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Abstract

This paper studies the distributed formation control problem of second-order multi-agent systems (MASs) with limited
communication ranges and collision avoidance constraints. A novel connectivity preservation and collision-free distributed
control algorithm is proposed by combining prescribed performance control (PPC) and exponential zeroing control barrier
Lyapunov functions (EZCBFs). In particular, we impose the time-varying performance constraints on the relative position
and velocity errors between the neighboring agents, and then a PPC-based formation control algorithm is developed such
that the connectivity of the communication graph can be preserved at all times, and the prescribed transient and steady
performance on the relative position and velocity error can be achieved. Subsequently, by introducing the EZCBFs method, an
inequality constraint condition on the control input is derived to guarantee the collision-free formation motion. By regarding
the PPC-based formation controller as a nominal input, an actual formation control input is given by solving the quadratic
programming (QP) problem such that each agent achieves collision-free formation motion while guaranteeing the connectivity
and prescribed performance as much as possible. Finally, numerical simulation is carried out to validate the effectiveness of
the proposed algorithm.

Key words: Distributed formation control, Prescribed performance control, Connectivity preservation, Collision avoidance,
Control barrier function

1 Introduction

Distributed cooperative control of multi-agent sys-
tems has received considerable attention due to its
wide applications including explorations, surveillance,
monitoring and localization (Ren, Beard, Atkins,
2007). In general, specific problems of cooperative
control have been considered including consensus,
flocking, coverage, rendezvous and formation control
(Dimarogonas, Kyriakopoulos, 2007; Oh, Park, Ahn,
2015). In particular, the formation control of MASs is
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to derive a group of agents to form and maintain a
prescribed formation configuration such that complex
missions can be accomplished in a collaborative manner.

For the formation control problem of multi-agent
system, most research results (e.g. Abdessameud, Tayebi
(2011); Deghat, Anderson, Lin (2015); Lee, Ahn (2016);
Li, Ge, He, et al. (2019); Lin, Wang, Han, Fu (2014))
assume that the communication graph is connected all
the time and the communication ranges of all the agents
are unlimited. Such an assumption, however, can not
be satisfied in many practical applications since each
agent has only limited communication ranges and the
communication link of two agents may be lost if their
distance is larger than the allowable communication
ranges. This fact motivates the study of the connectivity
preservation problem of MASs. In addition, consider
that each agent has a geometrical size instead of being
a mass point in practical applications and the collisions
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may occur when the distance between two agents is
very small. Therefore, the collision avoidance problem is
another basic problem of MASs.

The connectivity preservation or collision avoidance
problem for multi-agent system has been widely studied
in the related literature. For instance, a centralized
control algorithm was first proposed by employing
the Laplacian matrix such that the connectivity
preservation can be guaranteed in Zavlanos, Pappas
(2007). Note that the centralized method in Zavlanos,
Pappas (2007) involves the global information that
is generally unavailable for each agent. To deal with
this issue, some distributed connectivity preservation
algorithms have been proposed for first-order, second-
order integrator and nonholonomic MASs (Ajorlou,
Aghdam, 2013; Dong, Su, Liu, Xu, 2018; Ji, Egerstedt,
2007). In addition, by considering collision avoid-
ance and connectivity problems simultaneously, some
collision-free and connectivity preservation distributed
algorithms were proposed for various MASs (Feng, Hu,
2019; Meng, Lin, Ren, 2012; Poonawala, Satici, Eckert,
Spong, 2014). Note that most results on connectivity
preservation or collision avoidance are based on the
potential function method. The main issue of the
potential-based approach is the existence of local
minima due to the conflicting objectives (Ge, Fua, 2005;
Verginis, Nikou, Dimarogonas, 2019).

Different from the potential function methods, the
prescribed performance control (PPC) method orig-
inally proposed in Bechlioulis, Rovithakis (2008) is
also applied to solve the connectivity preservation or
collision avoidance problem of formation control. In such
a case, the collision or connectivity constraint can be
transformed into the boundary constraints on the system
states and these constraints can be satisfied all the times
via the PPCmethod. In addition, a prominent advantage
of the PPC method over potential function method is
to guarantee the closed-loop system can achieve the
prescribed transient and steady control performance,
such as convergence speed, and maximum steady state
error bounds. Inspired by these properties, some PPC-
based distributed control algorithms were proposed to
achieve formation control with connectivity preservation
or collision avoidance. For instance, the longitudinal
formation control problem with connectivity and
collision constraints for large platoons of vehicles
was considered in Verginis, Bechlioulis, Dimarogonas,
et al (2017) while the PPC-based algorithm was
proposed for the case of one dimension space. In
Yoo, Park (2017), a distributed error transformation
strategy as a special case of PPC method was
proposed to solve the connectivity preserving problem
of non-holonomic multi-robot system. In Verginis,
Nikou, Dimarogonas (2019) and Mehdifar, Bechlioulis,
Hashemzadeh, Baradarannia (2020), the formation
control algorithms via PPC method were proposed
to guarantee the satisfaction of the connectivity and

collision avoidance constraints. Note that the proposed
algorithms in Mehdifar, Bechlioulis, Hashemzadeh,
Baradarannia (2020); Verginis, Nikou, Dimarogonas
(2019) are distance-based without involving global
position measurements, but require the communication
graph to be a tree structure or the minimally rigid
condition of the formation graph, and only guarantee the
collision avoidance among the agents that are initially
connected rather than all the agents in the formation.

Motivated by above discussions, this paper focuses on
the distributed formation control problem for second-
order multi-agent system with limited communication
ranges and collision constraints. Firstly, we propose
a PPC-based distributed control algorithm to achieve
the desired formation control with preserved connec-
tivity and prescribed performance. Subsequently, the
inequality constraint condition on the control input
is derived by using the exponential zeroing control
barrier Lyapunov functions (EZCBFs) method to
guarantee the collision avoidance among the agents. By
considering the PPC-based controller as a nominal one,
we derive an actual control input by solving a quadratic
programming (QP) problem with the collision avoidance
constraint to achieve the collision-free, prescribed
connectivity and prescribed performance formation
control objective. Compared with the related results,
the main contributions of this paper are three fold.
(i) We develop a novel distributed formation control
algorithm for second-order MASs by combining PPC
and EZCBFs methods, which not only guarantees
the connectivity preservation and collision avoidance,
but also achieves the desired formation control with
the prescribed transient and steady performance. (ii)
We extend the formation algorithms in Verginis,
Nikou, Dimarogonas (2019) and Mehdifar, Bechlioulis,
Hashemzadeh, Baradarannia (2020) to a displacement-
based PPC control one, which can be applied to the
case of a general communication graph and achieving
the collision avoidance problem among all the agents
rather than only the initially connected ones. (iii)
The proposed PPC-based formation control algorithm
can be also applied when the input disturbance is
considered. Compared with the related results in Dong,
Su, Liu, Xu (2018); Feng, Hu (2019) where the steady-
state error were shown in a conservative residual set
relying on the control parameters and some unknown
constants, the proposed formation algorithm guarantees
the steady-state errors within the prespecified bounds
only determined by the performance parameters.

The organization of the paper is as follows. In Section
2, the formation control problem is formulated. A
PPC-based formation controller as a nominal one and
collision-free formation controller are derived in Section
3. Numerical simulation is carried out in Section 4 and
some conclusions are drawn in Section 5.
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2 Problem statements and preliminaries

Notation: Let Rn×n and Rn be the sets of n × n real
matrices and n-dimension real vectors. For any vector
x = [x1, . . . , xn]

T ∈ Rn, ∥x∥∞ = max(x1, . . . , xn)
denotes its infinite norm, and ∥x∥ = (

∑n
i=1 x

2
i )

1/2

denotes its 2-norm. Let In be identity matrix in n
dimensions, Kn = {1, 2, . . . , n} be the set of the natural
numbers from 1 to n, diag([xi]i∈Kn) denotes the diagonal
matrix with diagonal entries being x1 to xn, and ⊗
be the Kronecker product. For any square matrix A,
let λmin(A) and λmax(A) denotes the minimum and
maximum eigenvalues, respectively.

In this section, we consider a group ofN agents and their
dynamics are described as

ẋi = vi, v̇i = ui, (1)

where xi, vi ∈ Rn are the position and velocity vectors of
the ith agent, respectively, ui ∈ Rn is the control input
to be designed later. Here, without loss of generality,
n = 1, 2, 3 denotes the one, two and three dimensional
space, respectively. The communication amongN agents
is described by an undirected graph G = (V, E), where
V = {1, 2, . . . , N} is the node set and E = {(i, j) ∈
V × V|j ∈ Ni} is the edge set. We consider that
each agent exchanges information with the other agents
within its limited communication range. In particular,
the neighbors of agent i are defined as Ni(t) =
{j ∈ V | ∥xi(t) − xj(t)∥∞ ≤ Rs}, where Rs is the
communication range of the agents. The communication
graph G(t) at the initial t = 0 is denoted by G0 = (V, E0)
with E0 = {(i, j)|j ∈ Ni(0)}. Let m = |E0| be the
number of the edges of the graph G0. Since the graph
G0 is undirected, we can arbitrarily assign the edge
direction of the graph G0 and then define its incidence
matrix B = [bij ] ∈ RN×m. The rows and columns of
B are indexed by the vertices and edges, respectively.
In particular, bij = 1 if the node i is the head of the
edge j, bij = −1 if i is the tail of the edge j and
bij = 0 otherwise. The Laplacian matrix of G0 can be
defined as L = BBT . It is easily obtained that L is
symmetric and semi-definite matrix. If the graph G0 is
connected, L has a simple zero eigenvalue such that
λN (L) ≥ . . . ≥ λ2(L) > λ1(L) = 0, where λi(·) is the ith
eigenvalue. Moreover, for any vector x ∈ RN satisfying
1TNx = 0, it follows that xTLx ≥ λ2x

Tx.

Remark 2.1 We use the infinity norm ∥ · ∥∞ instead of
the distance 2-norm ∥ · ∥ to define the neighbor set. The
main reason is that the constraint on ∥x∥∞ for any vector
x ∈ Rn can be equivalently transformed into a constraint
on its elements. This property is beneficial for designing
PPC-based formation algorithm in the following part.
Since ∥x∥ ≤ Rs implies that ∥x∥∞ ≤ Rs/

√
n holds,

we know that ∥ · ∥∞ is a conservative way to define the
communication ranges than ∥ · ∥2 except n = 1.

In this paper, the formation control problem of second-

order MASs is considered. Based on the relative position
of the agents, the desired formation configuration is
given by Ft = {x | xi − xj = δdesij , i, j ∈ V}, where
x is the stack vector of xi, δ

des
ij = δdesi − δdesj ∈ Rn

is the desired position offset between agents i and j.
The desired position offset δdesij is properly defined such
that the target formation configuration can be well-
defined and is unique. In addition, the definitions of the
connectivity preservation, collision avoidance and the
allowable desired formation configuration Ft are given
as follows.

Definition 2.1 The desired formation configuration Ft

is feasible if the following conditions holds: (i) the
communication topology of Ft is connected. (ii) Ft is
collision-free, i.e, ∥δdesij ∥ > Dc for any i, j ∈ V.

Definition 2.2 Agents i, j ∈ V are said to achieve
collision avoidance if ∥xi(t) − xj(t)∥ > Dc holds for
t ≥ 0, i, j ∈ V, where Dc > 0 is the collision distance.

Definition 2.3 The connectivity of the initial graph G0

is preserved if ∥xi(t)− xj(t)∥∞ ≤ Rs holds for all t ≥ 0
given that ∥xi(0)− xj(0)∥∞ ≤ Rs.

Assumption 2.1 The desired formation configuration
Ft is feasible.

Assumption 2.2 The initial graph G0 is connected, and
is congruent with the desired formation configuration Ft,
namely, if the edge (i, j) ∈ E0, then its desired offset δdesij

in Ft is connected, i.e., ∥δdesij ∥∞ ≤ Rs, ∀(i, j) ∈ E0.

Remark 2.2 The connectivity of the initial graph is a
standard condition in the coordinated control of MASs.
In addition, the congruent requirement is necessary to
preserve the connectivity of the initial graph G0 in the
desired formation.

The control objective of this paper is to design a
distributed control strategy for second-order MASs such
that the following requirements are satisfied:

(1) The connectivity of the initial graph G0 is preserved,
i.e., if ∥xi(0) − xj(0)∥∞ ≤ Rs holds for any edge
(i, j) ∈ E0, then ∥xi(t)−xj(t)∥∞ ≤ Rs for all t ≥ 0;

(2) The collision of all the agents is avoided, i.e.,
∥xi(0) − xj(0)∥ > Dc, then ∥xi(t) − xj(t)∥ > Dc

for all i, j ∈ V.
(3) The desired formation configuration Ft

is achieved, i.e., limt→∞(xi(t) − xj(t)) = δdesij and
limt→∞(vi(t)− vj(t)) = 0 for all i, j ∈ V.

3 Main results

In this section, we first propose PPC-based formation
control algorithm to achieve the desired formation
control with connectivity preservation and prescribed
convergence. Secondly, the collision avoidance require-
ment is handled by using the EZCBFs method, and
a necessary modification to the PPC-based formation
controllers as the nominal ones is obtained by solving
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QP problem in a distributed manner such that
each agent achieves collision-free formation motion
while guaranteeing the connectivity and prescribed
performance as much as possible.

3.1 PPC-based formation control

For each edge k , (i, j) ∈ E0 of the initial graph G0, we
define the relative position error

ek , eij = xi − xj − δdesij , (2)

with k ∈ Km = {1, 2, . . . ,m} and m = |E0| being the
number of initial edges. In this section, the prescribed
performance control (PPC) method, originally proposed
in Bechlioulis, Rovithakis (2008), is introduced to
achieve two objectives: (i) the prescribed transient
and steady performance with respect to the relative
position error ek; (ii) the connectivity preservation of all
initially connected edges k ∈ E0. Similar to the results
in Bechlioulis, Rovithakis (2008), the mathematical
expression of prescribed performance in term of relative
position error ek is given by

−Mµ
ijρ

µ
ij(t) < eµk(t) < M

µ

ijρ
µ
ij(t), k , (i, j) ∈ E0, (3)

where eµk denotes the µth element of ek, µ ∈ Kn =
{1, . . . , n}. Mu

ij ,M
u

ij are positive parameters and will
be appropriately selected in the following to guarantee
the connectivity of the graph G0. ρµij(t) = (1 −
ρµij,∞/max(Mµ

ij ,M
µ

ij))e
−πijt+ρµij,∞/max(Mµ

ij ,M
µ

ij) is
a smooth, positive and monotonically decreasing
performance function. Note that limt→∞M

µ

ijρ
µ
ij(t) =

M
µ

ij

max(Mµ
ij
,M

µ

ij)
ρµij,∞ ≤ ρµij,∞, where ρµij,∞ > 0 represents

the maximum allowable steady state error. In addition,
the parameter πij denotes the lower bound on the
convergence speed of eµk . By specifying the parameters
πij , ρ

µ
ij,∞, the prescribed transient and steady perfor-

mance can be obtained.

Next, the parameters Mµ
ij ,M

µ

ij are chosen to guarantee
the connectivity of the initial graph G0. Note that
∥xi(0)−xj(0)∥∞ ≤ Rs can be equivalently transformed
element-wise for each dimension as

|xµi (0)− xµj (0)| ≤ Rs, ∀(i, j) ∈ E0, (4)

with xµi being the µth element of xi, µ ∈ Kn. Then, in
terms of the relative position error ek, (4) is written as

−(Rs + δdesij,µ) < eµk(0) < Rs − δdesij,µ, (5)

where δdesij,µ is the µth element of δdesij , µ ∈ Kn. In
particular, we can select the parameters asMµ

ij = Rs −
δdesij,µ,M

µ

ij = Rs+ δ
des
ij,µ, and one can derive thatMµ

ij > 0

andM
µ

ij > 0 from Assumption 2.2. Then, it follows that

−Mµ
ijρ

µ
ij(0) < eµk(0) < M

µ

ijρ
µ
ij(0) holds. Based on the

decreasing property of ρµij(t), it follows from (3) that

−Mµ
ij < eµk(t) < M

µ

ij for any t ≥ 0, which implies
∥xi(t) − xj(t)∥∞ ≤ Rs holds for all t > 0. To this end,
we have shown that the connectivity of the initial graph
G0 is preserved if the inequality condition (3) is satisfied
and Mµ

ij ,M
µ

ij are chosen according to (5).

We introduce a model transformation such that the
control design problem with the state constraint (3)
can be transformed into an unconstrained one. Define
the modulated error zµk = (ρµij)

−1eµk and obtain its

domain Dzu
k
= {zuk : zuk ∈ (−Mu

ij ,M
u

ij)}. Then, a model
transformation error with respect to zuk is derived as

εµk = T (zµk ) = ln(
1 + (Mµ

ij)
−1zµk

1− (M
µ

ij)
−1zµk

), (6)

and it is easily verified that T (zµk ) is a smooth and
monotonically increasing function satisfying T (0) = 0,
and its range is (−∞,∞). Thus, we get that if the
transformed error εµk is bounded, then zµk is always
constrained in the region Dzµ

k
. This also implies that

the inequality constraint (3) is satisfied all the time.
Differentiating (6) can yield

ε̇k = Jzk(zk, t)(ėk + αkek), (7)

where εk, zk ∈ Rn are the stack vector of εµk , z
µ
k , µ ∈ Kn.

αk = diag([αk,µ]µ∈Kn), αk,u = − ρ̇µ
ij

ρµ
ij

and Jzk(zk, t) =

diag([Jzµ
k
]µ∈Kn), Jzµ

k
=

∂T (zµ
k
)

∂zµ
k

1
ρµ
ij
. Based on the results

in Eq. (16) of Karayiannidis, Papageorgiou, Doulgeri
(2016), we get the following inequality eTk Jzk(zk, t)εk ≥
ϖ1,kε

T
k εk for some positive constantsϖ1,k. These results

are useful for the stability analysis.

Besides the prescribed bound constraints on the relative
position error ek, k ∈ E0, the performance constraints
on the relative velocity are also considered. To this end,
we introduce a linear combined error of relative position
and velocity for each edge k ∈ E0 as

sk , sij = vij + λseij , (8)

where vij = vi − vj and λs is a positive constant.
The prescribed performance constraint on the combined
error sk = [s1k, s

2
k, . . . , s

n
k ]

T is given as

−bµkw
µ
k (t) < sµk(t) < b

µ

kw
µ
k (t), (9)

where bµk , b
µ

k > 0, µ ∈ Kn andwµ
k = (wµ

k,0−w
µ
k,∞)e−ckt+

wµ
k,∞ is the performance function with the parameters

wµ
k,0, w

µ
k,∞ > 0 and ck > 0. Define the modulated error

yµk =
sµ
k

wµ
k

and its domain is Dyµ
k
= {yµk : yµk ∈ (−bµk , b

µ

k)}.
Let yk be the stack vector of yµk . Similar to (6), we have
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the transformation error ζk = T (yk) and its derivative is

ζ̇k = Jyk
(yk, t)(ṡk + βksk), (10)

where Jyk
(yk, t) and βk have the same formulations

as Jzk , αk in (7). Similar to (7), we have that
sTk Jyk

(yk, t)ζk ≥ ϖ2,kζ
T
k ζk with ϖ2,k > 0.

To guarantee that the inequality constraints (3) and (9)
holds for any t ≥ 0, we develop a PPC-based formation
control algorithm as

ui =− γ1
∑

j∈N̄i(t)

sij − k1
∑

j∈N̄i(t)

Jzij (zij , t)εij (11)

− k2
∑

j∈N̄i(t)

Jyij (yij , t)ζij ,

where γ1, k1, k2 are positive constants and N̄i(t) =
Ni(t) ∩ Ni(0) denotes the intersection of the agent i’s
neighbor sets at the moments t and t0 = 0. This
indicates that only communication among the initially
connected agents are considered for all t ≥ 0. The
controller (11) is composed of three parts. The first part
is the consensus term of the combined error sij , and
the second and third parts are based on the prescribed
performance of the relative position error eij and sij ,
respectively. Note that ρµij = ρµji, w

µ
ij = wµ

ji, ∀(i, j) ∈ E0,
µ ∈ Kn. Also, we can derive that T (zij) = −T (zji)
and Jzij (zij , t)εij = −Jzji(zji, t)εji. Similarly, T (sij) =
−T (sij) and Jyij (yij , t)ζij = −Jyji(yji, t)ζji can be
obtained. Based on these results, the controller (11) can
be written in a vector form as

u =− γ1(B(t)⊗ In)s− k1(B(t)⊗ In)Jz(z, t)εe
− k2(B(t)⊗ In)Jy(y, t)ζs, (12)

where u is the stack vector of ui, B(t) is the incidence
matrix of the subgraph of the graph G(t), Jz(z, t)
and Jy(y, t) are time-varying diagonal matrix with the
diagonal elements Jzk(zk, t), Jyk

(yk, t) and s, εe, ζs are
the stack vectors of sk, εk, ζk, k ∈ Km.

Theorem 3.1 Consider the second-order MASs (1).
Under Assumptions 2.1-2.2 and the chosen parameters
λs > πij , ∀(i, j) ∈ E0, γ1 > λs/λ2(L), k1 > 0, k2 > 0,
the proposed distributed algorithm (11) guarantees that
the prescribed performance constraints (3) and (9) hold
for any t ≥ 0. Moreover, limt→∞(xi(t) − xj(t)) = δdesij

and limt→∞(vi(t)−vj(t)) = 0, ∀i, j ∈ V with exponential
convergence.

Proof: The proof of Theorem 3.1 includes three Steps.

Step 1: We first show the existence of a unique maximal
solution for the variable Λµ

k(t) = [zµk (t), y
µ
k (t)]

T over the
setDzµ

k
×Dyµ

k
for a time interval [0, τmax). Differentiating

Λµ
k(t) = [zµk (t), y

µ
k (t)]

T yields

Λ̇µ
k(t) = [żµk (t), ẏ

µ
k (t)]

T = [fe(z
µ
k , t), fs(y

µ
k , t)]

T , (13)

where fe(z
µ
k , t) = (ρµij)

−1(vµij − ρ̇µije
µ
ij) and fs(y

µ
k , t) =

(wµ
k )

−1(v̇µij + λkv
µ
ij − ẇµ

ks
µ
k). Selecting the parameters

Mµ
ij ,M

µ

ij , b
µ
k , b

µ

k in (3) and (10), we obtain that Dzµ
k
×

Dyµ
k
is nonempty and open, and Λµ

k(0) ∈ Dzµ
k
× Dyµ

k
.

Moreover, in the bounded set Dzµ
k
×Dyµ

k
, we obtain that

fe(z
µ
k , t), fs(y

µ
k , t) are continuous and locally Lipschitz.

Thus, the conditions of Theorem 54 in Sontag (1998)
are satisfied, and then the existence and uniqueness of
a maximal solution Λµ

k(t) = [zµk (t), y
µ
k (t)]

T ∈ Dzµ
k
×Dyµ

k

can be guaranteed for ∀ t ∈ [0, τmax).

Step 2: We next prove that algorithm (11) guarantees
Λµ
k = [zµk , y

µ
k ] evolving in a bounded and compact subset

ofDzµ
k
×Dyµ

k
for ∀t ∈ [0, τmax), and τmax can be extended

to ∞ by contradiction. This implies that the constraints
(3) and (9) are satisfied all the time.

From Step 1, it follows that zµk (t) ∈ Dzµ
k
, ∀t ∈ [0, τmax).

This implies that any edge in the initial graph G0 is
always connected for all t ∈ [0, τmax). It then follows
that N̄i(t) = Ni(t) ∩ Ni(0) = Ni(0) and B(t) = B, ∀t ∈
[0, τmax), which implies that the graph G(t) is fixed for
any t ∈ [0, τmax). Denote the formation center as xc =
1
N

∑N
i=1 xi and its derivative is vc = ẋc = 1

N

∑N
i=1 vi.

The relative position and velocity errors with respect
to (xc, vc) for each agent i ∈ V are defined as x̄i =
xi−xc−δdesi and v̄i = vi−vc, respectively, where δdesi is
the absolute desired position offset of agent i ∈ V with
respect to xc. It then follows that x̄ = (Q ⊗ In)(x −
δdes) and v̄ = (Q⊗ In)v, where Q = IN − 1

N 1N1TN and
x̄, v̄, x, v, δdes are the stack vector of x̄i, v̄i, xi, vi, δ

des
i ,

respectively. Based on QB = B and (12), it follows that

˙̄v =− γ1(B ⊗ In)s− k1(B ⊗ In)Jz(z, t)εe (14)

− k2(B ⊗ In)Jy(y, t)ζs.

We consider the following Lyapunov function

Ve(x̄, v̄, εe) = γ1λsx̄
T (BBT ⊗ In)x̄+ λsx̄

T v̄

+
1

2
v̄T v̄ +

k1
2
εTe εe.

Note that λ2(L)x̄
T x̄ ≤ x̄T (BBT ⊗ In)x̄ = x̄T (L ⊗

In)x̄ ≤ λN (L)x̄T x̄, and then it follows that Ve(x̄, v̄, εe) ≥
γ1λsλ2(L)x̄

T x̄ + λsx̄
T v̄ + 1

2 v̄
T v̄ + k1

2 ε
T
e εe is positive

definite if the inequality 2γ1λ2(L) > λs is satisfied.

From the definitions of ek, sk, k ∈ E0, it follows that
e = (BT ⊗ IN )x̄ and s = (BT ⊗ In)(v̄+λsx̄), where e is
the stack of ek. Based on (7) and (14), the derivative of
Ve(x̄, v̄, εe) is obtained as

V̇e(x̄, v̄, εe) = 2γ1λsx̄
T (BBT ⊗ In)v̄ + λsv̄

T v̄

+ (v̄ + λsx̄)
T {−γ1(B ⊗ In)s− k1(B ⊗ In)Jz(z, t)εe

− k2(B ⊗ In)Jy(y, t)ζs}+ k1ε
T
e Jz(z, t)(ė+ Ξe)

≤ −γ1λ2sx̄T (L⊗ In)x̄− v̄T ((γ1L− λsIN )⊗ In)v̄

− k2s
TJy(y, t)ζs − k1ε

T
e Jz(z, t)(λsINm − Ξ)e,
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where Ξ = diag([αk]k∈Km). According to (7), we have

that αk,u = − ρ̇µ
ij

ρµ
ij

= πij(ρ
µ
ij−ρ

µ
ij,∞)/ρµij < πij . Note that

−k2sTJy(y, t)ζs ≤ −min(ϖ1,k)k2ζ
T
s ζs ≤ 0 and x̄T (L ⊗

In)x̄ ≥ λ2(L)x̄
T x̄. Then, if the parameters λs, γ1 are

chosen such that λs > πij and γ1 ≥ λs

λ2(L) , it follows that

V̇e ≤ −γ1λ2(L)λ2sx̄T x̄− l1v̄
T v̄ − k1l2ε

T
e εe, (15)

where l1 = γ1λ2(L)−λs > 0 and l2 = min(λs−πij) > 0.
This infers that Ve(t) ≤ Ve(0),∀t ∈ [0, tmax) and further
derive that εTe εe ≤ 2

k1
Ve(0). Since Ve(0) is bounded, we

have that ∥εk∥ is bounded and there exists some positive
constant ϵ0 such that |εµk | ≤ ϵ0, µ ∈ Kn holds. Taking
the inverse logarithmic function of (6), it follows that

−Mµ
k < −e

−ϵ0 − 1

e−ϵ0 + 1
Mµ

k < zµk (t) <
eϵ0 − 1

eϵ0 + 1
M

µ

k < M
µ

k ,

for ∀t ∈ [0, τmax). It is shown that algorithm (11)
guarantees zµk always evolving in a compact subset

D′

zµ
k
= [− e−ϵ0−1

e−ϵ0+1
Mµ

k ,
eϵ0−1
eϵ0+1M

µ

k ] of Dzµ
k
.

We next show that sµk also evolves in a compact subset
of Dsk . Differentiating s = (BT ⊗ In)(v̄+λsx̄) along the
trajectory of (14) yields

ṡ(t) = −γ1(BTB ⊗ In)s− k1(B
TB ⊗ In)Jz(z, t)εe

− k2(B
TB ⊗ In)Jy(y, t)ζs + λs(B

T ⊗ In)x̄.

Consider the Lyapunov function Vs(x̄, v̄, ζs) =
1
2ζ

T
s ζs +

θ
2 (v̄+λsx̄)

T (v̄+λsx̄) with a positive constant θ, and its
derivative is simplified as

V̇s ≤− θγ1s
T s− ζTs Jy(y, t)(θk2INm − β)s

− k2
4
ζTs Jy(y, t)(B

TB ⊗ In)Jy(y, t)ζs +∆s

≤− lsζ
T
s ζs − θγ1λ2(L)(v̄ + λsx̄)

T (v̄ + λsx̄) + ∆s

≤− δsVs +∆s, (16)

where δs = min(2ls, 2γ1λ2(L)) > 0, ls = min(ϖ1,k(θk2−
βk)) > 0 when the parameter θ is chosen
such that θ > max(βk)/k2. In addition, ∆s =
k2
1

k2
εTe Jz(z, t)(B

TB⊗ In)Jz(z, t)εe+ γ2
1

k2
sT (BTB⊗ In)s+

λ2
s

k2
v̄T v̄−θk1sTJz(z, t)εe +θλs(v̄+λsx̄)T v̄. Based on the

results of Step 1, one can derive that x̄(t), v̄(t), εe(t)
are all bounded for ∀t ∈ [0, τmax). In addition, note
that sT s = (v̄ + λsx̄)

T (L ⊗ In)(v̄ + λsx̄) ≤ λN (L)(v̄ +
λsx̄)

T (v̄+λsx̄). It follows that s(t) are also bounded for
∀t ∈ [0, τmax). Thus, we can deduce that ∆s is bounded,
i.e., ∥∆s∥ ≤ ϱs for a bounded positive constant ϱs.
From (16) and the comparison lemma (Khalil, 2002), we
can obtain that Vs(t) ≤ e−δstVs(0) + (1 − e−δst)ϱs/δs.
It then follows that Vs(x̄(t), v̄(t), ζs(t)) is bounded for
t ∈ [0, τmax), which implies that ζµk is bounded, i.e.,
|ζµk | ≤ ϵs with a positive constant ϵs, and one can further

derive that

−bµk < −e
−ϵs − 1

e−ϵs + 1
bµk < yµk (t) <

eϵs − 1

eϵs + 1
b
µ

k < b
µ

k ,

for ∀t ∈ [0, τmax). It is shown that the solution
yµk always evolves in the compact subset D′

yµ
k

=

[− e−ϵs−1
e−ϵs+1b

µ
k ,

eϵs−1
eϵs+1b

µ

k ] ofDyµ
k
. To this end, we have proven

that Λµ
k = [zµk , y

µ
k ] can always remain in the compact set

D′

zµ
k
×D′

yµ
k
⊂ Dzµ

k
×Dyµ

k
.

In addition, we further show that τmax can be extended
to ∞. Assume that τmax < ∞ and since D′

zµ
k
× D′

yµ
k
⊂

Dzµ
k
×Dyµ

k
, based on the results of Proposition 2.1, it is

indicated that there exists a time instant t
′ ∈ [0, τmax)

such that Λµ
k /∈ Dzµ

k
×Dyµ

k
. Based on the results obtained

above, a contradiction occurs. Thereby, τmax = ∞. This
implies that the prescribed performance constraints (3)
and (8) are satisfied for all t ≥ 0.

Step 3: We finally prove that the desired formation
configurationF is achieved, i.e., limt→∞(xi(t)−xj(t)) =
δdesij and limt→∞(vi(t)− vj(t)) = 0, ∀i, j ∈ V. Define the
variable ψ = [x̄T , v̄T , εTe ]

T and note that Ve(x̄, v̄, εe) ≤
γ1λsλN (L)x̄T x̄ + λsx̄

T v̄ + 1
2 v̄

T v̄ + k1

2 ε
T
e εe. One can

derive that Ve(ψ) ≤ ψT (Σm ⊗ In)ψ, where Σm =
[γ1λsλN (L)INn,

λs

2 INn, 0;
λs

2 INn,
1
2INn, 0; 0, 0,

k1

2 INn]
is positive definite if γ1 > λs/λN (L). It then follows from
(15) that

Ve(ψ) ≤ −σeψTψ ≤ − σe
λmax(Σm)

Ve(ψ) (17)

where σe = min(γ1λ2(L)λ
2
s, l1, k1l2) > 0 and λmax(Σm)

is the largest eigenvalue of Σm. It follows from (17) that
limt→∞ x̄(t) = 0 and limt→∞ v̄(t) = 0 exponentially.
Since x̄i − x̄j = xi − xj − δdesij , it follows that
limt→∞(xi(t) − xj(t)) = δdesij . In addition, we can also
get that limt→∞(vi(t)−vj(t)) = limt→∞(v̄i(t)−v̄j(t)) =
0, ∀i, j ∈ V with exponential convergence.

In fact, the results of Theorem 3.1 can easily be extended
to the second-order MASs with input disturbance

ẋi = vi, v̇i = ui + di, (18)

with di ∈ Rn being a bounded disturbance and satisfying
∥di∥ ≤ dm, where dm is an unknown constant. Under
the proposed PPC-based control algorithm (11), the
following results can be obtained.

Theorem 3.2 Consider the second-order MASs (18).
Under the same conditions of Theorem 3.1, the PPC-
based formation control algorithm (11) guarantees
(ek, sk) always evolving the performance constraints (3)
and (9). Moreover, limt→∞ |xµi (t)− xµj (t)− δµij | ≤ ρµij,∞
and limt→∞ |vµi (t) − vµj (t)| ≤ wµ

ij,∞ + λsρ
µ
ij,∞, where

ρµij,∞, w
µ
ij,∞ can be specified prior.
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Proof: The proof of Theorem 3.2 includes three steps.
Step 1 is almost same with that of Theorem 3.1 and
is omitted here. In Step 2, we consider the Lyapunov
functionWe(x̄, v̄, εe) =

1
2 (v̄+ λsx̄)

T (v̄+ λsx̄) +
k1

2 ε
T
e εe.

and its derivative along system (18) is

Ẇe =(v̄ + λsx̄)
T (v̇ + λsv̄) + k1ε

T
e Jz(z, t)(ė+ Ξe)

≤− γ1s
T s− k1ε

T
e Jz(z, t)(λsINm − Ξ)e

− k2s
TJy(y, t)ζs + (v̄ + λsx̄)

T (v̄ + d),

where d is the stack vector of di. As shown in Step 1
of Theorem 3.1, we know that ek(t), sk(t), k ∈ E0 are
bounded for all t ∈ [0, τmax). Noting that

∑m
k=1 e

T
k ek =

x̄T (L ⊗ In)x̄ ≥ λ2(L)x̄
T x̄ and

∑m
k=1 s

T
k sk = sT s =

(x̄+λsv̄)
T (L⊗In)(x̄+λsv̄) ≥ λ2(L)(x̄+λsv̄)

T (x̄+λsv̄),
we can get that x̄(t) and v̄(t) are also bounded for
∀t ∈ [0, τmax). In addition, since dT d is also bounded, it
follows that ∥(v̄+λsx̄)T (v̄+d)∥ ≤ ∥v̄+λsx̄∥∥v̄+d∥ ≤ ∆m

for ∀t ∈ [0, τmax), where ∆m is a positive constant. It
then follows that

Ẇe ≤− γ1λ2(L)(x̄+ λsv̄)
T (x̄+ λsv̄)− k1l2ε

T
e εe +∆m

≤− δmWe +∆m, (19)

where δm = min(2γ1λ2(L), 2l2) > 0. Similar to the proof
of Step 2 in Theorem 3.1, we have thatWe(t) is bounded
for t ∈ [0, τmax), which implies that ek(t) always satisfies
the performance bound constraint (3).

In addition, for the case of the combined error sk(t),
consider the Lyapunov function Vs(x̄, v̄, ζs) given in
Theorem 3.1 and its derivative is

V̇s ≤− δsVs + ∆̃s, (20)

where δs = min(2ls, 2γ1λ2(L)) > 0 and ∆̃s is bounded.
Then, we also can obtain that sk(t) always remains in
the performance bound (9). From (3) and (9), it follows
that limt→∞ |eµk(t)| = |xµi (t) − xµj (t) − δµij | < ρµij,∞ and
limt→∞ |sµij(t)| < wµ

ij,∞. Since sij = vij + λseij , we can
get that limt→∞ |vµi (t) − vµj (t)| = |vµij(t)| = |sµij(t) −
λseij(t)| < wµ

ij,∞ + λsρ
µ
ij,∞.

Remark 3.1 As shown in Theorem 3.2, only the condi-
tion λs > πij , ∀(i, j) ∈ E0 needs to be satisfied and the
conditions γ1 > λs/λ2(L) as given in Theorem 3.1 that is
involved with the global information are removed. Thus,
the proposed PPC-based formation control algorithm (11)
is easily implemented in practical applications. Since
the unknown disturbance is considered, the zero-error
formation control objective cannot be guaranteed while
the final bounds of the relative errors can be specified prior
to satisfy the practical control requirement.

Remark 3.2 The PPC-based formation algorithm (11)
is partly motivated by the PPC-based average consen-
sus results in Macellari, Karayiannidis, Dimarogonas
(2016). Compared with the results therein, the main

differences are two-fold. (i) The communication graph
in our paper is a dynamic and time-varying network,
in which some communication edges are allowed
to be broken, whereas, the communication graph in
Macellari, Karayiannidis, Dimarogonas (2016) is a
static network. (ii) The proposed PPC-based formation
algorithm can solve the connectivity preservation problem
for multi-dimensional space thus extending Macellari,
Karayiannidis, Dimarogonas (2016) which is only
applied to a one-dimensional space. (iii) The proposed
distributed algorithm (11) only involves the relative
position and velocity information.

Note that the proposed formation algorithm (11) is
displacement-based rather than distance-based as in
Verginis, Nikou, Dimarogonas (2019) and Mehdifar,
Bechlioulis, Hashemzadeh, Baradarannia (2020). This
is a crucial reason why the proposed algorithm can be
applied to the case of a general communication graph.
For the cons, the proposed formation algorithm rely on
a global or common coordinated system but the results
Verginis, Nikou, Dimarogonas (2019) and Mehdifar,
Bechlioulis, Hashemzadeh, Baradarannia (2020) do not.
In addition, since the collision constraints can not
be transformed effectively to the relative position
constraints, the proposed PPC-based algorithm (11)
cannot solve the collision avoidance problem for a
general graph case. Motivated by the results in Ames,
Xu, Grizzle, Tabuada (2016), the zeroing control barrier
function (ZCBF) method can be used to satisfy the
safety requirements, i.e., achieving collision avoidance.
In what follows, we introduce the ZCBF method and
a novel formation algorithm is proposed by combining
PPC and ZCBF.

3.2 Collision avoidance

In this section, we employ the zeroing control barrier
functions (ZCBFs) method to guarantee the collision-
free formation maneuver and some definitions about
ZCBFs can be seen in Ames, Xu, Grizzle, Tabuada
(2016). Define the variable qi = [xTi , v

T
i ]

T and q ∈ R2nN

is the stack vector of qi, and we than introduce a ZCBF
candidate H0,ij(qi, qj) = ∥xi − xj∥2 −D2

c . According to
Definition 2.1, all the agents achieve collision-freemotion
if the following set

C0 = {q ∈ R2nN |H0,ij(qi, qj) ≥ 0, ∀i, j ∈ V}, (21)

is forward invariant (The setC0 is forward invariant, i.e.,
if x(0) ∈ C0, then x(t) ∈ C0, ∀t ≥ 0).

Consider that the collision avoidance behavior for each
agent occurs only when the distance between two
agents is within a specified distance (less than the
sensing or communication distance). Thus, beside the
communication graph G, we define another graph Gc =
(V, Ec), Ec = {(i, j) ∈ V | ∥xi − xj∥ ≤ Ds, ∀i, j ∈ V},
whereDs > Dc is the distance within which the collision
avoidance should be considered. Based on the graph Gc,
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a neighbor set of agent i ∈ V for collision avoidance
behavior is defined as Ni,c = {j ∈ V|(j, i) ∈ Ec}.

For system (1), we know that H0,ij(qi, qj) has a relative
degree two and therefore the general ZCBF method in
Ames, Xu, Grizzle, Tabuada (2016) cannot be employed.
Motivated by the exponential CBF method given in
Nguyen, Sreenath (2016), we define the constraint set

C1 = {q ∈ R2nN | H1,ij(qi, qj) ≥ 0, ∀i, j ∈ V}, (22)

H1,ij(qi, qj) = Ḣ0,ij(qi, qj) + c1H0,ij(qi, qj),

for c1 > 0 and one has that H1,ij(qi, qj) has a relative
degree of 1.

Theorem 3.3 Consider the second-order MASs in (1).
Suppose that the initial state vector q0 belongs to C0∩C1.
Then, any Lipschitz continuous controller ui satisfying
the following inequality

(xj − xi)
T (ui − uj) ≤ ∥vi − vj∥2 (23)

+ c3(xi − xj)
T (vi − vj) +

1

2
c1c2H0,ij , j ∈ Ni,c,

with c3 = c1 + c2 and c2 > 0 guarantees that C0

is forward invariant, i.e., achieving the collision-free
formation maneuver.

Proof: The proof for Theorem 3.3 includes two steps.

Step 1: We will show that C1 is forward invariant.
Based on Proposition 1 given in Ames, Xu, Grizzle,
Tabuada (2016), we have that C1 is forward invariant if
the following ZCBF condition

Ḣ1,ij(qi, qj) + c2H1,ij(qi, qj) ≥ 0 (24)

is satisfied for ∀i, j ∈ V. Based on (21) and (22), the
ZCBF condition (24) is transformed as

2(xj − xi)
T (ui − uj) ≤ 2∥vi − vj∥2 (25)

+ 2c3(xi − xj)
T (vi − vj) + c1c2H0,ij , ∀j ∈ Ni,c,

Here, we only consider the neighbors j ∈ Ni,c since
H0,ij(qi, qj) ≥ 0 for any agent j ∈ V \Ni,c with the fact
Ds > Dc. Thus, we conclude that the set C1 is forward
invariant if the inequality (23) is satisfied.

Step 2: We next show that C0 is forward invariant.
Based on the results in Step 1, it follows that
H1,ij(qi(t), qj(t)) ≥ 0 holds for t ≥ 0. This implies
that Ḣ0,ij(qi(t), qj(t)) + c1H0,ij(qi(t), qj(t)) ≥ 0. Based
on the comparison Lemma (Khalil, 2002), it follows
that H0,ij(qi(t), qj(t)) ≥ H0,ij(qi(0), qj(0))e

−c1t. Since
q(0) ∈ C0, we have that H0,ij(qi(0), qj(0)) ≥ 0, and one
can further derive that H0,ij(qi(t), qj(t)) ≥ 0 for any
t ≥ 0. It is shown that C0 is forward invariant. Thus, we
conclude that the collision avoidance can be achieved if
the inequality condition (23) can be satisfied.

Note that the collision avoidance conditions (23) is
not fully distributed since the neighbors’ control input
uj , j ∈ Ni that consists of the agent j’s neighbors’
state information is involved. This implies that two-hop
neighbors’ state information is required to establish the
collision avoidance condition. This will result in more
complex communication among the agents. To solve
this problem, we replace the inequality (23) with the
following collision avoidance conditions

2(xj − xi)
Tui ≤ ∥vi − vj∥2 (26)

+ c3(xi − xj)
T (vi − vj) +

1

2
c1c2H0,ij , j ∈ Ni,c,

Note that (26) is fully distributed with only involving
one-hop neighbors’ state information. However, (26) is
relatively conservative with respect to (25) since the
former implies the latter one but the converse is not true.

3.3 Collision-free formation control

In this section, we combine the above proposed PPC-
based algorithm (11) and the collision-free condition
(23) such that the connectivity preservation, prescribed
performance and collision avoidance are achieved
simultaneously. The main idea is to retain the PPC-
based algorithm (11) if the collision-free condition is
satisfied and modify the PPC controller (11) as little as
possible otherwise. It can be formulated as the following
optimization problem

u∗i = arg minui∈Rn∥ui − unom,i∥2, s.t. (26), (27)

where unom,i denotes the nominal control input given
in (11). The solution of optimization problem (27)
is to guarantee that each agent achieves connectivity
preservation and prescribed performance formation
control as much as possible in the sense of minimizing
∥ui − unom,i∥2 while guarantees the collision-free
formation motion by satisfying (26). In addition, note
that the constraint condition (26) is linear with respect
to ui and then the optimization problem (27) can be
easily solved by Quadratic Programs (QP) method.
Moreover, the optimization problem (27) can be solved
in a distributed manner since the nominal controller
unom,i and the condition (26) only are involved with local
information from its neighbors.

The feasibility analysis of QP problem: As formu-
lated in QP problem (27), we prioritize the satisfaction
of the collision avoidance (26) regarded as a hard
constraint. If no collision avoidance occurs, the actual
control input ui equals to the nominal control input
unom,i, which guarantees the connectivity and prescribed
performance. On the other hand, if collision avoidance
occurs, the connectivity performance constraint (3) is
not violated since the communication range is generally
much larger than the collision distance. Thus, the
nominal controller unom,i is bounded and the QP
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problem (32) is still valid. To prioritize the satisfaction
of the collision avoidance, we could temporarily relax the
connectivity performance (determined by the nominal
controller unom,i) by solving the problem (32). In fact,
the actual control input ui that is obtained by solving
the QP problem (32) can mimic the nominal controller
unom,i completely when no collision avoidance occurs,
and only modify the nominal controller unom,i as little
as possible when the collision avoidance constraint is
invoked. This implies that the solution of (32) guarantees
that each agent achieves connectivity preservation
as much as possible while guaranteeing collision-free
formation motion. Finally, we admit that the feasibility
analysis above is not a formal proof but can be still
regarded as a heuristic one that usually works in
practice. This is a shortcoming of our work, and we will
consider it in the future work.

1

2 4

3

X

Y

1

2

4

3

5 6

Y

X

Fig. 1. The initial communication graph G0

4 Simulation results

In this section, numerical simulation results are given
to verify the effectiveness of the theoretical results.
We first consider a group of N = 4 agents moving
on a planar space, which is shown in the left plot
of Fig. 1. The desired formation configuration Ft is
a square with the relative position offsets δdes12 =
[0, 5]T , δdes23 = [−5, 0]T , δdes34 = [0,−5]T , δdes41 = [5, 0]T .
The initial positions and velocities of all the agents
are x1(0) = [4, 4]Tm, v1(0) = [1,−1]Tm/s, x2(0) =
[0, 0]Tm, v2(0) = [−1, 1]Tm/s, x3(0) = [4,−4]Tm,
v3(0) = [2, 0]Tm/s, x4(0) = [8, 0]Tm, v4(0) =
[0,−2]Tm/s. The communication range of each agent is
Rs = 6 m. From the initial positions of all the agents,
we get that the initial graph G0 shown in Fig. 1 is
connected and is congruent with the desired formation
configuration Ft. There are four edges in G0 and the
relative position errors associated with these edges are
e1 = x1 − x2 − δdes12 , e2 = x2 − x3 − δdes23 , e3 = x3 −
x4 − δdes34 , e4 = x4 − x1 − δdes41 . Based on the parameters
Rs and δ

des
ij , we can obtain the values of the parameters

Mµ
ij = Rs − δdesij,m,M

µ

ij = Rs + δdesij,m, (i, j) ∈ E0. The
parameters of performance function ρµij is set to be
πij = 0.12, ρ∞ = 0.01. In addition, the collision distance
Dc is set to beDc = 3, and then we get that the collision
does not occur in the initial time.

The parameters of the PPC-based formation controller
(11) are chosen as λs = 0.5, γ1 = 0.3, k1 = 0.5, k2 = 0.5
such that λ > πij is satisfied. By solving the QP problem
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Fig. 2. The motion trajectories of the whole formation
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performance bounds
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via Matlab tools, the actual control input u∗i for each
agent i is obtained.

Fig. 2 depicts that the trajectories of the whole formation
motion on the planar space and the snapshots of
the formation configuration at 0s, 20s are depicted. It
is shown that the desired square formation pattern
is achieved with a fast convergence speed. Figs. 3-4
describe the relative position error ek, the combined
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Fig. 6. The control input u∗
i and the difference ∥u∗

i −unom,i∥

error sk, k = 1, 2, 3, 4 and their performance bounds. As
shown in Figs. 3-4, the relative position error ek and
the combined error sk always evolve in the prescribed
performance regions and eventually can converge to zero.
The distances ∥xi − xj∥, i, j ∈ V of all the agents are
shown in Fig. 5. Based on the chosen collision distance
Dc = 3, we observe fromFig. 5 that the distance between
any two agents is not less than Dc. Fig. 6 describes the
control inputs u∗i obtained from QP and the differences
with the nominal controller unom,i formulated by (11).
It can be seen from Fig. 6 that the actual control input
u∗i is equal to unom,i except a small time interval where
the collision constraint (23) is not satisfied.
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Fig. 7. The simulation results of swapping position task
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Fig. 8. The distance ∥xi − xj∥, i, j ∈ V

To further verify the effectiveness of the proposed
algorithm, we consider a group of 6 agents consisting
a regular hexagon shown in the right plot of Fig.
1. The initial positions of all the agents are set to
be x1(0) = [6, 0]T , x2(0) = [3,−3

√
3]T , x3(0) =

[−3,−3
√
3]T , x4(0) = [−6, 0]T , x5(0) = [−3, 3

√
3]T ,

x6(0) = [3, 3
√
3]T , and their velocities are zero. The

formation task is to make all the agents swap their
positions with the agents on the opposite angle in this
regular hexagon. The communication range Rs and
collision distance Dc are set to be Rs = 8, Dc = 3, and

the other control gains are the same as the above four-
agents formation scene. Fig. 7 shows the trajectories of
the whole formation motion, and Fig. 8 describes the
distance ∥xi − xj∥, i, j ∈ V of all the agents. From Figs.
7-8, we can observe that all the agents achieve their
positions swapping on the opposite angle of the regular
hexagon without collision.

5 Conclusion

This paper proposes a novel distributed control algo-
rithm by combining PPC and EZCBFs for second-order
MASs such that the collision-free formation control with
prescribed performance and connectivity preservation is
achieved. Firstly, a PPC-based distributed algorithm is
proposed to achieve connectivity preservation and pre-
scribed performance formation control. Subsequently, a
control input condition for collision avoidance is derived
by using the EZCBFs. Regarding the PPC-based control
algorithm as a nominal one, each agent can obtain
the actual control input by solving QP problem in a
distributed manner to achieve connectivity preservation
and collision-free formation control.
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