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Abstract— Policy improvement with path integrals (PI2)
is a stochastic optimal control method generally regarded
as a reinforcement learning algorithm. Recent work, how-
ever, suggests that the reinforcement learning aspect of
PI2 actually appears when optimizing feedforward controls
which will lead to optimal closed-loop performance once
combined with feedback controls. These feedbacks are
necessary to achieve the predicted performance, yet have
been largely neglected in the literature and applications
due to their complexity. In this work, we show that the
feedbacks actually take a simple-to-implement form for a
wide range of system dynamics, paving way for future
research and applications of PI2. The correctness of the
results is demonstrated through numerical simulations.

Index Terms— Stochastic optimal control, path integral
policy improvement, Feynman-Kac theorem, nonlinear con-
trol systems.

I. INTRODUCTION

POLICY improvement with path integrals (PI2) is a re-
inforcement learning algorithm developed for solving

stochastic optimal control problems [1]. The main idea is
to linearize the stochastic Hamilton–Jacobi–Bellman (HJB)
equations underlying the control problem to allow optimal
feedbacks to be calculated from path integrals, i.e., open-loop
roll-outs and corresponding costs, of the dynamical system.
PI2 then emerges as an application of this path integral optimal
control formalism to optimize control policies parameterized
by so-called dynamic motion primitives. Over time, heuristic
modifications have improved the algorithm [2], which is now
commonly categorized as a general black-box policy search
method alongside the likes of CEM and CMA-ES [3].

Our recent work [4], however, suggests that PI2 is instead
better interpreted as a two-stage control strategy. In the first
stage, feedforward controls that yield optimal performance
when augmented with closed-loop feedback are sought iter-
atively. The iterative updates resemble the previous black-
box policy search interpretation of PI2, including its heuristic
improvements, and are rigorously shown to stem from natural
gradient descent in [4]. In the second stage, the closed-
loop feedback that is necessary to achieve the performance
predicted by the first stage is then implemented during real-
time operation. To the best of our knowledge, the form of this
feedback has not changed much in subsequent research [5]
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since the derivations in [1], where they served to motivate the
original, black-box type PI2 algorithm updates. The complex-
ity of the results therein inhibits their ease of implementation,
leading to a limited number of practical applications [6], [7].

In this paper, we turn our attention back to the closed-loop
feedback aspect of the PI2 control strategy, simplifying and
expanding upon the original results presented in [1]. Our main
contributions can be summarized as follows:
• We extend the previous PI2 theory to handle general

process noises (not just in the direction of the input) by
proposing a novel closed-loop feedback law. A previously
necessary assumption relating the quadratic feedback reg-
ularization and noise covariance matrices, usually given
as λR−1 = Σ, is also avoided.

• We provide a simpler derivation of the optimal closed-
loop controls based on the key idea that calculations
involving forward or backward Euler approximations of
continuous-time dynamics must yield the same final result
as the discretization time step ∆t → 0. This avoids the
need to introduce so-called ‘generalized costs’ as usually
done in the literature [1], [5].

Although some steps in our derivations follow the line of
thought in [1] and [4], the above changes lead to funda-
mentally different, but also much simpler expressions for the
closed-loop control actions. Due to space limitations, in this
paper we therefore only present the main steps and highlight
the prominent differences within the derivation, and leave a
more detailed technical presentation for [8]. Therein, we also
discuss additional corollaries of this work, such as further
simplifications stemming from the λR−1 = Σ assumption,
and the immediate applicability of the theory to a wider range
of system dynamics using the generalized matrix inverse.

Together with [4], this work offers a novel view of PI2 as a
simple-to-implement and computationally parallelizable two-
stage control strategy. It is our hope that the presented theory
will provide a firmer theoretical foundation for recent and
future research regarding PI2 [9]–[12] and renew interest on
this topic, as it has already enjoyed success in many practical
applications [13]–[15].

The rest of this paper is organized as follows. Section II
provides necessary background and notation, and Section III
outlines the PI2 control strategy. The main steps for deriving
the optimal feedback controls are then presented in Section
IV. Finally, Section V demonstrates the correctness of the
theoretical results numerically through a simulation study.

II. PRELIMINARIES

We review the basics of functional calculus following the
theory from [16] extended to the multivariate case, as it is
necessary in order to take path-dependent costs into account.



Let T > 0 denote the time horizon of an optimal control
problem, and for any t ∈ [0, T ], let Λt denote the set of all
RCLL (right continuous, left limit) functions mapping each
point s ∈ [0, t] to Rp. A trajectory (path) of length t is then
denoted by τt ∈ Λt, and its value at time s is denoted by
τ t(s) ∈ Rp. The set of all possible paths for all possible time
intervals is given by Λ :=

⋃
t∈[0,T ] Λt.

A functional V : Λ→ R associates a real number to paths in
the set Λ. Its space and time derivatives are defined and operate
similarly as those of traditional functions. In particular, for a
path τt ∈ Λt, spacial shift h ∈ Rp, and temporal shift δt > 0,
let us introduce

τh
t (s) =

{
τ t(s), s < t

τ t(t) + h, s = t
and τ t,δt(s) :=

{
τ t(s), s ≤ t
τ t(t), s ∈ (t, t+ δt]

The (directional) space and time derivatives of the functional
V can now be defined as

∆h
xV (τt) = lim

ε→0

1
ε

[
V (τ ε·ht )− V (τt)

]
(1a)

∆tV (τt) = lim
δt→0+

1
δt [V (τt,δt)− V (τt)] . (1b)

By choosing the direction h as the unit basis vectors ei
corresponding to the (i)-th dimensions of the space Rp, the
gradient of the functional can be formed as the vector

∆xV (τt) :=
[
∆e1

x V (τt) . . . ∆
ep
x V (τt)

]T
. (1c)

The Hessian is then formed as the matrix

∆xxV (τt) :=
[
∆x (∆e1

x V (τt)) . . . ∆x

(
∆

ep
x V (τt)

)]
. (1d)

Finally, for a matrix M ∈ Rp×p we define the Lie derivative
induced by the flow ẋ = Mx as

LMV (τt) := MT∆xV (τt), (2)

which satisfies xTLMV (τt) = ∆h
xV (τt) for h = ẋ = Mx.

III. THE TWO-STAGE PI2 CONTROL STRATEGY

Consider a control system with state dynamics

ẋt = f(xt, t) + g(xt)ut + Σ
1/2
x,t εx,t, (3)

where xt ∈ Rn is the system state, ut ∈ Rm is the control
input, εx,t ∈ Rn is zero-mean Gaussian white noise with
covariance Σx,t ≥ 0, f(·) describes the autonomous system
dynamics, and g(·) describes the influence of the input.

The control input ut will be composed of a feedforward
and a feedback term, the former of which is generated as

k̇t = µt + Σ
1/2
k,t εk,t, (4)

where kt ∈ Rm is the feedforward, µt ∈ Rm is its nominal
derivative, and εk,t ∈ Rm is added zero-mean Gaussian white
noise with covariance Σk,t ≥ 0. Together, x and k can be
regarded as an abstracted system state z with dynamics

żt ≡
[
ẋt
k̇t

]
:= F t(xt) + G(xt)vt + Ξ

1/2
t wt, (5)

where the introduced quantities are

F t(xt) =

[
f(xt, t)

0

]
, G(xt) =

[
g(xt) 0

0 I

]
,

vt =

[
ut
µt

]
, Ξt =

[
Σx,t 0

0 Σk,t

]
, wt =

[
εx,t
εk,t

]
.

Note that vt can be regarded as an abstracted control input to
the system. Furthermore, as an extension to the works [1] and
[4], the dynamics (5) now allow the noise wt to affect both
the states x and k with arbitrary covariance Ξt ≥ 0, and not
just in the direction of the input as G(xt)Ξ

1/2
t wt.

Let τT denote the trajectory of the abstracted state zt during
a time horizon T > 0, i.e., τT := {zt | 0 ≤ t ≤ T}. A cost
St(τT ) is then assigned to each trajectory in the form

St(τT ) ≡ S(τT , t) := φ(τT ) +

∫ T

t

q(zs, s) ds, (6)

where φ(τT ) is a terminal cost and qt(zt) ≡ q(zt, t) is an
instantaneous running cost. The expected value

V (τt) = E [St(τT ) | τt] (7)

of this cost as the system continues evolving from a trajectory
τt according to the dynamics (5) then depends on the feedback
law for the abstracted inputs vt.

The main goal of PI2 is to be able to calculate both V (τt)
and vt from open-loop samples of system trajectories (roll-
outs) in a highly parallelizable manner. In case of the dynamics
(5), we will show that this goal can be accomplished by
defining the feedback law as

vt := arg min
vt

E
[
V̇ (τt) | τt

]
+ (vt − v0t)

T
Rt (vt − v0t) .

(8)
Here, v0t are feedforward control actions defined as

v0t =
[
kT
t µT

0t

]T
(9)

for some controller parameters µ0t ∈ Rm, and the penalty

Rt =
λ

αt(zt)

[
P0t 0
0 Q0t

]
:=

λ

αt(zt)
R0t (10)

stems from a nominal block-diagonal regularization matrix
R0t ∈ R2m×2m, R0t > 0 scaled by a constant λ > 0 and a
variable factor

αt(zt) =
∥∥∥LΞ

1/2
t
V (τt)

∥∥∥2

2

/∥∥∥LG(xt)R
−1/2
0t

V (τt)
∥∥∥2

2
. (11)

The Lie derivatives in this latter expression are defined by (2).
Intuitively, αt(zt) measures how much easier it is to change
the value functional in the direction of the noise as opposed
to the directions least penalized for the feedback. The PI2

feedback (8) essentially aims to minimize the expected cost
V (τt) without deviating too much from the feedforwards given
by v0t. The variable λ is a design parameter controlling our
willingness to correct for system noise in exchange for the
expended input effort.

A practical realization of the PI2 control strategy consists
of the following two stages:

I. The parameters µ0t of the feedforwards v0t in (9) are
optimized to minimize the expected closed-loop cost



V (τt) given the feedback law (8). This can be done
through natural gradient descent and is explained in detail
in our previous work [4].

II. The closed-loop controls vt given by (8) are calculated
and implemented during real-time operation.

This work focuses on this latter, second stage. In the following
section, we show that the required calculations are much
simpler than suggested by previous work on this topic [1].

IV. DERIVATION OF THE PI2 FEEDBACK CONTROLS

In this section, we derive an expression for the closed-loop
control inputs vt given by (8) that are to be implemented
during real-time operation as part of the PI2 control strategy.
To this end, we first show that the expected value functional
V (τt) under such feedbacks can be determined from open-loop
sample trajectories of the system (5) around the feedforwards
(9) using the so-called Feynman-Kac theorem. The results are
then used to express the control inputs vt, again as a function
of such open-loop roll-outs.

The derivations will make use of the following lemma.
Lemma 1. Assume the system (5) evolves under the feedback
law given by (8). Then, the control inputs are linked to the
expected cost (7) by the equation:

vt = v0t −
1

2
R−1
t G(xt)

T∆zV (τt). (12)

Furthermore, V (τt) satisfies the PDE

−∆tV (τt) =qt + (∆zV (τt))
T

(F t(xt) + G(xt)v0t)

− 1

2
(∆zV (τt))

T
G(xt)R

−1
t G(xt)

T∆zV (τt)

+
1

2
tr (∆zzV (τt)Ξt) , (13)

with boundary condition V (τT ) = ST (τT ) = φ(τT ).

Proof (sketch). First we approximate V (τt + dt) using a
Taylor-series expansion around V (τt). This is used to express
E
[
V̇ (τt) | τt

]
and solve (8) for the controls vt. The second

part of the lemma is then obtained by substituting these
results into the dynamic programming equation V (τt) =
E [St(τT ) | τt] = qtdt + E [V (τt+dt) | τt]. The proof uses
standard techniques from stochastic optimal control, see e.g.,
[1], and the details are given separately in [8].

A. Application of the Feynman-Kac theorem

It is well-known that under the logarithmic transformation

V (τt) = −λ log Ψ(τt) (14)

of the value functional, the quadratic terms in the nonlinear
PDE (13) can potentially be canceled out. The solution of
the resulting linear PDE can then be approximated through
open-loop sampling using the Feynman-Kac theorem [1]. This
section shows that with the chosen penalty matrix (10), this
cancellation does indeed occur, as well as how the sampling
procedure is influenced by the feedforwards v0t in (12).

Following the logarithmic transformation (14), the partial
derivatives of V (τt) can be expressed as

∆tV (τt) = − λ

Ψ(τt)
∆tΨ(τt), ∆zV (τt) = − λ

Ψ(τt)
∆zΨ(τt),

(15a)
and

∆zzV (τt) =
λ

Ψ2(τt)
∆zΨ(τt) (∆zΨ(τt))

T − λ

Ψ(τt)
∆zzΨ(τt).

(15b)
Furthermore, from (11) and the definition (2) of Lie deriva-
tives, the penalty scaling factor αt(zt) can be written as:

αt(zt) =
‖∆zV (τt)‖2Ξt

‖G(xt)T∆zV (τt)‖2R−1
0t

=
‖∆zΨ(τt)‖2Ξt

‖G(xt)T∆zΨ(τt)‖2R−1
0t

.

(16)
Inserting the partial derivative transformations (15) into (13),
the right-hand side of the PDE becomes

qt −
λ

Ψ(τt)
(∆zΨ(τt))

T
(F t(xt) + G(xt)v0t)

−1

2

λ2

Ψ2(τt)
(∆zΨ(τt))

T
G(xt)R

−1
t G(xt)

T∆zΨ(τt)

+
1

2
tr

[(
λ

Ψ2(τt)
∆zΨ(τt) (∆zΨ(τt))

T − λ

Ψ(τt)
∆zzΨ(τt)

)
Ξt

]
.

Comparing the quadratic terms of ∆zΨ(τt), there is indeed
an opportunity for cancellation in case:

1

2

λ2

Ψ2(τt)
(∆zΨ(τt))

T
G(xt)R

−1
t G(xt)

T∆zΨ(τt)

=
1

2
tr

(
λ

Ψ2(τt)
∆zΨ(τt) (∆zΨ(τt))

T
Ξt

)
.

Substituting in R−1
t = αt(zt)

λ R−1
0t from (10), dividing both

sides by λ
2Ψ2(τt)

, and using the trace identity tr(AB) =

tr(BA) to yield a scalar within, this condition simplifies to:

αt(zt) (∆zΨ(τt))
T

G(xt)R
−1
0t G(xt)

T∆zΨ(τt)

= (∆zΨ(τt))
T

Ξt∆zΨ(τt),

or, expressed differently, to:

αt(zt)
∥∥G(xt)

T∆zΨ(τt)
∥∥2

R−1
0t

= ‖∆zΨ(τt)‖2Ξt
.

This equation clearly holds due to the chosen form (16) for the
multiplier αt(zt), allowing the quadratic terms to cancel out.
We emphasize that this cancellation is possible here without
the previously necessary assumption in [1] and [4] relating the
quadratic feedback regularization R0t and noise covariance
matrix Ξt. With our notation, this assumption would take
the form G(xt)R

−1
0t G(xt)

T = Ξt. We instead have a (less
stringent) assumption that αt(zt) is finite1.

With the derived cancellation, the PDE (13) transforms into
the simplified form

−∆tΨ(τt) = −Ψ(τt)

λ
qt + (∆zΨ(τt))

T
(F t(xt) + G(xt)v0t)

+
1

2
tr (∆zzΨ(τt)Ξt) (17)

1A sufficient condition for this is if the null space of R
−1/2
0t G(xt)T is

contained in that of Ξ
1/2
t ; see [8] for details.



with the boundary condition Ψ(τT ) = exp(− 1
λφ(τT )). The

Feynman-Kac theorem for functionals [4], [16] then states that
the solution to this transformed PDE at a given trajectory τt
can be obtained as

Ψ(τt) = EOL
[
exp

(
− 1

λ
St(τT )

)
| τt
]
, (18)

where EOL [ · | τt] denotes taking the expectation by sampling
the system (5) from continuations of τt in an open-loop fashion
with vt = v0t according to the dynamics:

żt = F t(xt) + G(xt)v0t + Ξ
1/2
t wt, (19a)

i.e., according to:[
ẋt
k̇t

]
=

[
f(xt, t) + g(xt)kt

µ0t

]
+

[
Σ

1/2
x,t εx,t

Σ
1/2
k,t εk,t

]
. (19b)

Combining (14) and the result (18), the value functional
corresponding to the PI2 control strategy becomes

V (τt) = −λ logEOL
[

exp

(
− 1

λ
St(τT )

) ∣∣∣∣ τt] . (20)

Our previous work [4] focused on determining the optimal
parameters µ0t of the feedforwards v0t such that the expected
closed-loop cost (20) is minimized given an initial state τ0.
Other works such as [1], [6] can be interpreted as having
zero feedforwards, instead relying on the feedbacks to find
the optimal path. This requires injecting additional exploration
noise during runtime and lowers the chance of sampling
the best performing trajectories, hence necessitating more
sophisticated sampling or iterative update methods to make
the algorithm computationally feasible.

B. Feedback controls

In this section, we show that the PI2 feedbacks (12) take a
simpler form than what has been used in the original derivation
[1] and subsequent works, e.g., [5], [6], [11].

Substituting the penalty matrix (10) and the gradients (15)
into the closed-loop controls (12), the PI2 controls become:

vt = v0t +
αt(zt)

2Ψ(τt)
R−1

0t G(xt)
T∆zΨ(τt), (21)

where αt(zt) is given by (16). We begin by approximating
the quantity Ψ(τt) and its gradient ∆zΨ(τt) in this expression
using sampled open-loop trajectories via (18).

The expectation (18) can be directly rewritten in the integral
form

Ψ(τt) =

∫
πOL(τt+:T |τt) exp

(
− 1

λ
St(τt:τt+:T )

)
dτt+:T ,

(22)
where τt+:T := {zs | t < s ≤ T}, πOL(τt+:T |τt) denotes the
probability of obtaining the trajectory τt+:T as a continuation
from τt, and τt:τt+:T denotes the concatenation of the two
trajectory pieces τt and τt+:T . The transformed value func-
tional itself can thus be directly approximated using N sample

trajectory continuations τ (i)
t+:T , i = 1, . . . , N , as:

Ψ(τt) ≈
1

N

N∑
i=1

exp

(
− 1

λ
St(τt:τ

(i)
t+:T )

)

:=
1

N

N∑
i=1

exp

(
− 1

λ
S

(i)
t

)
. (23)

Next, we must express the gradient ∆zΨ(τt). To this end,
we transfer to a discretized setting with time step ∆t→ 0, and
denote the value of quantities at discrete time instances k by an
overhead bar, i.e., z̄k := zk∆t. Trajectories are also discretized
in a similar fashion across K = T/∆t time instances as

τ̄k :=
(
z̄0, z̄1, . . . , z̄k

)
and τ̄k+:K :=

(
z̄k+1, z̄k+2, . . . , z̄K

)
.

We also define a discretized approximation of the cost (6):

S̄k(τ̄k:τ̄k+:K) := φ̄(τ̄k:τ̄k+:K) +
∑K−1

k′=k
q(z̄k′ , k

′∆t)∆t,

(24)
allowing the transformed value functional (22) to be rewritten
in the limit K →∞ and equivalently ∆t→ 0 as:

Ψ(τt) = lim
∆t→0

∫
πOL(τ̄k+:K |τ̄k)

· exp

(
− 1

λ
S̄k(τ̄k:τ̄k+:K)

)
dτ̄k+:K . (25)

The probability of obtaining the trajectory continuation
τ̄k+:K is

πOL(τ̄k+:K |τ̄k) =

K−1∏
k′=k

πOL(z̄k′+1|zk′), (26)

whose evaluation reduces to finding the probability
πOL(z̄k′+1|zk′) of obtaining the consecutive states within
the trajectory. At time instance s = k′∆t, let us define

H̄k′ := F s(x̄k′) + G(x̄k′)v̄0k′ (27)

and

w̄k′ :=

∫ s+∆t

s

Ξ1/2
σ wσdσ, (28)

a random variable of dimension p = m + n with covariance
Ξ̄k′ := Ξs∆t. The open-loop dynamics (19) then allows
us to relate consecutive values of zt using a forward Euler
approximation scheme. In the limit ∆t→ 0, we have:

z̄k′+1 = z̄k′ + H̄k′∆t+ w̄k′ . (29)

This shows that the difference z̄k′+1−z̄k′ is a random variable
with mean H̄k′∆t and covariance Ξ̄k′ , and therefore:

πOL(z̄k′+1|z̄k′) =
1√

det(2πΞ̄k′)

· exp

(
−1

2

∥∥z̄k′+1 − z̄k′ − H̄k′∆t
∥∥2

Ξ̄−1

k′

)
. (30)

Substituting this result into (26), the probability of the trajec-
tory continuation τ̄k+:K can be expressed as

πOL(τ̄k+:K |τ̄k) =
1

D̄k
exp

(
− 1

λ
T̄k(τ̄k+:K)

)
, (31)



where the introduced terms are

D̄k =

K−1∏
k′=k

√
det(2πΞ̄k′) (32)

and

T̄k(τ̄k+:K) =
λ

2

K−1∑
k′=k

∥∥z̄k′+1 − z̄k′ − H̄k′∆t
∥∥2

Ξ̄−1

k′
. (33)

Remark 1. Different discrete approximations become equiv-
alent in the limit ∆t→ 0. Instead of (29), we also could have
used a backward Euler scheme according to the relation:

z̄k′+1 = z̄k′ + H̄k′+1∆t+ w̄k′+1. (34)

This implies that in the limit ∆t → 0, both H̄k′ and Ξ̄k′ in
(30)-(32) could be replaced by H̄k′+1 and Ξ̄k′+1, respectively.
The gradients of these latter values with respect to the state
z̄k′ are clearly zero, and therefore the gradients of the former
values must also vanish in the limit ∆t → 0, as the two
approximations must yield the same result.

Remark 2. In case Ξ̄k′ is only positive semi-definite, its
inverse and determinant in (30) must be replaced by the
generalized inverse and pseudo-determinant, respectively [8].

We can now substitute the result (31) back into (25) to
obtain the transformed value functional

Ψ(τt) = lim
∆t→0

∫
1

D̄k

· exp

[
− 1

λ

(
S̄k(τ̄k:τ̄k+:K) + T̄k(τ̄k+:K)

)]
dτ̄k+:K . (35)

At time t = k∆t, the gradient ∆zΨ(τt) = ∆z̄k
Ψ(τt) of this

term can be expressed using the chain rule and (31) as:

∆zΨ(τt) = − 1
λ lim

∆t→0

∫
πOL(τ̄k+:K |τ̄k) exp

(
− 1
λ S̄k(τ̄k:τ̄k+:K)

)
·
(
∆z̄k

S̄k(τ̄k:τ̄k+:K) + ∆z̄k
T̄k(τ̄k+:K)

)
dτ̄k+:K .

Similarly to (23), this can be approximated with i = 1, . . . , N
trajectory roll-outs as:

∆zΨ(τt) ≈ −
1

λ

1

N

N∑
i=1

exp

(
− 1

λ
S

(i)
t

)
· lim

∆t→0

(
∆z̄k

S̄k(τ̄k:τ̄
(i)
k+:K) + ∆z̄k

T̄k(τ̄
(i)
k+:K)

)
. (36)

The gradient with respect to S̄k(·) at time t = k∆t is

lim
∆t→0

∆z̄k
S̄k(τ̄k, τ̄k+:K) = lim

∆t→0
∆z̄k

φ̄(τ̄k:τ̄k+:K) = ∆ztφ(τT ),

(37)
because the gradient of the step-wise cost q(·) in (24) is neg-
ligible due to its ∆t multiplier. On the other hand, evaluating
the gradient of ∆z̄k

T̄k(τ̄k+:K) from (33) yields:

∆z̄k
T̄k(τ̄k+:K) = ∆z̄k

λ

2

K−1∑
k′=k

∥∥z̄k′+1 − z̄k′ − H̄k′∆t
∥∥2

Ξ̄−1

k′

= ∆z̄k

λ

2

∥∥z̄k+1 − z̄k − H̄k∆t
∥∥2

Ξ̄−1
k

= −λΞ̄−1
k

(
z̄k+1 − z̄k − H̄k∆t

)
= −λ 1

∆t
Ξ−1
t w̄k (38)

where w̄k is defined in (28). The dependency of H̄k and
possibly Ξ̄k on z̄k was ignored in this derivation, as the cor-
responding gradients must vanish due to the reasons outlined
in Remark 1. This considerably simplifies both the derivation
and the results compared to [1].

Substituting (23) and (36)-(38) back into (21) finally yields
the PI2 feedback controls as:

vt = v0t −
αt(zt)

2λ
R−1

0t G(xt)
Tδt, (39)

where the term δt is defined as

δt :=

N∑
i=1

w
(i)

PI2

(
∆zt

φ(τ
(i)
T )− lim

∆t→0

λ

∆t
Ξ−1
t w̄

(i)
k

)
, (40)

and the introduced PI2 weights are

w
(i)

PI2
=

exp
(
− 1
λS

(i)
t

)
∑N
j=1 exp

(
− 1
λS

(j)
t

) . (41)

Finally, the scaling factor αt(zt) can be expressed by substi-
tuting (36)-(38) into (16) to yield

αt(zt) =
δT
tΞtδt

δT
tG(xt)R

−1
0t G(xt)Tδt

, (42)

which allows the feedback (39) to be written compactly as

vt = v0t −
1

2λ

δT
tΞtδt

δT
tG(xt)R

−1
0t G(xt)Tδt

R−1
0t G(xt)

Tδt. (43)

The main computational effort for determining this feedback
is to simulate i = 1, . . . , N roll-outs and compute their
corresponding trajectory costs S(i)

t in order to calculate the
weights w(i)

PI2
in (41). This can be sped up considerably as it

is a completely parallelizable operation. The term δt in (40)
and vt in (43) are then readily computable, making PI2 a
potentially feasible control strategy for real-time applications.

We conclude this section by comparing our result (43)
with the expression for the feedback given by [1], Section
2.4. To do so, we set v0t = 0, ∆ztφ(τ

(i)
T ) = 0, and

G(xt)R
−1
0t G(xt)

T = Ξt according to the missing feedfor-
wards, the cost definition, and the λR−1 = Σ assumption
therein, respectively. In this case, αt(zt) = 1 as seen from
(42), and the feedback (43) simplifies to:

vt =
1

2λ
R−1

0t G(xt)
T (G(xt)R

−1
0t G(xt)

T)−1
δ̃t, (44)

where δ̃t =
∑N
i=1 w

(i)

PI2
lim∆t→0

λ
∆tw̄

(i)
k as obtained from

(40). Compared to (18)-(20) in [1], there is a factor 1
2 differ-

ence due to slightly different phrasings of the optimal control
problem (and 1

λ cancels out from δ̃t). More importantly,
however, our definition (41) of w(i)

PI2
implies that even with a

state-dependent G(xt) matrix, it is not necessary to generalize
the cost S(i)

t for the PI2 weight calculation. A complicated
term denoted by bt in [1] is also missing from (44). Our
results therefore suggest a simpler-to-implement PI2 feedback
controller than previously thought.

In the next section, the correctness of the derived feedback
(43) is verified numerically by showing that the corresponding
closed-loop performance matches the prediction (20).



V. SIMULATION RESULTS

We demonstrate the PI2 control strategy and the correctness
of the theoretical results using an optimal control problem
involving the unicycle systemẋtẏt

θ̇t

 =

cos(θt) 0
sin(θt) 0

0 1

([vt
ωt

]
+ Σ

1/2
0 εt

)
(45)

where Σ0 = 0.01I. We note that the results of [1] are
not applicable to such non-holonomic systems. Feedforwards
for the control inputs ut = [vt ωt]

T are given by kt =
[kv,t kω,t]

T. Denoting x̂t = [xt yt]
T, a cost aiming to

reach a goal at x̂g = [3.5 2.0]T and avoid an obstacle at
x̂o = [2.0 1.0]T using minimal control effort is defined as:

S(τt) = 2 ‖x̂T − x̂g‖2

+

∫ T

t

500 min(1.2−‖x̂t − x̂o‖22 , 0.2) + 0.2k2
v,t + k2

ω,t dt,

The problem is defined for a horizon T = 10 and simulated
with time step ∆t = 0.01s. The PI2 feedback law parameters

are defined as P0t =

[
100 0
0 20

]
, Q0t →∞I, and λ = 0.01.

First, the optimal parameterization of the nominal deriva-
tives of the feedforwards kt are determined using the theory
described in [4]. Resulting open-loop trajectories are shown
in Figure 1 in gray, with the thick blue curve showing
the nominal, noiseless path. The open-loop performance is
EOL [S] ≈ 97, and the expected closed-loop performance can
be calculated using (20) to be ECL,theoretical [S] ≈ 1.08.

The PI2 feedbacks (43) are then implemented and a sample
of 100 closed-loop runs are simulated using a different number
of N roll-outs for feedback calculation. Sample closed-loop
paths are depicted in Figure 1 in green. The achieved expected
costs are summarized in Table 1, and show the correctness of
the theoretical prediction as N →∞.

TABLE I: Achieved average closed-loop costs as a function of
the number of N roll-outs used for feedback calculation. The
results are approximated from 100 sample runs.

vt calculation N = 500 N = 5000 N = 50000 theoretical
ECL [S] 2.5 1.21 1.14 1.08

0 1 2 3 4
−1

0

1

2

obstacle

goal

x0

x

y

Fig. 1: Sample open-loop (gray) and closed-loop (green)
trajectories obtained for the simulation example.

VI. CONCLUSIONS

This paper presents a novel view of PI2 as a two-stage
control strategy, first determining optimal feedforward controls
and then implementing feedbacks during real-time operation.
Compared to previous results, the theoretical derivations of
the feedbacks are greatly simplified, and the final result is
shown to take a simple form for a wide range of system
dynamics. The correctness of the theoretical derivations was
demonstrated numerically through simulations for the first
time according to the authors’ knowledge. The results could
potentially ease the implementation of PI2 and make it a more
viable control strategy for practical applications. The simpli-
fied theoretical derivations also lay foundations for and offer a
multitude of directions for future research, such as improving
the sample efficiency of the feedback control calculations,
discrete-time variants of the algorithm, and extensions to the
multi-agent case.
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