV [1],
[10], [15], and a force sensor on the rope has been used
to compensate and/or estimate the tension on the cable [1],
[14]. Dynamic controllers, considering model uncertainties
and/or input disturbances, are found in [2], [8], [9], with
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some relying on a discrete-time model, and a flexible cable
has also been considered [7], [8]. Trajectory planning has
been considered by exploring (hybrid) differential flatness [7],
[16], or by minimizing the allowed swing motion [2], [3].
Implementations with partial-state or visual feedback are de-
veloped at the cost of some assumptions, such as the absence
of wind, the restriction to planar motions, or by making use
of simplified models [17], [18]. Slung-load transportation with
multiple UAVs has also been considered [1], [11]-[13]. In
the coordinate-free works cited above, the desired attitude for
the cable is computed, which involves the normalization of a
designed three-dimensional vector. This normalization is only
valid if the latter vector is non-zero: in this paper, we guarantee
this normalization is valid for any state, which includes the
internal states of the dynamic controller. Our solution to
achieve this involves using a bounded linear acceleration
control law and a bounded disturbance estimator. Also, the
latter works assume, without guarantees, that the cable remains
taut — this constraint must be satisfied, otherwise the load
behaves as a free-falling unactuated point-mass: instead, in
this paper, the designed control law guarantees that the latter
physical constraint is satisfied along a closed-loop trajectory,
provided that the state is initialized in a set we identify.

Position tracking for the slung-load system shares sim-
ilarities with position tracking for a standard UAV [19],
[20]. Here, we use differential flatness [21] to compute the
desired state and input trajectory and to describe feasible
position trajectories. In designing a controller, we then follow
a backstepping procedure, similar to that found in [22]-[26],
but we do not feedback linearize the system by dynamic
augmentation of the thrust (in our case, tension), as done
in [24]-[26]. In position tracking, it is known that an a priori
bounded linear acceleration control law is necessary [9], [23],
[24], a problem we tackle; we also improve on these works
by providing a smooth projector operator. Moreover, when
controlling a UAV, one must guarantee that the thrust remains
positive (either because the UAV rotors can only spin in one
direction; or because dynamic augmentation of the thrust so
requires), and [26] provides a region of initial states for which
such a constraint is satisfied. In a similar fashion, in a slung-
load system, one must guarantee that the cable remains taut,
which is the case if the tension on the cable remains positive.
Finally, we assume that the UAV is omni-directional, i.e., it
can generate thrust force in any direction [27]-[29].

II. STRATEGY AND CONTRIBUTIONS

We summarize our problem solving strategy and main
contributions. In Section III, we present the model of an aerial
slung-load system in the presence of winds acting on the UAV



and on the load, which are unknown by the controller!. In
Section IV-A, we show that the system is differentially flat
with respect to the load’s position and, given some desired
load’s position trajectory, we compute the (two) desired sys-
tem’s trajectories, and the (two) desired input trajectories (one
solution is physically feasible — cable is under tension — while
the other is unfeasible — cable is under compression). In the
same section, we introduce the notion of feasible trajectories
as those where the load is not buoyant in the air at any time
instant. In Section IV-B, we provide a coordinate transforma-
tion that puts the system’s vector field in a canonical form:
this form is agnostic to the system’s physical parameters and
displays a characteristic cascaded structure, which we exploit
in the controller design. We find out that there are two types of
disturbances, where one is input additive (associated with the
difference between the winds on the UAV and on the load),
while the other is not (associated with the wind on the load).
Dealing with the latter motivates us to introduce a smooth
projection that guarantees that a disturbance estimator remains
in a pre-specified domain and whose derivatives, of any order,
can be computed. In Section V, we provide our main result,
which establishes sufficient conditions for inferring stability
and attractivity of equilibria sets, a result which is particularly
useful for non-contractible state spaces and where some form
of disturbance removal needs to be considered. In Section VI,
we provide a strategy for designing a smooth update law,
accompanied with an appropriate Lyapunov function, and
which does not grow unbounded in an unbounded domain
(i.e., if the load starts far away from its desired position, the
estimators do not immediately saturate). In Section VII, we
follow a six-step backstepping procedure which exploits the
cascaded structure of the transformed problem. In the initial
steps, the disturbances are assumed known, and these steps
are immediately followed by steps where estimators for those
disturbances are designed. In Section VII-A, we provide a
bounded analytic control law for a double integrator, with
a companion analytic Lyapunov function whose derivative is
negative definite. Also, at each step, we present the equilibria
sets and we formally characterize their stability and attractivity
properties, which follow from an application of the results
presented in Section V. Finally, at those steps where an
estimator is designed, we follow the procedure presented in
Section VI. Ultimately, given some feasible trajectory, we
verify that the final dynamic controller guarantees that both the
system’s position and input trajectories converge to their de-
sired trajectories, even if the estimators do not converge to the
corresponding unknown disturbances. When the disturbances
are only partially estimated, we can show attractivity while,
when the disturbances are correctly estimated, we can also
show stability. We also provide an excitation criterion which,
if satisfied, guarantees that the estimator of the non-input-
additive disturbance converges to the unknown disturbance.
Finally, we show that the proposed controller guarantees that
the cable remains taut along a closed-loop trajectory, given
that its initial condition lies in a set, which we characterize.

'We consider a fully-actuated UAV, given that we wish to focus on unknown
wind forces. Full actuation is available for an omni-directional UAV or it may
be assumed for a UAV with a fast attitude inner loop.

u € R?: input force exerted by UAV

Mge,
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Fig. 1: Modeling of the aerial slung-load system subject to wind forces. Left:
system of two point-masses physically coupled by a cable. Right: distribution
of forces on each point-mass (the tension formula is discussed after (5)).

III. PROBLEM DESCRIPTION

We consider’ a UAV and a point-mass load physically
coupled to each other by a massless cable, which behaves as
a rigid link, cf. Fig. 1. For simplicity, we assume the UAV is
fully-actuated, a simplification that is necessary due to space
constraints (in our extended report [30], we deal with the
under-actuated case). The system state is

z €R?:& (p, Pv,V) € R* xR* x R®* x R?, (1)
where p and P stand for the linear positions of the load and the
UAY, while v and V stand for their linear velocities. The cable
connecting the load and the UAV imposes two constraints
described by f(z) = 0,, where f : R'?> — R? is given by

f(2) = (2P —plf = L27XP —p,V —v)). (2
The first component describes a geometric constraint, requiring
the positions of the load and of the UAV to be apart by
the length of the cable. The second component describes a
holonomic constraint and it follows from differentiating the
geometric constraint composed with the kinematics of the
system. The constraint map f in (2) allows us to define the
state space as well as its tangent space, namely,

Z:={zeR™: f(z) =0,}, (3a)
T.Z := {0z € R*? : df (2)0z = 0,}, for z € Z. (3b)

The linear accelerations of the load and the UAV may be
found by considering the net force applied on each point-mass.

2Here we introduce basic notation used throughout the paper. Let S :
R?® 3z — S(z) € R®*3 be the map that yields a skew-symmetric matrix
satisfying S (z)y = = X y, for any y € R®. S? := {z € R® : ||z|| = 1}
denotes the set of unit vectors in R®. The map IT : S2 — R3*3, defined as
II(z)y := y — (y,x)x for any y € R3 and z € S?, yields a matrix that
represents the projection of y onto the subspace orthogonal to . For n € N,
we denote by e}, - - - ,el! € R™ the canonical basis vectors in R™. Let n € N
and 7 > 0, and denote B} := {z € R™ : ||z|| < r} as the open ball in R™
of radius r, and C?" := {x € R™ : ||z|| > r} = R™\B” as the complement
of a closed ball in R™ of radius 7, respectively. A map « : [0, 00) — [0, 00)
belongs to /> if « is continuous, strictly increasing, and «(0) = 0. Next,
let A and B be manifolds, and consider a differentiable map f : A — B. For
any point a € A, df (a) : T, A — Ty(q)B denotes the derivative (which is a
linear map) of the map f at the point a. d; f(a1, - ,a:, -+ ,an) denotes
the derivative of f with respect to its ith entry. If B = R, V f denotes the
gradient of f, i.e., (Vf(a),da) = df(a)da for any da € T,A; If N =R,
and for some 7 € R, f<, := {a € A: f(a) <r} denotes the sublevel
set of value 7 of the map f; f.., for x € {<,<,=,>,>}, is similarly
defined. Finally, we define log, € K as (normally, log, —stands for the
logarithm in base vy for some vy > 0, which is not, however, the meaning
of log,, in this paper.) the map given by lo%v0 (v) :=volog (1 + %) for
some vg > 0, and, as such, log;0 (v) = T > 0; when vy = oo, then
log,, = idjo,cc) and log;, = 1. 0

(w, W) = wind on load and UAV, respectively

(m, M) = mass of load and UAV, respectively

w P—p



Fig. 1 shows the distribution of forces: v € R® denotes the
input force that the UAV can apply and (w, W) € R® x R®
denotes the pair of wind forces applied on each point-mass.
w is the wind force applied on the load and W is the wind
force applied on the UAV. For the purposes of control design,
the wind forces are assumed to be constant (i.e., w = 0, and
W = 0,), but we provide a simulation where this assumption
is violated. Finally, T'(z,u) is the tension on the cable, which
depends on the state z, the input u (as well as the wind forces).

Combining the system kinematics (velocity equations) with
the dynamics (acceleration equations), we have that the system
is described by Z, , : R*?> x R® — R'? as?

p v
» Pl L .
2=Z ., w(z,u):s o |7 T(;;u) P;p e+ 2 (@)
: T(zu) P— w
VI L -5 7" —gea+ 37

where the tension T : R'> x R® — R is given by

Pl = (2 + 2, ) G
Note that the set Z in (3a), hereafter the state space, is invariant
for solutions of the vector field Z, , in (4), for any pair
of wind forces (w, W) € R* x R®: this follows by noting
that Z, w(z,u) € T.Z < df(2)Z, w(z,u) = 0, for any
(z,u) € Z x R®, which actually leads to the expression (5).
This conclusion is valid for time-varying wind forces too.

At this point, we state the problem that we wish to solve.

Problem 1: Let R 3¢ — p,(t) € R® be some given desired
position trajectory, and consider the (open-loop) vector field
Z ., w in (4), for some unknown (by the controller) wind forces
(w, W) € R® x R®. Design a control law R x Z 3 (¢,2) —
u(t, z) € R® such that lim,_, , . (p(t) —p.(t)) = 05 along the
trajectory of 2(t) = Z,, w(z(t), v (¢, 2(t))) with z(0) € Z.

Remark 3.1: We assume that the wind force applied on the
load does not match the weight of the load; i.e., (w,W) €
(R*\{mge;}) x R®. If w = mges, then the load is buoyant
in the air, and this makes it impossible to stabilize (with a
continuous control law) the load around any point in space.l]

Throughout the paper, we impose the following constraints
on the desired trajectory,

N (62)
p, € C*(R),sup ||p(t)]| < oo for i € {2,3,4,5}. (6b)
teR

inf ||mp® (t) + mges — w|| > 0,
teER

We say that a desired trajectory is feasible if (6a) is satisfied,
and not feasible otherwise. In particular, if the wind applied
on the load does not match the load’s weight (cf. Remark 3.1),
then trajectories with small accelerations are feasible: i.e., (6a)
is satisfied if sup, . [|p (t)|| < ||ges — 2] # 0. As a special
case, we thus have that constant-speed trajectories are feasible.
The condition on the left in (6b) is required, because we rely
on the position trajectory and its first five derivatives (velocity,
acceleration, jerk, snap and crackle) in our discussion; and the
condition on the right in (6b) is required later when studying
the stability and attractivity of the equilibrium trajectory.

3We index the vector field with the wind forces w and W to emphasize the
fact that it depends on those unknown forces, while the control law, which
we design later, does not.

IV. DYNAMICAL PROPERTIES OF SLUNG-LOAD SYSTEM

In this section, we describe two important properties of
the slung-load system. First, we show in Section IV-A that
the system is differentially flat with respect to the load’s
linear position. Next, we introduce a change of coordinates
in Section IV-B that yields a canonical form for describing
any slung-load system. This form highlights the cascaded
structure of the dynamics and is particularly well suited for
our control design purposes. We build on these developments
in Section I'V-C to refine the problem statement.

A. Differential Flatness of Slung-Load System

We show that the system is differentially flat, cf. [21] if one
assumes the wind forces (w, W) are known. This assumption
allows us to formally introduce the equilibria (which depend
on the wind forces) and is not detrimental to the practicality
of the proposed control law, since our design does not rely on
the knowledge of neither the equilibria nor the wind forces.

Proposition 4.1: The slung-load system is differentially flat
with respect to the load’s linear position, if (w, W) are known.

Proof: Recall p, in Problem 1. If we require that p(t) =
p.(t) for all time instants ¢ € R, then we can determine
uniquely* the whole system trajectory R > t + 2(t) € Z.
With this in mind, and given a feasible trajectory p,, define
the pairs (z,,,u,,) and (2,_,u,_), with z,, : R — Z given by

p.(t) p(t)

P..(t) PO () + sy ;

v, (t) P (t) ool (72)
a(t) '\ mp® (1)

V.. (t) pil)(tﬁlﬂ(uaum) ool

with a(t)E’rnp&Q)(t)—i-mgeg—w
and u,. : R = R? given by
u, . (t) =MV () +mo (t)+ (M + m)ges — (W +w)(7b)

It is now clear from the definition of (z,,,u,,) why we re-
quire (6) to be satisfied. Condition (6a) guarantees that the unit
vector % with a(t) = mp'® (t) + mge; — w is well defined
for any time instant ¢ € R; while condition (6b) guarantees that
(2,+,u,+) is well-defined and continuous on R. It is simple to
verify that ¢ — 2, (t) satisfies 2, . (t) = Z, w(2.+(t),u,+(t))
for all ¢ € R, which concludes the proof. |

Note that (z, ., u, ) can be thought as the two equilibria op-
tions that guarantee that the load tracks the desired position tra-
jectory. However, given the tension function in (5), it follows
that T'(z,.,u,.) = £||mp®(t) + mge; — w||, which means
that (z,,,u,,) is feasible (cable is taut), while (z,_,u,_)
is not feasible (cable is slack).We use differential flatness,
and in particular (z,,,u,, ), to refine the problem statement:
instead of requiring p(t) — p, (t) — 0, cf. Problem 1, we will
require z(t) — z,, (t) = O4s.

B. Canonical Form of Slung-Load System

Here we introduce a change of coordinates, illustrated in
Fig. 2, that puts the slung-load system in canonical form. The

4We obtain two solutions: however, only one is feasible, which is the one
that satisfies the requirement that the cable remains taut.



one can go back and forward between solutions to these vector fields

e
1 input transformation original vector field

(7))

z
v.(T,7) &= Z,w(zu)

Fig. 2: Change of coordinates that allows us to obtain the vector field X4 p
in (13), for which the controller design is simpler.

resulting form of the equations is particularly useful in the
controller design stage. Consider the state space

X:={z=(e,v,n,w) € (R*)**:(n,n) =1, (n,w) = 0}.(8)
Given a time instant ¢t € R, consider the change of coordinates
¢, Z— Xand ¢;"' : X = Z defined as

p—p(t) e+p(t)
v —pM(¢t) e+lin
o.(z) = ? o7 () = v+ p® () .9
5 (£72) vy v +IS (@)n

The maps ¢, and ¢;' are analytic, and it is easy to verify
¢, 0 ¢, = idy and ¢;' o ¢, = id;. As such ¢, and
¢, ' are diffeomorphisms. Given x € X, consider the input
transformation v, : R x T,,S* — R3,

v (T, 7):=((m+ M)T — Ml{w,w)) n — MIS (n) 7(10)
where 7' and 7 are new inputs. Consider the notation

w M W w
d'mandD'M<Mm)’ (b
IM+m .
® P R3><3 12

where we emphasize that d, D = 0; when w, W = 0;, and
that d, D have the physical dimensions of linear accelerations.

The vector field (4) in the new coordinates and with the
new inputs takes the form

) d
b= (500 + 40 200 ) | sy

=:Xq,p(t,x,(T,7))

é v
vl T+ (n,D))n—g(t)+d (13)
n| S(w)n
w II(n) (1 + ®(n)D)
where ¢ : R — R?®, hereafter called time-varying gravity

acceleration, is defined as

g(t) = p2(t) + ges. (14)
The vector field X, ;, has a cascaded structure, cf. Fig. 3. This
is the canonical vector field for the slung-load system since it
does not depend on the system’s physical parameters®. These
parameters need to be known when controlling the vector field
of the real physical system (but they do not need to be known
when controlling the canonical vector field).

C. Refined Problem Statement

The result on differential flatness of the slung-load system
(cf. Proposition 4.1) naturally extends to the system in the

SNote that ®(n) := vS (n), with v = %M;[m, depends on the physical
parameters, thus, formally speaking, two slung-load systems have the same
canonical form only if the constant ~y is the same for both. In a true canonical
form, we would replace & = II (n) (7+®(n) D) in (13) with w =TI (n) (7+
S (n) D) where D := ~D is considered as a third unknown disturbance
(in addition to d and D), which has the physical dimensions of an angular
acceleration. However, and for simplicity, we stick to the formulation in (13).

¢ . ‘ Estimators
angular acceleration input linear accelergtion input d. ., D ]_) =Q. (r";U )
Tt (xs) d. = Qs (5,d.)
Dy = Qulws, Dr)
- ) : A
b E > ' dy = Q; o (2,,dr)
angular velocity angular position linear velocity linear position

v
v ="Tn—g(t) é=v

w

w=1I(n)7 n=S8w)n

o a—d )\ a-d . gha S
Goal: w =8 (150=0) 1404 ico, Goal: n = (201 Goal: v =0

known time-varying gravity (g(t) := p.(t) + ges). = g(t) -

Fig. 3: Cascaded structure of the vector field in (13). Note that if we set
p = 0 (which is our goal) then the disturbance d propagates backwards: i.e.,
it propagates to n and w (part of the state), and it propagates to 7 (part of
the input), even though 7 is not immediately affected by d.

new coordinates. For that reason, given the definition of the
equilibrium trajectories and inputs t — (z,.(t), u,(t)) in (7),
we can also define the equilibrium trajectories and inputs in
the new coordinates, namely

te @u(t) = Gulza(t)) e (15
e, (t) 0,
v, (t) 0,
= —d H
E= n, (1) i% _ o,
o()=d \ a(t)—d
w. (1) | S (H.q(t)—du) To(@—dI
and ~
—d
[P0 _[#lo0 —ai - (e o)
. (t) = w(l)(t)_q) ig(t)7—d D i
i | @ To(®=dI .
=Us

as illustrated in Fig. 3.
We can then restate Problem 1 in the new coordinates.
Problem 2: Let (d,D) € R® x R® be some unknown
disturbances, and g : R — R® be some time-varying gravity
acceleration satisfying

inf ||g(t) — d||gs > 0, and (162)

teR

g € C? sup ||g™ (t)]|rs < oo fori € {0,1,2,3}. (16b)
teER

Consider then the vector field X, , in (13), and the desired tra-
jectory R 5t — x,, (t) € X as defined in (15). Design control
laws (T, 7°') : R x X = R x R® such that, along the solution
ts a(t) of @) = X p(ta(t), (Tt 2(t)), 7 (1, 2(1))))
with z(0) € X, C X, it follows that lim,_, ||z(t) —
2., (t)||g1iz = 0 for some dense set of initial conditions X,.

Note that the conditions in (16) are equivalent to the condi-
tions in (6), which guarantee well-posedness of the equilibrium
trajectories. Also, we do not expect to have X, = X because
there are two equilibrium trajectories. Finally note that (16a),
from a controller design perspective is not useful, since it
depends on the unknown disturbance d. This leads us to further
refine our problem statement as follows.

Problem 3: Let the unknown disturbance d € R® be upper
bounded in norm by some known d > 0, i.e., |d]|gs < d. We
seek to solve Problem 2 with (16a) replaced by

inf ||g(t)]|xs > d. (16¢)
teR

Condition (16¢) implies (16a), and is hence more restrictive
on the set of trajectories that the load can track. This conser-
vativeness is unavoidable since d is unknown.



Fig. 4: Phase plot for system described in Example 5.1 with d = 1. Illustration
of equilibria sets X% and X%*: Xr is stable, but not attractive; there is a
subset of Xi which is attractive; X* and X** are neither stable nor attractive;
there is a subset of X* which is attractive. This illustrates the different stability
and attractivity properties of the equilibria sets that emerge when attempting
to accomplish slung-load transportation with unknown wind forces. We also
refer to Remark 5.6 for some further comments on the stability and attractivity
of the latter sets, i.e., X} and X3*.

V. STABILITY AND ATTRACTIVITY OF EQUILIBRIA SETS

In solving Problem 3, we follow a backstepping procedure.
At the end of each step of this, we wish to infer the stability
and attractivity properties of the respective equilibria sets. The
main result presented in this section (cf. Theorem 5.5) serves
exactly this purpose (simpler versions of the result could be
used for the first steps of the backstepping procedure, but
its complete version is necessary in the final steps). Let us
provide an illustrative example, which sheds intuition into the
definitions we present in this section.

Example 5.1: Consider § = w + sin(f)d, where one may
think of § € R as an angular position one wishes to stabilize
at {...,—2m,0,427,...}; think of d € R as an unknown
disturbance; and think of w € R as an input angular velocity.
Consider then the (controlled) system

]  |—sin(0) +sin(0)(d—d)| [6(0) €R
| sin(f)? "1d(0) eR

where one may think of d € R as an estimator for the
unknown disturbance d € R, whose update-law constitutes
the dynamics of the internal state of the dynamic control
law w = —sin(d)(1 + d). Consider the Lyapunov func-
tion V(0,d) :=1—cos(f) + 3(d—d)* >0 and its deriva-
tive W(6,d) = d,V(0,d)0 + d,V(0,d)d = —sin()* <
0, and define X} :={(f,d) € R xR :cos(d) =41} and
X3 :={(0,d) € R xR : cos(f) = 1 and d = d}, cf. Fig. 4.
It then follows that X3 is stable, that part of X7, is attractive,
and that X* and X** are neither stable nor attractive. The latter
can be proven following the steps discussed next. (]
Given manifolds X, E, consider a system in X,

(t) = X (x(t),e(t)) with z(t,) € Xand t, € R, (18)
where X : X x E 3 (z,e) — X(x,e) € T,X is some smooth
vector field and e : R — E is some exogenous input (the vector
field is time-varying, and its dependence on a time instance ¢
comes encapsulated in the form of the exogenous input e(t)).

Definition 1: Consider a smooth map f : X — R", and the
vector field X in (18). If f(z) = df (z)X (x, e) is independent
of e € E for every x € X, we say f € Cx(R™) and define

d\f : X = R, d f(x) = df (2) X ()

] NCY)

(independent of e).

Moreover, note that dy f : X — R™ is itself a smooth map.
Finally, we say that f € Ct(R") if dxf € C&i'(R™), for
k €{2,3,...} (ie., the kth time derivative of f is independent
of e), and we define d* f accordingly. ]

The previous definition means that f € C}(R") if the time
derivative of t — f(z(t)), along solutions of (18), is indepen-
dent of the exogenous input. As a simple example, consider
the vector field (&,,4,) = (25,2, + €¢) =: X(x,e) and the
function f(z) := z,: then f € Cx(R) and d} f(z) = x,. The
next result makes use of the previous definition.

Proposition 5.2: (Barbalat’s Lemma) Let x : [t,, +00) — X
be a complete solution of (18), which remains in a compact
subset of X, and where the exogenous input e : [t,, +00) — E
also remains in a compact subset of E. Finally, consider a map
[ € Cx(R") for which the limit lim,_,, .. f(2(t)) exists. Then,
m, o f(z(t) = lim,, . d5 f(2(t)) = 0..

Proof: The proof follows from an application of Bar-
balat’s lemma [31, Lemma 4.2], which can be invoked if one
concludes that [t,,+00) 3 ¢t — f(z(t)) € R" is uniformly
continuous. In particular, that is the case if [t,, +00) > t —
f(z(t)) € R™ is bounded, which is the case, since

sup | Fa ()| = sup | Ld, £z (t))

t>tg t>tg dt

= sup [|d(d f)(@(£) X (x(t), ()|
ld(d f) (@) X (z; e)|| < oo,

< sup
x €compact subset of X
e€compact subset of E

where the final inequality follows since di f € C'(X) and
since X € C°(X x E). [ |

Now, let there be a candidate Lyapunov function
VX = [0,4+00), (19)

such that V' € C% (R) and with a non-positive derivative along
solutions of (18), i.e.,

W : X = (—00,0], W(z) :=dyV(x) <0. (20)
In addition, let there exist a function w € C%(R"), for some
positive integers n and k, such that®

W(z)=0= w(z)=0,. (21a)
Then, let there be two disjoint sets X%, X* C X,7 such that
V=d\V(z)=0
wV) = diw(z) =0,

X UX: 2dzexX: . .(21b)
w®) = d5w(z) =0,
and such that
X(x,e) € X; forall (z,e) € X} xE, (22a)
X(xz,e) € X* forall (z,e) € X* xE. (22b)

The idea, as illustrated in Fig. 4, is that X* and X* correspond
to two disjoint equilibria sets. Finally, let there be two sets

6 Note that lim,_, ;oo W(z(t)) = 0 # limis oo w(z(t)) = 0,,
but if ¢ — «(¢) lies in a compact set then lim;_, o W(z(t)) = 0 =
lims s 4 0o w(z(t)) = 0.

"By disjoint, we mean that infoca,pep dist(a,b) > 0; ie., if the sets A
and B are not compact, then they cannot “approach each other”.



Xz € X% and X** C X*, such that

— X**
V(r) =0z e Xy ’ (23)
V(x) > 0 for all z € X3 \X1*
V(x) =: V> for all x € X** ’ (23b)
V(z) > V> for all z € X*\X**

for some positive V* > 0. Again, we refer the reader to Fig. 4

and Example 5.1, for an intuition on the sets X** and X**.

We are interested in inferring stability of the set X**, which
begs the question on whether the Lyapunov function V' can
be used for that purpose. The next result, whose proof can be
found in [32, Proposition 2.2], sheds some light into it.

Proposition 5.3: Let (1) M be a manifold; (2) V : M —
[0,00) be a continuous map, and denote M* := {m €
M : V(m) = 0} as the set where V vanishes; (3) for any
Vo > 0, the sub-level set V., is a compact subset of M.
Then, there exists o € K, such that « (disty (m, M*)) <
V(m) for each m € M.

We are also interested in inferring attractivity of the set X7,
and the next remark sheds some light into the latter.

Remark 5.4: (21a) and (21b) provide conditions for es-
tablishing attractivity of the set X% U X*. If we can infer
that V, w,, ..., w, all converge to some constants, then, by
invoking Barbalat’s lemma, we can conclude that V, Wiy oees
w, vanish asymptotically; if a solution is, in addition, trapped
in a compact set, then the latter suffices to conclude that a
solution approaches X7 U X*. Also, (23b) implies that if the
Lyapunov function is ever “below” the threshold V*, then a
solution cannot converge to the set X*, since the Lyapunov
function is non-increasing along any solution. |

With all the above in mind, we can then state our main
theorem, which we invoke several times later in this paper.

Theorem 5.5: Consider the system with the vector field X
in (18), the Lyapunov function V' in (19), and the sets X, X",
satisfying the conditions listed in (20)—(23). Finally,

e let e : R — {compact subset of E};

e let U C X be some invariant subset w.r.t. (18);

e let V., NU form a compact subset of X for any V;, > 0.

For brevity, denote X := XN U, X} := X} NU and X}* :=

X N U. Finally, consider the differential equation

i(t) = X (x(t), e(t)) with z(t,) == z, € X,

for some t, € R. Then, (below, V* is as described in (23b))

1) there exists a unique and complete solution [t,, +00) >
t—x(t) € X to the differential equation above;

2) the sets X* and X* are invariant;

3) the set )N(*+ U )~(j is globally attractive, i.e.,
lim, dist(x(t),f(i UX*) =0, for all (t,,x,) € RxX;

4) the set )~(r is stable;

5) for any € € (0,V*], the set 5(1 N V.. is attractive, i.e.,
lim, .. dist(z(t), X} NV<,) = 0 for all (t,,2,) € R x V,;

6) the sets )~(*j and )N(j are neither stable nor attractive;

7) if Xy = XY, the set )~(jr is (locally) asymptotically stable
and lim, _, . dist(z(t), X ) = 0 for all (t,, 2,) € RxV_y+;
and the set X* is unstable.

Proof: (1) Define V, := V(z,) € [0,00), and note that

V<, is positively invariant since d3 V' is non-positive. Thus,

Vev, NU defines a positively invariant compact subset of X.
Since e is contained in a compact subset of E, and since the
vector field is Lipschitz continuous (X € C*(X x E)), the first
conclusion follows immediately.

(2) This follows immediately from (22a) and (22b), and the
fact that X € C'(X x E).

(3) To prove that the set 5(1 U X* s globally attrac-
tive, recall (21b) and consider the solution [t,,+00) >
t — x(t) € X. Then, note that (a) the solution is
contained in V.y, N U, which is a compact subset of
X; (b,) since V is lower bounded, and since V(z(t)) =
W(z(t)) < 0, it follows that lim, . V(x(t)) exists; (c,)
we can then invoke Proposition 5.2 (Barbalat’s lemma) to
conclude that lim,_, d\V(z(t)) = lim,, . W(z(t)) =
0. (b,) recall (21a); combining (a) (containment in com-
pact subset) and (¢,) (lim,_,. W(z(t)) = 0) it fol-
lows that lim,_ .. w(z(t)) = 0,; (¢;) we can then in-
voke Proposition 5.2 (Barbalat’s lemma) to conclude that
lim, ., w®(x(t)) = lim,_ .. dyw(z(t)) = 0,. We then
“repeat” the later steps ((b,) and (c,)) several times, culmi-
nating in the ones that follow: (b,) recall (21a); combining
(a) (containment in compact subset) with (¢,), (¢1), ..., (Cr_1)
it follows that lim,_, ., w®*=(x(¢)) = 0,; (c,) we can then
invoke Proposition 5.2 (Barbalat’s lemma) to conclude that
lim, ., w®(z(t)) = lim,_,, ., dxw(z(t)) = 0,. (d) finally,
combining (a) (containment in compact subset) with (c,), (c,),
..., (cy,), it follows that lim, . dist(x(t), X1 UX*) = 0.

(4) To prove that the set )~(jr* is stable, note that X3* = V,
(i.e., X7 corresponds to the sublevel set of value 0 of the
Lyapunov function V) and where we emphasize that ' is non-
negative and continuous. We can then invoke Proposition 5.3,
with M = X, M* =X and V' = V] %» to conclude that there
exists a € K> such that « (dist,, (m, M*)) < V(m) for all
m € M. (Thatis, {z € X : V(z) < €} defines a neighborhood
around the equilibrium set X73*, which coincides with the latter
iff e = 0, and which is positively invariant for any € > 0.) This
suffices to conclude that the set )~(jr* is stable.

(5) We know from (3) that the set )~(1 UX* is globally
attractive, and we also know that V(z) > V* for x € X*.
This suffices to conclude that 5(1 NV, is attractive for any € €
(0,V*]: ie., for all (ty,z,) € Rx V., lim, , . dist(z(t), X1 N
V..) = 0. (Technically speaking, 5(1 N V.. is not attractive
since we can pick x, € 5(1 NV.., arbitrarily close to 5(1 NVe.,
whose solution does not necessarily approach )~(jr nV..)

(6) If we prove that X** is neither stable nor attractive, then
we prove also that )N(i is neither stable nor attractive (since
)~(*j - )~(i). The idea is to find an initial condition, arbitrarily
close to the set X**, such that the corresponding complete
solution does not stay arbitrarily close to the set (not stable)
and it does not approach the set (not attractive). Consider the
state space X which can be partitioned in two parts, namely
X = V_y» UV.yx. Moreover, recall from (23b) that V' (x) =
V> for any = € X**. Pick then z, € V_,» and note that we

can pick x, arbitrarily close to the set X C V_y+. Since
V(x(t)) <0, it follows immediately that X** is not attractive

(we found an initial condition arbitrarily close to )~(*j whose
corresponding solution does not approach this set). Moreover,



we know from (3) that )N(*+ U)~(1 is globally attractive, and thus,
given that ¢, € V_,+, it follows that lim, , | ., dist(x(¢), )N(;) =
0; since X and X* are disjoint sets (by assumption), it then
follows that )~(j* is unstable (we found an initial condition
arbitrarily close to X** whose corresponding solution does not
stay arbitrarily close to this set).

(7) If X;. = X, it suffices to combine (4) and (5) to
conclude that Xz is asymptotically stable. The proof for the
indicated subset of the region of attraction is found in the
proof of (5). Lack of stability of X* follows from (6). [ |

Remark 5.6: We cannot prove stability of the set 5(1 NnVe.
because the Lyapunov function V' does not vanish at all points
of that set (it only vanishes at )N(;*); and, as such, sub-level sets
of that V' (which would be positively invariant) do not define
neighborhoods around the set )N(i. In fact there are subsets of
)~(jr which may be unstable, as illustrated in Fig. 4 (one may
argue, by visual inspection, that 5(1 N V<. is stable, but this
conclusion cannot be made by using V). The fact that X* s
neither stable nor attractive does not mean that its region of
attraction is a set of zero measure, as shown in Fig. 4. O

VI. SMOOTH UPDATE LAW FOR DISTURBANCE REMOVAL

In our design, cf. Fig. 3, we rely on four disturbance
estimators. One can observe from (15) that only the dis-
turbance d € R® impacts the equilibrium trajectory, while
the disturbance D € R® does not (D is an input-additive
disturbance, while d is not). Since d € R* is not known, if we
replace it with an estimate d € R®, which is updated according
to some update-law, then such law must satisfy two important
criteria: (1) the estimate d = ci((’)(t) must remain in some ball
of pre-specified radius, so that inf, [|g(£)—d]|| > 0 (and thus,
so that ”zét) 4 is well defined); (2) the update-law d™ must
be at least C ' 1n its domain, so that both the state and input
are continuous (that is, we need t — d© (¢),d® (¢),d® () to
be continuous). Similar issues have been tackled in [23], [24],
which have relied on sufficiently smooth update-laws [33],
while in this paper, we improve on those, by considering a
smooth update-law instead, which we address next.

Definition 2 (Projection operator): Let (I) ¢ € R™ be an
unknown disturbance, and ¢ € R be a known upper-bound
on its norm, i.e., ||q]] < q; (2) ¢ € R™ be an estimate of the
unknown disturbance, and § € R be a pre-specified upper-
bound on its norm, i.e., G, where q7 > q. We assume
that a projection operator exists, of the form

R"xR" > (q",q) — Proj_.(d",q) € R", (27a)
which satisfies the following properties:
1) for any §' : R — R and for some r € (g, §),
B is invariant for §(t) = Proj_ -(q'(t),q(t)). (27b)
2) for all ¢ € B} and for all (4*,¢) € R* x B,
(¢ —¢,Proj, ;(a",q) —q') <0. (27¢)

3) Proj, ; is smooth, i.e., it belongs to C=(R" x B?). (]
Loosely speaking, Proj_ f(q G) accepts ' from a standard
update-law, and modifies q* if the estimate ¢ exits the ball B"
(within which the unknown disturbance ¢ is known to belong
to), while ensuring the estimate ¢ remains in the pre-specified
ball BZ (which is bigger than Bg).

Remark 6.1: The specific form of the projector function is
irrelevant in what follows, provided that the conditions in (27)
are satisfied. For completeness, we present here the chosen
projector: it is inspired by the one proposed in [33] but, unlike
it, in this paper it is smooth and given by
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Proj, (1",) 1= ' — f (157 (i) =g
for some 6 > 0, and where f : R = R is a smooth function
given by f(z):=0if 2 <0and f(z):=e" 5 ifz>0. O

With the concept of projection operator introduced, we now
describe the procedure for designing an update-law. The
strategy we follow is to close the loop assuming a disturbance
q is known, and leading to a closed-loop vector field X,
accompanied by a Lyapunov function V, and equilibria sets
X; , (recall the discussion in the previous section, and let
Xy, = X4 ). All the closed-loop vector fields we consider in
this paper are affine in the disturbance, i.e., X, = X,+FE(¢—¢)
(where FE is some linear map), in which case the procedure
we describe next can be applied. Consider then the system

il =] s

where ¢ € R™ is an unknown disturbance, ¢ € R™ its estimate,
E(x) is a linear map (matrix) from R™ to T,X, and @ is
the update-law associated to the estimator. With the projection
operator in Definition 2 in mind, consider then the update-law
@, accompanied by the Lyapunov function V and its derivative
W along (28), given by

(28)

=:Q(x,4)
Q(x,q) == Proj_ ;(klogy (V;(x))E(x)"VV,(x),q),

V() = oy (Vi(a)) + g lla — 29)
Wiz, d) = logl V()W (a) - 1~ 2 Q0D QD).
<0".(20) <0".127¢)

where k > 0 is a positive gain (integral gain); where V' > 0 is
a positive constant and with the function log, as introduced
in the Notation; and where V, is the Lyapunov function
associated to the vector field X,.

The purpose of the projection function has already been
explained, so let us explain next the purpose of the function
log, with a simple example: suppose, for example, that
V.(xz) = sa?, that we wish to steer x to the origin, and let
q_logv( (2))VV,(2); if V < oo, then § = z(1 + V(z)) ,
which is bounded and vanishes as || — co; while, if V = oo,
then § = x, which is unbounded. That is, if V' = oo, when x
is far away from the origin, then the estimator ¢ changes too
quickly (and it saturates immediately if a projection operator
is used); on the contrary, if V' < oo, when z is far away from
the origin (i.e., when V,(z) > V), the estimate § remains
constant, and it only “starts working” when z is close enough
to the origin (i.e., when V,(z) < V). The effect of V is
illustrated in the simulations at the end of this paper. Also,
there are circumstances when V' < oo is not a valid option.
If we pick V' = oo, then log;, = id;y .., and logi,(-) = 1, in
which case (29) reads as

Q(xv Q) = Projﬁ(kE(x)TV‘/@(:c), ‘j)a



V(@) = Vilw) + o la — Il (30)
W) = W) = 140~ 4. Q(,d) — Qla,d).

The difference between (29) and (30) lies in the fact that
Q@ in (29) requires full knowledge of the Lyapunov function,
while () in (30) does not, which is critical when the Lyapunov
function depends on some “unknown quantity”. For example,
let d be some unknown quantity, V;(z) = 222 + 1 (2, — d)*
and E(z) = (1,0) € R*>*': then E(z)"VV,(z) = =, does not
depend on d, which means the update-law in (30) can be
implemented, while the update-law in (29) cannot. We define
the equilibria sets

Yo ={(z.q):x € X, ;, E(z)(§—q) =0 € T.X},
Yo ={(z.q):zeX,,,d=q},
whose stability and attractivity we study using Theorem 5.5

(to invoke it, we need to introduce the maps, which are specific
to each step of the backstepping procedure discussed next).

VII. BACKSTEPPING DESIGN

We follow a 6-step backstepping procedure, motivating the
necessity and relevance of each step. The presentation at
the end of each step, with the exception of step 1, always
proceeds by stating two propositions and one theorem: the
first proposition describes the set where the Lyapunov function
vanishes and the set where its derivative vanishes; the second
proposition establishes compactness of sublevel sets of the
Lyapunov function; finally, the theorem establishes stability
and attractivity properties of the equilibria sets. The technical
analysis at each step builds upon the results obtained in the
previous step. We present a detailed overview of the design in
the extended version [30]. Here, the section titles are meant
to function as a roadmap of our design.

Before proceeding, we introduce some constants: (1) we
pick g > 0 such that g < inf,x ||g(¢)||; (2) the disturbance
d € R? is bounded by some known upper bound d > 0%; and
we pick d such that d > d, which will be the upper bound on
the estimator we design for d; (3) we pick a constant @ > 0
such that g — (@ + ci) > 0%; (4) the disturbance D € R® also
is bounded by some known upper bound D > 0; and we pick
D such that D > D, which will be the upper bound on the
estimator we design for D; (5) the vector field X, , in (13)
depends on time through the exogenous input ¢ — ¢(t); as we
construct the control law, and close the loop, the vector field
will depend on several derivatives t — g (t),...,g"*(t) of
the exogenous input; we include those derivatives as part of
the state by introducing ¢°, ..., g", and requiring

9'(to) = 9" (to)- (31
A. Step 1: Control with thrust and angular position
Consider the state, state space and vector field
r, € X & (e,1,9") €R® xR x C, (32)

8From the physical system (see (11)), we know that d = %; thus, one
needs to know that the wind force on the load w € R? is bounded in norm
by some known upper bound @ > 0, in which case, d = 2

9The choice of constants g, d, @ is always feasible 1f1nftER llg()]|—d > 0,
as required in Problem 3.

é v
=X, 4p(z1, (T,n,9")):=| v |=[(T+ (n,D))n —¢° +d
g9’ g

where e,v are the linear position, velocity in (8); ¢°, g"
stand for the Oth, 1st derivative of the time-varying gravity
acceleration ¢ +— g(t) in (14) (recall that C* := {g €
R® : |lg| > ¢}); and where the goal is to design a control
law for the thrust 7" and the angular position 7, assuming
that the disturbances d and D are known, and such that
(e,v) — (0s,0;) (recall (15a)). For that purpose, denote the
equilibrium set by

Xi:={x, € Xy :e=0; and v = 0,}.

Next, we list the tools we need to solve this problem.

(33)

Assumption 7.1: Consider a double integrator system
(é,7) = (v,u), with e,v,u as the position, the velocity, the
acceleration input; and recall the constant @ introduced at the
beginning of this section. We assume we have available

Ug 2 R®* X R® 3 (e,v) — uy,(e,v) € B, (34a)
Vi :R* X R® 3 (e,v) — Vi (e, v) € [0,00), (34b)
where u,; is a bounded control law (B2 := {u € R® : |lu|| <

u}) equipped with a Lyapunov function V,;, and such that (1)
14:(05,05) = 05 and V,(e,v) = 0 & (e,v) = (05,05); (2)
Ugs, Vg, € C(R® X R?); (3) any sub-level set of V,, defines a
compact set in R* x R?® (see Proposition 5.3); (4) “Vdi(e, V)’ =
Wale,v) := d,Vy(e,v)v + d,Vy (e, v)ug(e,v) < 0 for all
(e,v) € (R®* x R*)\{(05,05)}. O

We emphasize that the description that follows in the next
backstepping steps is agnostic to the specific form of the
functions u,;, V,; in (34): we only require that they satisfy the
conditions in Assumption 7.1. However, in the next remark,
we present functions that satisfy those conditions.

Remark 7.2: Let k,,k,,0,,0, be positive numbers (pro-
portional and derivative gains and saturations), and let
sat,(z) := o(o® + ||z||*) " 2z. Consider then the double
integrator control law u,;, with © = k, 0, + k,0,, defined as
uq(e,v) := —k,sat, (e)—k,sat, (), and the Lyapunov func-
tion V,, defined as V,.(e,v) := k,0, (\/(e,e) + 02 —0,) +
B(sat,, (e),sat, (1)) + <V’2”>, for some positive number
B < ky (14 k2(4k,)~*)"" (gain that guarantees that V,, has
compact sub-level sets, and that le = W, is negative
definite). The functions u,; and V,; satisfy the conditions in
Assumption 7.1 [30]. [l

Based on (34), let us then define what we label as the desired
three dimensional acceleration, i.e.,
T°¢: X, x B = C?, where € := g — (u
T2 (xy,d) := uy(e,v)
where the meaning of the constants g, u, d was discussed at
the beginning of this section. Note that 7¢ never Vamshes in
its domain, and thus we can define the unit vector T *(a1.d)

T3‘i(11 |l
for any (z,,d) € X, x B%. With the latter in mind, if we pick

the thrust control law TC’ X, X B3 x R®* = R as

TCI(l‘ladaD) || || <|| || >|S—T3d(x1,d)7 (36a)

+d)>0 (35
+go_da



and the angular position control law n' : X, x B% — S* as
Tz, d)

172 (s, )|
it follows immediately that composing the vector field X, ,
in (32) with the control laws T and n* in (36) yields

T, = Xl,d,D(x17 (Td(xh d, D)7 nd(xh d): gl>) =

=:X¢!(z1,9") (independent of d and D)

n(xy,d) : (36b)

é v
v = |ugle,v) (37)
q° g’

Since we are in the first step (and to have a coherent notation
among all the sections/steps that follow), we define
Xi 3y = Vi(xy) :i= V(e v), Wi(x,) := Wy(e,v),

as the Lyapunov function and its derivative at the end of
step 1. Stability and global attractivity of the equilibria set X}
in (33) can be easily inferred from V; and W, (by invoking
the conditions in Assumption 7.1). Next, we introduce a
Proposition, which shall be invoked in the next step.

Proposition 7.3: Consider the time-varying gravity acceler-
ation t — g(t) in (14), and let us define the set U, := {z, €
Xi tinficr [[g@@)] < 19°]] < sup,cq (9 (2)[|}, where by
assumption g < inf,cx [|¢®(¢)| and sup, . |V ()] < oo.
If (31) holds, then U, is an invariant set. Consider also a sub-
level set of V;, i.e., (Vi)<y, for some non-negative V;. Then
(Vi)<v, NU, defines a compact subset of the state space X;.

B. Step 2: Control with thrust and angular velocity

In the second step, we lift the assumption that we control the
angular position n and control the angular velocity w instead.
Consider then the state, state space and vector field
Ty € Xy 1 (24,m,9") € X, X S X R?, (38)

T, Xiap(@, (Tyn,g"))
=X, 00 (T2, (Thw,9°)):5 | 10 | = S(w)n )
g' g9
with z,, X;, X, described in the previous step; where g* stands
for the 2nd derivative of the time-varying gravity acceleration
t — g(t) in (14); and where the goal is to design a control
law for the thrust 7' and the angular velocity w, assuming
that the disturbances d0 and D are known, and such that
(e,v,n) — (05,05, iﬁ) (recall (15a)). For that purpose,
denote the equilibria sets by

0
Xz, = {x €X,:2, €X and n = iM} . (39)
as the two disjoint equilibria sets: later we show that X;, is
asymptotically stable, while X;_ is unstable.'”

Because the angular position n is no longer an input (but
rather part of the state), we then pick a control law for the
thrust 7" such that we minimize the error between the desired
vector field designed in the previous step (X' in (37)) and
the current one: that is

X0, (Ton,g")) = X7 (21,9 o =

'Ox;i depends on the unknown disturbance d (it does not depend on the
disturbance D), and we should highlight that by denoting it instead as X5, ,
(recall Section VI): however, we adopt the former notation to simplify the
exposition.

o _ 3d
= inf (T + (n, D)) n — T (21, d) s , (402)

where T°? was designed in the previous step, in (35). Mo-
tivated by (40a), we define the thrust control law 77"
X, x B2 x R* - R as'!

T (z,,d, D) := (n, T*(z,,d) — D). (40b)
Composing the linear acceleration (¢ in (32)) with the pro-
posed thrust control law yields

v=((T+(n,D))n—g° +d) |T:Tfl(a:2,d,D)
= u(e,v) = || 7% (2, d)|[IL (n) n* (x,, d),
and, thus, it follows that composing the vector field X, ,
in (32) with the control law T in (40b) yields

&y, = Xy ap(wy, (T, n,gl))|T:Tfl(x2,d,D)

(41)

(42)

=:X; (x2,d) (independent of D)
= X (21,9") 1T (2, d) || (&5 @ T (n))n"! (21, d),

where we emphasize the independence of X, in (42) with
respect to the disturbance D (e = (0,1,0) is the second
canonical basis vector in R®, as described in the Notation).
Then, composing the vector field X,,, in (38) with the
control law 77" in (40b) yields

:.C2 = XZ,d,D(m27(Tlcl(m27d7D)7w792>) = (43)
T, Xz, 9") *(e2 @ II (n))n(x,,d)
n| = 05 + S(w)n
gl 03 92
step 1 where x=— || T3% (21 ,d) |

We are thus in conditions of applying a backstepping step.
Let k,, 75, V, be positive gains, and let us then choose the
angular velocity control law

w: X, X By X R® 3 (i, d,d) — w'(2,,d,d) € T,S*
wit(y, d, d) = —koS (n®(z,,d)) n+ (44a)

3d T v T 3d T
H(n)S (n (e, d)) BT Dp et enty - @ab)

Vo T (1, d) | (€3 @ S (n)) " logg, (Vi (1)) VVi(z1), (440)

and where we included the term d (even though it is zero)
just to emphasize its importance: indeed, once we replace d
with its estimate (which is not constant and whose dynamics
we design) that term cannot be neglected. We note that
dsz”’(xl,afT) = —1I, (see (35)), but we kept it in (44b) just
for the sake of clarity. Let us provide a brief description on
the terms in (44) which, altogether, steer the angular position
n to the desired angular position n°(x,,d): (44a) acts as
a proportional feedback term; (44b) is a feedforward term;
and (44c) is a backstepping term.

We then have that the closed-loop dynamics, at the end of
step 2, are given by

Ty=X5 4.0 (2, (T, w, gz))|T:Tfl(xz,d,D),w:wfl(mz,d,Og,)7(45)

::chfd(azg,gf) (independent of D)

where we emphasize that they depend on the disturbance d but
not on D (that is the case, because the thrust input cancels the

""The thrust control law goes through three iterations: that is, we define
Tf’, T;l, and T§L; and where a successor control law is constructed on top
of a predecessor control law.



effect of the disturbance D). We can then define the Lyapunov
function V, , : X, — [0,00), and its derivative W, , : X, —
(—00,0] along the vector field X', in (45), as
Vaa(s) :=logg, (Vi(z1)) +70 (1 = (n,n (21, d))) (46)
W, a(2,) = 10%271(‘/1 ())Wi(z1) —kevo [|S (1) nd(xlvd)Hz 47)
<0 <0
where we emphasize that V, ,, W, , depend on the disturbance
d (but not on D). The purpose of the constant V; is similar to
the purpose of V in Section VI: the backstepping term only
starts working when V;(x,) < V;; and, when V,(x,) > V,,
the proportional and feedforward terms dominate.

We wish to invoke Theorem 5.5, which motivates the intro-
duction of the next two Propositions: the first is concerned with
checking conditions (21) and (23), and the second is concerned
with checking the second and third bullets in Theorem 5.5.

Proposition 7.4: Consider the functions V, 4, W, , in (46)—
(47), and the sets X;_ in (39). It holds that

Vaa(2s) =0, € X, (48a)
Via(2y) = 27, =2V, for all z, € X_, (48b)
Xz, UX; = {2, € Xy : Wy () = 0} (48¢)

Proposition 7.5: Define the set U, := {z, € X, : z, €
U, and ||g']| < sup, l¢(t)||}, with U, as described in
Proposition 7.3. If (31) holds, then U, defines an invariant
set. Moreover, (V. 4)<y, NU, defines a compact subset of X,
for any sub-level set (V ;)<v,.

The proofs for both previous Propositions are straightforward,
and, thus, omitted here'?. All the conditions in Theorem 5.5
are satisfied, which allows us to state the following result.

Theorem 7.6: Consider the vector field X', in (45),
the Lyapunov function V,, in (46), the sets X; 4 in (39),
and let ¢t — ¢®(¢) be contained in a compact subset
(of R®). Finally, consider the differential equation &,(t) =
X', (25(t), g (t)) with 2,(t,) € X,. Then, all the conse-
quences stated in Theorem 5.5 follow.

C. Step 3: Step 2, with unknown disturbance d

In the third step, we lift the assumption that the disturbance
d is known in the thrust and angular velocity control laws, and
we replace it with an estimate @T. In this step, it will become
clear why a second estimator (d., introduced in step 6) for the
disturbance d is necessary. Consider then the state, state space
and vector field

T3 € X3 1 (2,,dr) € X, X BZ:, 49)
L, Xs.4,0(22, (T, w, g*

i’3:X3.d,D($2a(T7Wa92)):¢> :f = “ (x ( Aw g )) )
dr QJ,T(x27dT)

with x,, X,, X, described in the previous step; where dAT stands
for the estimator of the disturbance d; and where the goal is
to reuse the thrust and angular velocity control laws from the
previous step, and design an update l%w Q,.r for the estimator
dr, such that (e, v,n) — g()37 0, iﬂgoglz (recall (15a)), and
such that the estimator d, remains in the ball B (this is
important, as the control laws are not defined if the estimator

12We refer the reader to the proofs of Propositions 7.10 and 7.11, which
contain the same arguments that would need to be invoked here.

exits this domain), cf. Section VI. For that purpose, denote the
equilibria sets by

X, = {z, €X,: 2, € X, and d, = d}
as two disjoint equilibria sets (X}, in (39)).

Because the disturbance d is no longer known by the

controller, we must replace it by its estimate d, in the thrust
control law (77" in (40b)) and in the angular velocity control
law (w¢' in (44)); i.e., we define the new thrust control law
T : X3 x R®* = R and the new angular velocity control law
ws Xy — R? as

T (24, D) := T (x5, dy, D), (51a)

wit(zs) = wit(ws, dr, ciT) with dy = Ps (s, d}) (51b)

Remark 7.7: Note that the angular velocity control law wy'

(50)

in (51b) depends on dy = Py (s, dT), and, ultimately, one
wants w = wg'(z3) to hold. This is the reason why one should
not design an update-law for dy that depends on the angular
velocity w: if one does so, then one designs a control law for
the angular velocity that depends on the angular velocity itself
— this leads to an implicit equation (w = function(w)) which
may, or may not, have a solution. This is the reason why a
second estimator for the disturbance d is necessary. |

Remark 7.8: Note that the angular velocity control law wg'
in (51b) depends on the estimator dynamics, and thus on the
projection function Proj; ; defined in Section VI. In step 5, we
will require the partial derivatives of wg', which then motivates
the necessity of the smoothness properties of Proj; ; (which
must be twice continuous differentiable in our case). O
Composing the linear acceleration (& in (32)) with the control
law in (51a) yields

v=T+ (n,D))n—g"+d) |p—r¢i(as,0) (52)
=u(e,v) — I (n) T* (x,,ds) + (d — dy) =: V' ().

and, thus, it follows that composing the vector field X,
in (49) with the control laws in (51a)—(51b) yields

Ty = X3,d,D(x33 (T;l(x3,D),w§l(x3),gz)) =

::ngd (x3,92) (independent of D)

5.02 _ X;laiT(x?’gz) n (e3® 1) (d_dT)
dr 03 Qé,T(x27 dT) ’
step 2 (independent of d and D)

top is linear in d — drp

Since the vector field in (53) fits with (28), we can then
proceed with the estimator design procedure described in
Section VI. As such, consider the update-law, the Lyapunov
function, and its derivative given by

Qé,T(xm dT)l Vx,d,(x3)7 W3,d,(x3) as in (29), 54

withp=d,p=d, k=ksr, V="V,and V, =V, ;. It follows
immediately from (27b) that d, remains in some closed subset
of B%, and therefore the control law in (51b) is well-defined
(along a solution of &, = X', (z;,9°)).

Remark 7.9: The update-law Qs in (54) depends on
the estimate dr even if the projection operator Proj; ; were
omitted. This is related with the fact that the disturbance d is
not an input-additive disturbance. (]
As in the previous step, we wish to invoke Theorem 5.5, which
motivates the introduction of the next two Propositions.

(53)




Proposition 7.10: Consider the functions V; ,, W, , in (54)
the sets X;, in (50), and, for brevity, denote UX’, = X*
X;. It holds that

Via(ws) =0 2, € X5, (55a)
Via(zs) = logy, (A

=V forall z; € X; , (55b)
Ux:, = {xz € X, : { Vasa” = Woal®) =0 } (55¢)
“v” =vh(x;) =04
with V) and v' defined in (48b) and (52), respectively.
Proof: Veritying (55a)—(55b) is simple, and we ver-
ify only (55¢): (1) from (29), W, ,(xz;) = 0 implies that
W,a(zy) = 0; (2) from (47), I/V2 d(xQ) = 0 implies that
(e,v) = (0;,0,) and that n = + go d i ; (3) combining (1)-
(2), it then follows that “2” = cy— dT =0, & dT =d; (4)
combining (2)—(3), it then follows that n = + |90 d [ |

dl*
Proposition 7.11: Define the set U; 1= {z; € X5 : z, €
U,,d, € B*forar € (d,d)}, with U, as described in
Proposition 7.5. If (31) holds, then U, defines an invariant
set. Moreover, (V;;,d)sv0 N U; defines a compact subset of the
state space X, for any sub-level set (V; ;)<v,-
The proof of this result follows from (27b).

Remark 7.12: Note the subtlety: a sub-level set (V5 ,)<y,
guarantees that dr belongs to a compact subset of R?, but it
does not guarantee that dr belongs to a compact subset of B?
(which is what is important, to guarantee that solutions do not
exit the domain of the functions we designed thus far). That
property is satisfied because the update-law, which makes use
of a projection operator, satisfies (27b). (I

All the conditions required by Theorem 5.5 are satisfied, which
allows us to state the following result.

Theorem 7.13: Consider the vector field X3, in (53), and
the Lyapunov function V5, in (54), the sets X;, in (50),
and let ¢ — ¢®(¢) be contained in a compact subset
(of R®). Finally, consider the differential equation i,(t) =
X' (z5(t), g®(¢)) with z5(t,) € Xs. Then, all the conse-

quences stated in Theorem 5.5 follow.

D. Step 4: Step 3, with unknown disturbance D

In the fourth step, we lift the assumption that the disturbance
D is known in the thrust control law, and we replace it with
an estimate D). Lifting this assumption can only be done
at this point, because the update-law for D, depends on the
estimator d, (which was only introduced in the previous step):
this further explains why removing/estimating the disturbances
in one single step is not possible. Consider then the state, state
space and vector field

2, € Xy 16 (25, Dr) € Xy x R?, (56)
3 X ) T’ ) 2

=Xy 004, (T,w, 9%)): 5163 = w075, ( AW a)) )
D, QA,T(xSaDT)

with x4, X5, X5 described in the previous step; where DT
stands for the estimator of the unknown disturbance D;
and where the goal is to reuse the thrust and angu-
lar velocity control laws from the previous step, and de-
sign an update law Q). r for the estimator ﬁT, such that

(n,D — ﬁT)rl =0, with n = \|q"73:\\

—dy+ (n,D = Dy)n =0, and (n,D — D) =0

no excitation: only ¢ — d, +

excitation:

_ ¢’—dr
Hg“ T~ Teo—drll

- S*sn=

no excitation: the disturbance estimate —d, converges to the line

excitation: the disturbance estimate —d, converges to the real disturbance

Fig. 5: Illustration of equilibria sets X3, in (57) with and without excitation.

(e,v,n) — (03,03, im) (recall (15a))"°.

As in the previous steps, we need to define the equilibria
sets, but, at this point, the equilibria sets depend on an exci-
tation criterion. Consider then the limit w> = lim,_, ., w, (),
which may, or may not, exist (and where w, is the desired
angular velocity defined in (15a)). If w® = 0, let

Xi={a, € Xy @, € X2y, d —dy = (n, Dy — D)n}, (57a)
otherwise, let

c={z € X i, €X;,,dr =d, (n,D — Dy) = 0}(57b)
Finally, denote also
Xi={z, € X, : 2, €X;,,dy = d, Dy = D}. (57¢)

The sets above are equilibria sets, and they depend on the
satisfaction of lim,_,, ., w, (t) = 0;. When the latter condition
is satisfied (“no excitation’), the disturbance estimate a?T does
not necessarily converge to the real unknown disturbance
d. On the other hand, when the condition is not satisfied
(“excitation”), the disturbance estimate cZT does converge to
the real unknown disturbance d (the latter ideas are illustrated
in Fig. 5). This is in contrast with the previous step, where the
disturbance D was assumed known, and where the disturbance
estimate d converges to the real unknown disturbance d
regardless of any excitation criterion.

Remark 7.14: Recall the change of disturbances in (11):
we may think of the estimators (dr,D;) as being associ-
ated to wind estimators (., Wy ). Then, for n = H;;ngzzim’
the condition d — d, + (n, D — D,;)n =0, is satisfied for
(b, Wy) = (w~+ an,W — an), for any a € R. Thus, in
a hovering scenario, where there is no excitation, the wind
estimators do not necessarily converge to the actual wind
forces: that is the case, because the winds cancel each other
along the cable direction. In a non-hovering scenar}o instead
of n = 9%t we have that n(t) = — geﬁp (t)—w

[mges —wll lIm(ges+pic I
and provided that n(t) is always changing, we can ShoW th
the estimators converge to the actual disturbances. ]
As opposed to the previous step, the disturbance D is no longer
known; moreover, recall that, in the latter step, neither the
angular velocity wg', nor the update-law @, ,, depend on D.
Thus, it suffices that we amend the thrust control law 77!
(see (51a)) by replacing the disturbance D with its estimate
ﬁT, i.e., we define a new thrust control law as

T Xy = R, Te (2y) i= TS (25, Do) (58)
Composing » in (32) with the control law 7' (58) yields
7= (T + (n, D)) n — ¢+ d) [y (o) (59)

I{Requiring that D7 remains in some ball of pre-specified size is not as
for dr, as the control laws are well-defined for any D1 in R3.



—II(n) T**(x,,dr) + d —dp + (n,D — D).

=wl(z4)
(We note that v' in (59) is not the same as that in (52), as
they have different domains — i.e., the former “depends” on
z,, while the latter “depends” on x;). For reasons that will
be made clear later, we also need to define the second time
derivative of the linear velocity (jerk), namely

i):dyl(xfl)X‘l,d,D(va(T7w’92))‘T TCl(ac4),w w$§ 13§60)

=:v2(x4) (independent of g2 because 1! does not depend on gt)
Therefore composing the vector field X, , , in (56) with the
thrust control law 77" in (58) and the angular velocity control
law wg' in (51b) yields

= u(e,v)

Ty = Xaap(@a, (T (12),ws' (23), 9%)) (61)
::Xifd7D(.r4,g2)
(z3,9°) ey ® I;)n

9.33 _ XSLLd <n7D_ﬁT><
lDJ _l 0, +l Qar(s,Dy)

step 3 top is linear in D — D
Since the vector field in (61) fits with (28), we can then
proceed with the estimator design procedure described in
Section VI. As such, consider the update-law, the Lyapunov
function, and its derivative given by

Qar (3, Dr)s Viao (2), Waan () as in (29),  (62)
with p = D, p = D, k = kar, V =00 and V, = V.
We must pick V' = co as the Lyapunov function V; , depends
on an “unknown quantity”. We emphasize that the update-

law @, is indeed well-defined and computable, as it is
equivalently expressed as

Qa.r(zs, ﬁT) = Projbvﬁ(*, ﬁT)

* = kaxr((e5 ® I)n,logy, (Vaap (22))VVa.ay (22))1,
i.e., it does not depend on any “unknown quantity”. As in
the previous step, we wish to invoke Theorem 5.5, which
motivates the introduction of the next two Propositions.

Proposition 7.15: Consider the functions V, ., ,, W,.p

in (62), the sets X;, ,X;; in (57), and, for brevity, denote
UX;, = X;, UX;_. It holds that

‘/zldD(le) =0&u2x, € X**
Viap(x,) >0 for all 2, € X3, \X;x

(63)

; (64)

)
Viap(x,) =V =V forall z, € X3* 65)
Viap(xy) > Ve =V forall z, € X;_\X;* ’
““/'4 d” — W4,d,D(x4) — 0

UXi, D@y € X4 0" = vi(z,) =04 (66)
“I/” =y ($4) — 03
with V* , v* and v? defined in (55b), (59) and (60).

Verifying (64)—(65) is simple, and verifying (66) follows
similar steps to those in the proof of Proposition 7.10.
Proposition 7.16: Define the set U, := {z, € X, : z; € U,},
with U, as described in Proposition 7.11. If (31) holds, then
U, is an invariant set. Moreover, (V, . )<y, N U, defines a
compact subset of X, for any sub-level set (V, 4,5)<v,-
All the conditions required by Theorem 5.5 are satisfied, which
allows us to state the following result.

Theorem 7.17: Consider the vector field X', , in (61),
the Lyapunov function V,,, in (62), the sets X;, , Xii

in (57), and let ¢t — g¢g®(t) be contained in a compact
subset (of R?®). Finally, consider the differential equation

a4(t) = X7, p(24(t), g™ (1)) with 2,(t,) € X,. Then, all the
consequences stated in Theorem 5.5 follow.

E. Step 5: Control with thrust and angular acceleration

In the fifth step, we lift the assumption that we control
the angular velocity w and control the angular acceleration 7
instead; and we assume, once again, that d and D are known.
Consider then the state, state space and vector field

5 € X5 & (24,w,9°) € X, x T,S* X R?, (67)

T4 Xiap(xs, (Tyw,g?))
w|=| IMmn)(r+2(n)D) |,
g g9’

with x4, X,, X, described in the previous step”; where ¢*
stands for the 3rd derivative of the time-varying gravity
acceleration t — ¢(t) in (14); and where the goal is to design
a control law for the thrust 7' and angular acceleration T,
assuming that the disturbances d and D are known, and such
that ~ (e,v,n,w) = (03’037iu oS (ugofdn> ]
(recall (15a)). For that purpose, cons1der then the two disjoint
equilibria sets given by

X:, = {x5€X5:x4€X2i,w

t:=X5 00(2s, (T,7,9%)):&

=5 (i) 1t J @39
Xy = {x5 eEXsiz, €XL,w=S (ng%:s”) HL’O d”} (68b)

This step follows the same spirit as that of the second step.
We construct the angular acceleration control law

i Xy X R* x R®P = R?
N (25,d, D) = — k,(w — w(z3)) (69a)
+ I (n) dw (x5) X5 0.5 (s, (T3 (24, w, g°))) (69b)
£ T () (~€5 © 8 (1) 1ogh, (Vi (22))V Vi, (2:X690)
—II(n)®(n)D, (694d)
composed of a proportional term in (69a); of a feedforward
term in (69b); of a backstepping term in (69c); and of a
disturbance cancellation term in (69d). We emphasize that
the control law 77' depends on both disturbances d and D: it
depends on d because of the feed-forward term, and it depends
on D because of the same feed-forward term and because of
disturbance cancellation term.

We then have that the closed-loop dynamics, at the end of
step 5, are given by

&5 = XS‘d,D( (T 79 ))|T T§ (zy),7=1{(25,d,D)> (70)

=:X¢g, plzs5,9%)
where we emphasize that they depend on both d and D. We
can then define the Lyapunov function V; , , : X; — [0, 00),
and its derivative W, , : X; — (—00,0] along the vector

field X', , in (70), as
1
Viap(s) = Viap(ry) + 'Ywin - w;l(x:s)HZ; (71a)

4Technically speaking, the set X5 in (67) cannot be expressed as a Carte-
sian product The correct formulation is {(p, v, g°, n, g* dT7 Dr,w, g°%) €
(R®)*®:¢° € ClnesS’weT,S%}



Wiap(@s) =W, ap(xs) — kue|lw — wi (23)]]* < 0.(71b)

At this point we could state similar conclusions to those
provided in Propositions 7.15 and 7.16, and in Theorem 7.17.

FE Step 6: Step 5, with unknown disturbances d and D

In the sixth and final step, we lift the assumption that
the disturbances d, D are known in the angular acceleration
control law, and replace them with corresponding estimators
d., DT. Consider then the state, state space and vector field

To € Xg 1 (25,d.,D,) € Xs X R® x R®, (72)
i_'5 X5,d,D(x5) (T, T, 93))

¢6:X6,d,D(‘r67(T7 7—793)):<:> C.lr = Qts,T(xf)?dT) )
DT QA,T(xsvDT)

with z,,X,, X; described in the previous step; and where

the goal is to reuse the thrust and angular accelera-

tion control laws from the previous step, and design
update laws for the estimators, sgch that 1(re(:all (15a))

(e,v,n,w) — (04,05, ﬁ;%(:ﬁl),S (HZ":Z\I \gf?—du)‘ For that
purpose, consider then the two disjoint equilibria sets
Xioi={ws€Xems €X:, }, (73a)

X:t = {xﬁ EXgiay €Xt,d=d.,D = DT}. (73b)

As opposed to the previous step, the disturbances d and
D are not known, and their knowledge was required by the
angular acceleration control law 7{' in (69). As such, we
replace those by their estimates, i.e., we define the new angular
acceleration control law 75' : X4 — R® given by

5 (26) = 70 (25,d,, D, ), (74)
where we emphasize that 77" in (69) is affine with respect to

(d, D). The control law 72" in (74) then leads to the closed-
loop vector field

B5 = Xoap(ws, (T35 (24), 75" (26), %)) = Xg,ld,p(xmgs) (75)

B (X)) [ L)Y ) a—a)

dT = 04 + Qé,T(xEH a}) ’

bT 03 QA,T(J:S;DT)
—_—

previous step top is linear in (d — dr) and (D — D7)

for some E,(z;), EA(z;) € R**® (which we omit here for
brevity), and where »_ = Z(a,a):(d,é)z\nd (a.0)=(D.ay- Slnce the
vector field in (75) fits with (28), we can then proceed with
the estimator design procedure described in Section VI. As
such, consider the update-laws, the Lyapunov function, and
its derivative given by

QG‘T(ISa &7)7 ‘/G,d,D('IG)7 WG,d,D(IG) as in (30), (76)
with p = a, ;5 =a, k, = ko, V = oo and Ve =V,ap. We
must pick V' = oo as the Lyapunov function V, , , depends
on unknown quantities. We emphasize that the update-laws
Qs..,Qa . are indeed well-defined and computable, as they

are equivalently expressed as

Qa.- (T, &r):PrOja,a (ka,rEa(xS)T'Yw(w —w(x3)), dr)~

At this point we could state similar conclusions to those

provided in Propositions 7.15 and 7.16, and in Theorem 7.17.
For brevity, we state only the theorem.

Theorem 7.18: Consider the vector field X', , in (75),
the Lyapunov function V;,, in (76), the sets X, , X:%

analyzed vector field

time instant ¢ state x4

52 = X (o, 5°(0)

there is a bijection betwe¢n solutions of these systems

input transformation original vector field coordinate change

(T,71)

v, (T, 7) @.(2)

X
R :

2= Zyw(zu) !
'

1

1

controller internal state dynamics

d, Por(a,dy)

= m e |Dr| = |Parlas D) ||
d. P . (5,d.)
D, Py (25, D)

time instant ¢

r—state
&: internal state of controller

fou(2,6)

dynamic controller

Fig. 6: Dynamic controller in “original coordinates”, and, for each time instant,
there is a bijection between (2(t),£(¢)) and e (t), where the solution for
t — x6(t) has been analyzed in Theorem 7.18.

in (73), and let t — g¢g®(¢) be contained in a compact
subset (of R?®). Finally, consider the differential equation
t6(t) = X'y p(we(t), g™ (1)) with x4(t,) € X,. Then, all the
consequences stated in Theorem 5.5 follow.

The complete control strategy is shown in Fig. 3. For an
underactuated UAV, one may lift the full-actuation assumption:
one would need to add four more additional steps (two steps
to address the UAV attitude dynamics, and two more steps to
design estimators after each of the previous two steps).

G. Complete strategy

We note the constructed controller dynamic, and as such it
has internal states of its own. With this in mind, denote

¢€ & (dy,Dyr,d,,D,) € B x B x BS x B,
with £ as the collection of all the internal states of the dynamic
controller, and  as the domain where £ belongs to. Given any

time instant ¢ € R, consider then the map f;, : Z x — X,
that constructs the state x4 (see (72), ..., (32)), defined as

for(2,6) = (e,v,9°,1,¢" dr, Dr,w,¢°,d., D). (17)

(e,v,n,w)=0¢¢(2) and (dp,Dr,dr,D,)=¢

and gi':g(i')(t) for i€{0,1,2}
The map f;,, for a given time instant ¢, takes a physical
state z and a controller internal state &, and constructs a state
s = fo..(2,€) (We emphasize that this map is a bijection).
With the thrust control law 7' in (58) and the angular
acceleration control law 7' in (74) in mind, we can then
define the complete control law to be applied on the slung-load
system, namely u* : R x Z x — R® given by

ud(t7 2 5) = V¢t(2)(T;l(x4)’ T;L(xﬁ))lzca:ffs,t(zf)’ (78)
with the input transformation v. defined in (10), the change of
coordinates map ¢, defined in (9), and the map f,, defined
in (77). The map u* takes a time instant ¢, a physical state
z and a controller internal state &, and constructs a three-
dimensional force v = u°(t, z, &) that the UAV must apply.

Next, we introduce a constant V' that allows us to construct
a sublevel set where the tension in the cable is guaranteed to be
positive. Note then that the tension in (5), when composed with
the proposed control law in (78), is given by T'(z, u(t, z,&))




which is equivalently expressed as

m( |72 (1, dr)|| {n,n (21, dr)) + (n, D — Dz) | ,(79)
>e =1if Vg=0 =0 if Vg=0
and thus the tension is positive (> me) when the de-
sired trajectory is being tracked (V; = 0), and, by con-
tinuity, it must remain positive when some tracking error
exists (Vs < V). Briefly, the tension is a function of
the state x4, and thus we can find a lower bound on the
tension on a sub-level set of the Lyapunov function V,
i.e., Tension(v) := min, ¢, Tension(zs) (and where we
remind that Tension(0) > me > 0). With the latter in mind, we
can then define V. := miNgemw)<o ¥- The complete control
strategy is shown in Fig. 6, and, next, we present our final
result, which provides a solution to Problem 3.
Theorem 7.19: Given some desired position trajectory p, :
R — R? (such that the conditions in Problem 3 are satisfied),
consider: (/) the slung-load vector field Z,, , as defined in (4)
for some, unknown by the controller, wind forces w, W € R?;
(2) the control law u°" as defined in (78); (3) and the estimator
dynamics = as defined in the diagram in Fig 6. Then,

0] = [Pttt SN 200 € 2]

&(t) E(fo.o(2(2),£(1))) "8 €
Consider also the map fs, in (77), the Lyapunov function
Vsap in (76) and the constant V. Then, for all initial
conditions (,, 25,&,) € R X Z x  such that

L0 = f6,t0(207€0) € (Vs,d,D)<v6*7 (81)
it follows that (recall the equilibrium solution z,, in (7a),
and the equilibria set X, in (73)) (/) there exists a unique
and complete solution [t,,00) 3 t — (2(¢),£(t)) € Z x ;
(2) liMigag 0, x2, )0 SUP, 5. 12(8) — 2.4 (8)]| = O (stability of
z,0)s (3) Um,_, . ||2(t) — 2., (t)|| = 0 (attractivity of z,.);
(4) inf,5,, T(z(t),u(t,2(t),£(t))) > 0 (cable always taut).

Proof: Studying the solution to (80) is equivalent to
studying a solution to (75), where z4(t) := f;,(2(t),£(t)) (for
any time instant ¢, there is a bijection between (z(t),£(t)) and
Zs(t)). With the latter in mind, items (7), (2) and (3) in the
Theorem follow from Theorem 7.18. Item (4) follows from the
fact that any compact subset of the sub-level set (V 4.p)<vg
is positively invariant, and the fact that the tension is strictly
positive inside that compact set. ]

VIII. SIMULATIONS

Here, we provide simulations that validate our convergence
results and also test the robustness of the proposed strategy.

In the simulation, the system has physical constants M =
1.1 kg, m =04 kg, I =1.1 m, and g = 9.81 m/s/s; and the
wind forces are W = 0.1Mg2p N with s = (2,2,1),and w =
0.1mgyer N with s = (1,0,—1) (wind forces corresponding
to 10% of bodies’ weights). The load is required to track the
trajectory p, : R — R® defined as

o . o (7 (sin(2wt), cos(wt), 0)

p(6) = R 257 Ry (25) (PO R0 e )
where R,(«) stands for a positive rotation around the ith axis
by an angle o, r =2 m, h = 0.5 m, and w = 2% Hz (period
of 12 s), which corresponds to an eight-like path in a tilted
plane — in particular, it follows that inf,.x ||ges + p® (¢)|| =

9.0 m/s/s. For the simulations, we let the initial condition
be (p(0), P(0),v(0),V(0)) = (715,715 + les,05,05) and
(d+(0), D-(0),d.(0), D (0)) = (0s,05,05,04). For the con-
troller parameters we take u ~ 0.72 m/s/s, d=15>d=
1.2 > ||d|| = 0.98 m/s/s, D=18>D=15>||D| ~ 121
m/s/s, V, = 1.5 and V, = 1.5. In particular, note that the
condition inf,.q [|g(t)|| — (@+ dr) > 0 is satisfied.

We present several simulations. (/) Default/baseline simula-
tion, where all conditions assumed in the paper are respected.
(2) We assume the model is incorrectly known by the con-
troller (model mismatch), and we implement the controller
with Meoier = 1. 1Mpeqe aANA Lopeoner = 1.11,0005 because the
model is not known we increase (by a factor of ~ 2) the
norms on the estimators, i.e., d=27>d=24 m/s/s,
D =33 > D = 3.0 m/s/s. (3) We take w € {2F,2r 2r
Hz (period of 12, 8 or 6 s), and we investigate the effect
of the excitation criterion on the convergence of the estima-
tors. (4) We take (p(0), P(0),v(0),V(0)) = (201,,201, +
les,515,51,), we take V, = V, € {2,20,200}, and we
observe the effect on the disturbance estimators. (5) We let
the winds be non-constant, i.e., W = O.lMgﬁ N with
s =(2+0.Lcos(t),2 + 0.1sin(¢),1), and w = 0.1mg iy N
with s = (1+0.1 cos(t),040.1sin(¢), —1), and we investigate
the tracking error.

We next comment on these simulations, starting with the
baseline (/). Figs. 7a and 7b illustrate the trajectories of the
dynamics in the environment, while Figs. 7c and 7d show that
the state and input (z,u) converge to the equilibrium state
and input (z,,,u,,) defined in (7). Fig. 7e shows the inputs
coming from the control law in (78), as well as the tension on
the cable (indicating that it remains taut). Finally, Figs. 7f
and 7g show the estimators dT,DT,dT,ET, which do not
converge to the values of the real disturbances. We note that
tracking is always accomplished even if the estimators do not
converge to the real disturbances. The caveat is that trajectories
where the estimators do not match the real disturbances are
attractive but not necessarily stable, while the trajectories
where the estimators match the real disturbances are.

Regarding (2): Fig. 7h shows that, despite the model
mismatch, the state and input still converge to their de-
sired trajectories, owing to the robustness added by the es-
timators. Regarding (3): Fig. 7i shows that, the bigger the
excitation is, the faster the estimators (we show only ciT
and DT) converge to the real disturbances (the excitation
crlterlon is understood as the average of ¢ — w,(t), and
T fo [|w. (t)||dt € {0.06,0.19,0.45} Hz for T' € {12,8,6} s).
Regarding (4): Fig. 7j shows that, the bigger V,,V, are,
the quicker the estimators tend to saturate for “large” initial
conditions — this illustrates the importance of the function log,
in (29) and that V,, V, determine when the estimators (integral-
action) should start working. Regarding (5): Fig. 7k shows
that, tracking still takes places for non-constant winds, owing
to the robustness added by the estimators, which rather than
settling down, try to estimate the time-varying winds.

IX. CONCLUSIONS

We have proposed a dynamic controller for position tracking
of a point-mass load, attached to an aerial vehicle by means
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Fig. 7: Simulations (baseline simulation and simulations under conditions (2) to (5)).

of a cable, and where both the load and the aerial vehicle are
subject to unknown wind forces. We have found a canonical
system, which all slung-load systems can be converted to, and
designed a stabilizing controller for this canonical form. By
imposing conditions on the desired position trajectory and on
the wind on the load, we have guaranteed that a well-defined
equilibrium trajectory exists. This has allowed us to design a
control law following a backstepping procedure, which con-
tains four estimators (each of the two wind disturbances has
two separate effects) and which guarantees that the equilibrium
state trajectory is asymptotically tracked. Finally, we have
established that the designed controller guarantees that the
cable remains taut, for a certain set of initial conditions. Sim-
ulations show that the proposed controller is robust to model
mismatches and that tracking is still accomplished for time-
varying winds. Future work will study and test the effects of
measurement noise, state estimation, unmodeled aerodynamic
forces, and delays in actuation; we will also consider other
methods for the design of the estimators and explore whether
the use of fewer estimators would be sufficient.
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