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Abstract: The problem of distributed control for second order leader-follower multi-agent
systems with prescribed performance guarantees is investigated in this paper. Leader-follower is
meant in the sense that a group of agents with external inputs are selected as leaders in order to
drive the group of followers in a way that the entire system can achieve consensus within certain
prescribed performance transient bounds. Under the assumption of tree graphs, we propose a
distributed control law based on a backstepping approach for the group of leaders to steer
the entire system achieving consensus within the prescribed performance bounds. Finally, a
simulation example is given to verify the results.
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1. INTRODUCTION

The study of consensus is a key topic in multi-agent
systems due to its wide applications in robotics, coop-
erative control (Fax and Murray, 2003) and formation
control (Balch and Arkin, 1998). We say that consensus
is achieved when a group of agents converge to a common
value. The first order consensus protocol was introduced
in (Olfati-Saber and Murray, 2004), while second order
consensus was investigated in (Ren and Atkins, 2007).

In this paper, consensus in a leader-follower framework
is considered, that is, one or more agents are selected as
leaders with external inputs in addition to the second order
consensus protocol. The remaining agents are followers
only obeying the second order consensus protocol. Within
the leader-follower framework, an important branch that
researchers usually deal with is the controllability of the
leader-follower network. Network controllability was first
investigated in (Tanner, 2004) by deriving conditions on
the network topology, which ensure that the network
can be controlled by a particular member which acts
as a leader. Some other research in the leader-follower
framework targets leader selection problems (Yazicioğlu
and Egerstedt, 2013; Patterson and Bamieh, 2010; Franchi
and Giordano, 2018). These involve the problem of how to
choose the leaders among the agents enabling the leader-
follower system to satisfy requirements like controllability,
optimal performance or formation maintenance.

Prescribed performance control (PPC) was originally pro-
posed in (Bechlioulis and Rovithakis, 2008), with the aim
to prescribe the evolution of the system output or the
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tracking error within some predefined region. An agree-
ment protocol that can additionally achieve prescribed
performance for a combined error of positions and veloci-
ties is designed in (Macellari et al., 2017) for multi-agent
systems with double integrator dynamics. In (Verginis
et al., 2018), the authors apply PPC to platoon of vehicles
with unknown second order nonlinear dynamics using a
backstepping approach.

In this work, we aim at designing control strategies for the
leaders such that the leader-follower multi-agent system
achieves consensus within certain performance bounds.
First order consensus control for leader-follower multi-
agent systems under prescribed performance guarantees
is presented in (Chen and Dimarogonas, 2019). Compared
with existing work on PPC for multi-agent systems, we ap-
ply a PPC law only to the leaders, while most of the related
work applies PPC to all the agents to achieve consensus.
The benefit of this work is to lower the cost of the control
effort since the followers will follow the leaders by obeying
second order consensus protocols without any additional
control and knowledge of the prescribed team bounds. Un-
like other work that uses PPC in a leader-follower frame-
work (Katsoukis and Rovithakis, 2016; Verginis et al.,
2018), in which the multi-agent system only has one leader
and the leader is treated as a reference for the followers,
we focus on a more general framework in the sense that we
can have more than one leader and the leaders are designed
to steer the entire system achieving consensus within the
prescribed performance bounds. This is difficult due to the
combination of uncertain topologies, leader amount and
positions. In addition, we focus on distributed control in
the sense that each leader can only communicate with its
neighbours. Within this general leader-follower framework,
the main contribution is that, under the assumption of tree
graphs, we propose a distributed control law based on a



backstepping approach for the group of leaders to steer
the entire system to consensus within certain prescribed
performance transient bounds for the whole team.

The rest of the paper is organized as follows. In Section
2, we introduce some preliminaries and then formulate the
problem, while Section 3 presents the main results, which
are further illustrated by a simulation example in Section
4. Section 5 includes concluding remarks and future work.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Graph Theory

An undirected graph (Mesbahi and Egerstedt, 2010) is de-
fined as G = (V, E) with the vertices set V = {1, 2, . . . , n}
and the edges set E = {(i, j) ∈ V ×V | j ∈ Ni} indexed by
e1, e2, . . . , em. Here, m = |E| is the number of edges and
Ni denotes the neighbourhood of agent i such that agent
j ∈ Ni can communicate with i. The adjacency matrix A
of G is the n × n symmetric matrix whose elements aij
are given by aij = 1, if (i, j) ∈ E , and aij = 0, otherwise.
The degree of vertex i is defined as di =

∑
j∈Ni

aij . Then

the degree matrix is ∆ = diag(d1, d2, . . . , dn). The graph
Laplacian of G is L = ∆−A. A path is a sequence of edges
connecting two distinct vertices. A graph is connected
if there exists a path between any pair of vertices. By
assigning an orientation to each edge of G we can define
the incidence matrix D = D(G) = [dij ] ∈ Rn×m. The
rows of D are indexed by the vertices and the columns
are indexed by the edges with dij = 1 if the vertex i is
the head of the edge (i, j), dij = −1 if the vertex i is
the tail of the edge (i, j) and dij = 0 otherwise. Based
on the incidence matrix, the graph Laplacian of G can be
described as L = DDT . In addition, Le = DTD is the
so-called edge Laplacian (Zelazo and Mesbahi, 2011).

2.2 System Description

We consider a multi-agent system with vertices V =
{1, 2, . . . , n}. Without loss of generality, we suppose that
the first nf agents are followers while the last nl agents
are selected as leaders with respective vertices set VF =
{1, . . . , nf}, VL = {nf + 1, . . . , nf + nl} and n = nf + nl.

Let xi ∈ R be the position of agent i, where we only
consider the one dimensional case, without loss of gen-
erality. Specifically, the results can be extended to higher
dimensions with appropriate use of the Kronecker product.
The state evolution of each follower i ∈ VF is governed by
the second order consensus protocol:

ẋi = vi

v̇i =
∑
j∈Ni

((xj − xi) + (vj − vi)) , (1)

while the state evolution of each leader i ∈ VL is governed
by the second order consensus protocol with an external
input ui ∈ R:

ẋi = vi

v̇i =
∑
j∈Ni

((xj − xi) + (vj − vi)) + ui, (2)

Let x = [x1, . . . , xnf
, . . . , xn]T , v = [v1, . . . , vnf

, . . . , vn]T ∈
Rn be the respective stack vector of absolute positions

and velocities and u = [unf+1, . . . , unf+nl
]T ∈ Rnl be

the control input vector including the external inputs
of leader agents in (2). Denote x̄ = [x̄1, . . . , x̄m]T , v̄ =
[v̄1, . . . , v̄m]T ∈ Rm as the respective stack vector of rel-
ative positions and relative velocities between the pair of
communication agents (i, j) = k ∈ E , where x̄k , xij =

xi−xj , v̄k , vij = vi− vj , k = 1, 2, . . . ,m. It can be easily
verified that Lx = Dx̄ and x̄ = DTx. In addition, if x̄ = 0,
we have that Lx = 0. Similarly, it holds that Lv = Dv̄
and v̄ = DT v. By stacking (1) and (2), the dynamics of
the leader-follower multi-agent system is rewritten as:

Σ :

[
ẋ
v̇

]
=

[
0n In
−L −L

] [
x
v

]
+

[
0n×nl

B

]
u, (3)

where L is the graph Laplacian and B =
[

0nf×nl

Inl

]
.

2.3 Prescribed Performance Control

The aim of PPC is to prescribe the evolution of the system
output or the tracking error within some predefined region
described as follows:

−Mx̄iρx̄i(t) < x̄i(t) < ρx̄i(t) if x̄i(0) > 0, (4)

− ρx̄i(t) < x̄i(t) < Mx̄iρx̄i(t) if x̄i(0) < 0, (5)

where ρx̄i
(t) : R+ → R+ \ {0}, i = 1, 2, . . . ,m are positive,

smooth and strictly decreasing performance functions that
introduce the predefined bounds for the target system
outputs or the tracking errors. One example choice is
ρx̄i

(t) = (ρx̄i0
− ρx̄i∞)e−lx̄i

t + ρx̄i∞ with ρx̄i0
, ρx̄i∞ and lx̄i

positive parameters and ρx̄i∞ = limt→∞ρx̄i
(t) represents

the maximum allowable tracking error at steady state; Mx̄i

represents the maximum allowed overshoot.

Normalizing x̄i(t) with respect to the performance func-
tion ρx̄i

(t), we define the modulated error as ˆ̄xi(t) and the
corresponding prescribed performance region Dx̄i

as:

ˆ̄xi(t) =
x̄i(t)

ρx̄i
(t)

(6)

Dx̄i
, {ˆ̄xi : ˆ̄xi ∈ (−Mx̄i

, 1)} if x̄i(0) > 0 (7)

Dx̄i
, {ˆ̄xi : ˆ̄xi ∈ (−1,Mx̄i

)} if x̄i(0) < 0 (8)

Then the modulated error is transformed through a trans-
formed function Tx̄i

that defines the smooth and strictly
increasing mapping Tx̄i

: Dx̄i
→ R and Tx̄i

(0) = 0. One
example choice is

Tx̄i
(ˆ̄xi) = ln

(
−Mx̄i

ˆ̄xi + 1

ˆ̄xi −Mx̄i

)
. (9)

The transformed error is then defined as

εx̄i(ˆ̄xi) = Tx̄i(ˆ̄xi) (10)

It can be verified that if the transformed error εx̄i
(ˆ̄xi)

is bounded, then the modulated error ˆ̄xi is constrained
within the regions (7), (8). This also implies the error x̄i
evolves within the predefined performance bounds (4), (5).
Differentiating (10) with respect to time, we derive

ε̇x̄i
(ˆ̄xi) = JTx̄i

(ˆ̄xi, t)[ ˙̄xi + αx̄i
(t)x̄i] (11)

where

JTx̄i
(ˆ̄xi, t) ,

∂Tx̄i
(ˆ̄xi)

∂ ˆ̄xi

1

ρx̄i(t)
> 0 (12)

αx̄i
(t) , − ρ̇x̄i

(t)

ρx̄i
(t)

> 0 (13)



are the normalized Jacobian of the transformation function
Tx̄i and the normalized derivative of the performance
function, respectively.

2.4 Problem Statement

In this work, we are interested in how to design a control
strategy for the leader-follower multi-agent system (3) such
that it can achieve consensus within the prescribed per-
formance bounds. The control strategy is only applied to
the leaders and these drive the followers to guarantee that
multi-agent system (3) meets the requirements. Formally,

Problem 1. Let the leader-follower multi-agent system Σ
be defined by (3) with the communication graph G =
(V, E) and the prescribed performance functions ρx̄i , i =
1, 2, . . . ,m. Derive a control strategy such that the con-
trolled leader-follower multi-agent system achieves consen-
sus while satisfying (4),(5).

3. MAIN RESULTS

In this section, we design the control for the leader-follower
multi-agent system (3) such that the system can achieve
consensus within the prescribed performance functions

ρx̄i(t) = (ρx̄i0 − ρx̄i∞)e−lx̄i
t + ρx̄i∞ . (14)

Here the performance functions are chosen as (14) with-
out loss of generality and we assume that communicating
agents share information about their performance and
transformation functions. Hence, the communication be-
tween neighbouring agents is bidirectional and the graph
G is assumed undirected.

Consensus is achieved in the sense that the stack vector x̄
of relative positions converges to zero as t→∞. We then
rewrite the dynamics of the leader-follower multi-agent
system (3) into the edge space in order to characterise
the dynamics of the relative positions. We first rewrite (3)
into the dynamics corresponding to followers and leaders,
respectively. The corresponding incidence matrix is decom-

posed as D =
[
DT
F DT

L

]T
(Mesbahi and Egerstedt, 2010).

Multiplying with DT on both sides of (3), we obtain the
dynamics on the edge space as

Σe :

[
˙̄x
˙̄v

]
=

[
0m Im
−Le −Le

] [
x̄
v̄

]
+

[
0m×nl

DT
L

]
u. (15)

It is known that the edge Laplacian Le is positive definite
if the graph is a tree (Dimarogonas and Johansson, 2010).
We thus here assume the following

Assumption 1. The leader-follower multi-agent system (3)
described by the graph G = (V, E) is a connected tree.

We consider tree graphs as a starting point since we
exploit the positive definiteness of Le in the analysis, and
motivated by the fact that they require less communication
load (less edges) for their implementation. Note however
that further results for a general graph could be built
based on the results of tree graphs, for example, through
appropriate graph decompositions (Zelazo and Mesbahi,
2011). For the leader-follower multi-agent system (15),
we first design the reference velocity vd ∈ Rn and the
corresponding reference relative velocity v̄d ∈ Rm as:

vd = −DJTˆ̄x
Gx̄εˆ̄x; v̄d = −LeJTˆ̄x

Gx̄εˆ̄x, (16)

where ˆ̄x ∈ Rm is the stack vector of transformed errors
ˆ̄xi, Gx̄ ∈ Rm×m is a positive definite diagonal gain matrix

with entries the positive constant parameters gx̄i . JTˆ̄x
,

JT (ˆ̄x, t) ∈ Rm×m is a time varying diagonal matrix with

diagonal entries JTx̄i
(ˆ̄xi, t), and εˆ̄x , ε(ˆ̄x) ∈ Rm is a stack

vector with entries εx̄i
(ˆ̄xi).

We then define the relative velocity error vector as ē =
[ē1, . . . , ēm]T = v̄−v̄d ∈ Rm. The corresponding prescribed
performance functions ρēi(t), i = 1, 2, . . . ,m related to the
relative velocity errors are defined as

ρēi(t) = (ρēi0 − ρēi∞)e−lēi t + ρēi∞ , (17)

and (17) is designed in a way such that the initial condition
of ēi is within the performance bounds, i.e., |ēi(0)| <
ρēi(0) = ρēi0 , i = 1, 2, . . . ,m. The related prescribed
performance region is described as

− ρēi(t) < ēi(t) < ρēi(t), i = 1, 2, . . . ,m. (18)

Similar to (6), ēi(t) is normalized as

ˆ̄ei(t) =
ēi(t)

ρēi(t)
. (19)

Then the normalized error is transformed through a trans-
formed function Tēi such that Tēi(0) = 0, with one exam-
ple choice being

Tēi(ˆ̄ei) = ln

(
1 + ˆ̄ei
1− ˆ̄ei

)
. (20)

Therefore, the transformed error εēi is defined as

εēi(ˆ̄ei) = Tēi(ˆ̄ei). (21)

Similar to (11), differentiating (21) with respect to time,
we derive

ε̇ēi(ˆ̄ei) = JTēi
(ˆ̄ei, t)[ ˙̄ei + αēi(t)ēi] (22)

where

JTēi
(ˆ̄ei, t) ,

∂Tēi(ˆ̄ei)

∂ ˆ̄ei

1

ρēi(t)
> 0 (23)

αēi(t) , −
ρ̇ēi(t)

ρēi(t)
> 0 (24)

are the normalized Jacobian of the transformation function
Tēi and the normalized derivative of the performance
function, respectively. Using Tēi(0) = 0, we can derive that

ˆ̄ei
∂εēi(ˆ̄ei)

∂ ˆ̄ei
εēi(ˆ̄ei) ≥ µēiε2

ēi(ˆ̄ei) (25)

for some positive constant µēi (Karayiannidis and Doul-
geri, 2012). (25) is useful for the forthcoming stability
analysis.

For the leader-follower multi-agent system (15), the pro-
posed controller applied to the leader agents is the com-
position of the term based on prescribed performance of
the relative velocity errors of the neighbouring agents:

uj = −
∑
i∈Φj

gēiJTēi
(ˆ̄ei, t)εēi(ˆ̄ei), j ∈ VL, (26)

where Φj = {i|(j, k) = i, k ∈ Nj}, i.e., the set of all the
edges that include agent j ∈ VL as a node. Then the stack
input vector is

u = −DLJTˆ̄e
Gēεˆ̄e, (27)

where ˆ̄e ∈ Rm is the stack vector of transformed errors
ˆ̄ei, Gē ∈ Rm×m is a positive definite diagonal gain matrix
with entries as the positive constant parameters gēi , JTˆ̄e

,
JT (ˆ̄e, t) ∈ Rm×m is a time varying diagonal matrix with



diagonal entries JTēi
(ˆ̄ei, t), and εˆ̄e , ε(ˆ̄e) ∈ Rm is a stack

vector with entries εēi(ˆ̄ei).

Next, we derive the following result and will use Lyapunov-
like methods to prove that the prescribed performance
can be guaranteed for both relative positions and relative
velocity errors. In addition, consensus can be achieved.

Theorem 1. Consider the leader-follower multi-agent sys-
tem Σ under Assumption 1 with dynamics (3), and the
predefined performance functions ρx̄i and ρēi as in (14)
and (17), respectively. The transformation functions are
chosen satisfying Tx̄i(0) = 0, Tēi(0) = 0, and assume
that the initial conditions x̄i(0) and ēi(0) are within the
performance bounds (4),(5) and (18), respectively. If the
following condition holds:

γ̄ ≥ l = max
i=1,...,m

(lēi), (28)

where l is the largest decay rate of ρēi(t) and γ̄ is the
maximum value of γ that ensures:

Γ =

[
DT

LDL
1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
≥ 0, (29)

then, the relative position x̄ under the control law (27)
goes to an arbitrary small ball around zero while satisfying
(4),(5). In addition, the relative velocity errors satisfy (18).

Proof. The proof is based on three steps. We first show
that there exists a maximal solution for both ˆ̄x and ˆ̄e.
Equivalently, that ˆ̄xi(t) and ˆ̄ei(t) remain in Dx̄i

and Dēi =
(−1, 1), respectively within the maximal time solution
interval [0, τmax), where, Dx̄i

is defined in (7), (8). Next, we
prove that the proposed control strategy restricts ˆ̄xi(t) and
ˆ̄ei(t) in compact subsets of Dx̄i

and Dēi for t ∈ [0, τmax),
which by contradiction results in τmax = ∞ in the last
step and the proof is completed. In the sequel, we show
the proof in detail step by step. We first define the target
open set D = Dx̄ ×Dē such that:

Dx̄ = Dx̄1
×Dx̄2

× · · · × Dx̄m
,

Dē = Dē1 ×Dē2 × · · · × Dēm .
(30)

Step 1. Since the initial conditions x̄i(0), ēi(0) are chosen
within the performance bounds, we can verify that the
initial normalized relative positions ˆ̄x(0) and the initial
normalized relative velocity errors ˆ̄e(0) are within the open
sets Dx̄ and Dē, respectively. We can conclude that z(0) ∈
D, where z(t) = [ˆ̄x(t), ˆ̄e(t)]T . By calculating the derivative
of ˆ̄x(t) and ˆ̄e(t), we can verify that ż is continuous and
also locally Lipschitz on z. Hence, according to Theorem
54 of (Sontag, 2013), there exists a maximal solution z(t) in
a time interval [0, τmax) such that z(t) ∈ D,∀t ∈ [0, τmax).

Step 2. Based on Step 1, we know that x̄i and ēi satisfy
(4),(5) and (18), respectively for all t ∈ [0, τmax). We
first consider the Lyapunov-like function Vx̄ = 1

2ε
T
ˆ̄x
Gx̄εˆ̄x

related to the relative positions. Differentiating Vx̄ with
respect to time and using the stacked vector version of
equation (11), we obtain

V̇x̄ = εTˆ̄xGx̄ε̇ˆ̄x = εTˆ̄xGx̄JTˆ̄x
( ˙̄x+ αx̄(t)x̄), (31)

where αx̄(t) is the diagonal matrix with diagonal entries
αx̄i(t). According to (13) and (14), we know that

αx̄i
(t) , − ρ̇x̄i

(t)

ρx̄i
(t)

= lx̄i

ρx̄i
(t)− ρx̄i∞

ρx̄i
(t)

< lx̄i
,∀t (32)

Since ˙̄x = v̄ = v̄d + ē where v̄d is given in (16), we obtain
˙̄x = −LeJTˆ̄x

Gx̄εˆ̄x + ē, and then by replacing ˙̄x in (31), we
further derive that

V̇x̄ =εTˆ̄xGx̄JTˆ̄x
(−LeJTˆ̄x

Gx̄εˆ̄x + ē+ αx̄(t)x̄)

=− εTˆ̄xGx̄JTˆ̄x
LeJTˆ̄x

Gx̄εˆ̄x + εTˆ̄xGx̄JTˆ̄x
ē

+ εTˆ̄xGx̄JTˆ̄x
αx̄(t)x̄

≤− λmin(Le)‖εTˆ̄xGx̄JTˆ̄x
‖2 + ‖εTˆ̄xGx̄JTˆ̄x

‖M̄x̄,

(33)

where M̄x̄ is a positive constant satisfying

‖ē+ αx̄(t)x̄‖ ≤ M̄x̄. (34)

(34) holds for a bounded M̄x̄ due to the boundedness of
αx̄i

(t) as shown in (32) and the boundedness of x̄i, ēi, i =
1, · · · ,m, which is shown in the beginning of Step 2. Then,

we can conclude that V̇x̄ < 0 when ‖εTˆ̄xGx̄JTˆ̄x
‖ > M̄x̄

λmin(Le) .

This condition is guaranteed when ‖εˆ̄x‖ > M̄x̄

βλmin(Le) due

to the fact that

‖εTˆ̄xGx̄JTˆ̄x
‖ ≥ β‖εˆ̄x‖, (35)

where β is selected satisfying Gx̄JTˆ̄x
≥ βIm and Gx̄JTˆ̄x

is a diagonal positive definite matrix. It can be concluded
that ‖εˆ̄x‖ is upper bounded by

‖εˆ̄x‖ ≤ ε̄1 = max

{
‖εˆ̄x(0)‖, M̄x̄

βλmin(Le)

}
, (36)

∀t ∈ [0, τmax). Due to the boundedness of ‖εˆ̄x‖ in t ∈
[0, τmax), we can restrict ˆ̄xi in a compact subset of Dx̄i

as

ˆ̄xi(t) ∈ [δx̄i
, δ̄x̄i ] , [−T−1

x̄i
(ε̄1), T−1

x̄i
(ε̄1)] ⊂ Dx̄i , (37)

where T−1
x̄i

is the inverse function of the transformed

function Tx̄i
. T−1

x̄i
always exists because Tx̄i

is a smooth
and strictly increasing function. Therefore, the reference
relative velocity vector v̄d as designed in (16) and its
derivative ˙̄vd are both bounded in t ∈ [0, τmax). Moreover,
since v̄ = v̄d+ ē, we can also conclude that v̄(t) is bounded
for all t ∈ [0, τmax) due to the boundedness of v̄d and ē.

Next, for the velocity part, we consider the Lyapunov-like
function Vē = 1

2ε
T
ˆ̄e
Gēεˆ̄e + γ

2 ē
T ē. Differentiating Vē with

respect to time and using the stacked vector version of
equation (22), we obtain

V̇ē = εTˆ̄e Gēε̇ˆ̄e + γēT ˙̄e

= εTˆ̄e GēJTˆ̄e
( ˙̄e+ αē(t)ē) + γēT ˙̄e.

(38)

Then, based on ˙̄v = −Lex̄ − Lev̄ + DT
Lu that is shown

in the edge dynamics (15) and v̄ = ē + v̄d, and further
substituting the control strategy (27), we derive that

˙̄e = ˙̄v − ˙̄vd

= −Leē− Lev̄d − Lex̄−DT
LDLJTˆ̄e

Gēεˆ̄e − ˙̄vd.
(39)

Thus, replacing the above expression of ˙̄e in (38) and
denoting Ω = −Lev̄d − Lex̄− ˙̄vd, we further obtain

V̇ē =εTˆ̄e GēJTˆ̄e
(−Leē−DT

LDLJTˆ̄e
Gēεˆ̄e + αē(t)ē+ Ω)

+ γēT (−Leē−DT
LDLJTˆ̄e

Gēεˆ̄e + Ω)

=− εTˆ̄e GēJTˆ̄e
DT
LDLJTˆ̄e

Gēεˆ̄e − εTˆ̄e GēJTˆ̄e
Leē

+ εTˆ̄e GēJTˆ̄e
αē(t)ē− γεTˆ̄e GēJTˆ̄e

DT
LDLē− γēTLeē

+ εTˆ̄e GēJTˆ̄e
Ω + γēTΩ,

(40)
Adding and subtracting γεTˆ̄e GēJTˆ̄e

ē on the right hand side
of (40), we obtain



V̇ē =− εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē− εTˆ̄e GēJTˆ̄e

DT
LDLJTˆ̄e

Gēεˆ̄e

− εTˆ̄e GēJTˆ̄e
Leē− γēTLeē+ γεTˆ̄e GēJTˆ̄e

(Im −DT
LDL)ē

+ εTˆ̄e GēJTˆ̄e
Ω + γēTΩ

=− εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē+ εTˆ̄e GēJTˆ̄e

Ω + γēTΩ

− yT
[

DT
LDL

1
2 (Le−γ(Im−DT

LDL))
1
2 (Le−γ(Im−DT

LDL)) γLe

]
y

=− εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē− yTΓy

+ εTˆ̄e GēJTˆ̄e
Ω + γēTΩ

(41)
with

y =

[
JTˆ̄e

Gēεˆ̄e
ē

]
, (42)

and where the block matrix Γ is defined in(29). We have
that GēJTˆ̄e

is a diagonal positive definite matrix. Using
(32), we can verify that (γIm−αē(t)) is a diagonal positive
definite matrix if γ ≥ l = max(lēi) > ᾱ = supαēi(t). Since
Tēi is smooth, strictly increasing and Tēi(0) = 0, we have
εēi(ˆ̄ei)ˆ̄ei ≥ 0. Then, by setting γ := θ + ᾱ, with θ being a
positive constant, we get:

− εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē ≤ −θεTˆ̄e GēJTˆ̄e

ē (43)

Then, according to (19), (23), we further obtain

− θεTˆ̄e GēJTˆ̄e
ē = −θεTˆ̄e Gē

∂εˆ̄e

∂ ˆ̄e
ˆ̄e ≤ 0. (44)

(44) holds because the transformed function Tēi is smooth
and strictly increasing and εēi(ˆ̄ei)ˆ̄ei ≥ 0. Then, based
on condition (28), and choosing γ = γ̄, we obtain

−εTˆ̄e GēJTˆ̄e
(γIm − αē(t))ē ≤ 0 and Γ ≥ 0. Then V̇ē is

further upper bounded as

V̇ē ≤ −θεTˆ̄e Gē
∂εˆ̄e

∂ ˆ̄e
ˆ̄e+ εTˆ̄e (GēJTˆ̄e

Ω + γQΩ), (45)

where Q is a time-varying diagonal positive definite matrix
such that ē = Qεˆ̄e. This matrix Q always exists with the
diagonal entries qi = ρēi ˆ̄ei/εēi(ˆ̄ei) > 0. Next, according to
inequality (25), we further derive that

V̇ē ≤ −θµ‖εˆ̄e‖2 + ‖εˆ̄e‖M̄ē, (46)

where µ = min(µēi), i = 1, · · · ,m and µēi is defined in
(25). M̄ē is a positive constant satisfying

‖GēJTˆ̄e
Ω + γQΩ‖ ≤ M̄ē. (47)

(47) holds with a bounded M̄ē due to the boundedness of

x̄, v̄d, ˙̄vd. Similarly, it can be concluded that V̇ē < 0 when

‖εˆ̄e‖ > M̄ē

θµ and further ‖εˆ̄e‖ is upper bounded by

‖εˆ̄e‖ ≤ ε̄2 = max

{
‖εˆ̄e(0)‖, M̄ē

θµ

}
, (48)

∀t ∈ [0, τmax). Due to the boundedness of ‖εˆ̄e‖ in t ∈
[0, τmax), we can restrict ˆ̄ei in a compact subset of Dēi as

ˆ̄ei(t) ∈ [δēi , δ̄ēi ] , [−T−1
ēi (ε̄2), T−1

ēi (ε̄2)] ⊂ Dēi , (49)

where T−1
ēi is the inverse function of Tēi .

Step 3. Finally, we need to prove that τmax can be extended
to ∞. According to (37) and (49), we know that z(t) ∈
D′ = D′x̄×D′ē,∀t ∈ [0, τmax), where D′x̄ = [δx̄1

, δ̄x̄1
]× · · · ×

[δx̄m
, δ̄x̄m

] and D′ē = [δē1 , δ̄ē1 ] × · · · × [δēm , δ̄ēm ]. Hence,
D′ ⊂ D is a nonempty and compact subset of D and it
can be concluded that z(t) ∈ D′,∀t ∈ [0, τmax). Let us
now assume that τmax < ∞. According to Proposition
C.3.6 of (Sontag, 2013), there exists a t′ ∈ [0, τmax)

such that z(t′) /∈ D′, which leads to a contradiction.
Hence, we conclude that τmax is extended to ∞, that is
z(t) ∈ D′ ⊂ D,∀t ≥ 0. Therefore εˆ̄x, εˆ̄e are bounded
for all t ≥ 0 and the boundedness of the transformed
errors εˆ̄x, εˆ̄e implies that the relative position x̄(t) and the
relative velocity error ē(t) evolve while satisfying (4),(5)
and (18), respectively for all t ≥ 0. Finally, the convergence
result is discussed next. By choosing small enough ρx̄i∞ ,
we can conclude that consensus is achieved in the sense
that x̄i ∈ (−ε, ε) as t → ∞, where ε is close to 0 and
satisfies ε < ρx̄i∞ , i = 1, . . . ,m. 2

Remark 1. The consensus achieved in Theorem 1 is prac-
tical convergence since ε can be arbitrarily small but not
exactly zero. This kind of practical convergence is also
shown in (Bechlioulis and Rovithakis, 2014). It is reason-
able in practical design and it cannot be guaranteed that
the errors converge to 0 since the Lyapunov-like function
is bounded by its level set rather than negative definite.

4. SIMULATION

In this section, a simulation example is presented. The
communication graph is shown as Fig. 1, where the leaders
and followers are represented by grey and white nodes,
respectively. We choose, without loss of generality, the
same ρx̄i

and ρēi for all edges:

ρx̄i(t) = 4.9e−0.4t + 0.1; ρēi(t) = 2e−0.4t + 0.1. (50)

For all (i, j) ∈ E , we choose Mx̄i
= 1 and

Tx̄i
(ˆ̄xi) = ln

(
1 + ˆ̄xi
1− ˆ̄xi

)
;Tēi(ˆ̄ei) = ln

(
1 + ˆ̄ei
1− ˆ̄ei

)
.

1

2

3

4 5
6

Fig. 1. Communication graph with a tree topology.

The relative positions are initialised as [3 2 2.5 1 0.5]
T

and the relative velocity error is initialised as [1 1 1 1 1]
T

.
According to Theorem 1, the matrix inequality is feasible
with γ̄ = 1, l is chosen to be 0.4 and thus satisfies the
constraint l ≤ γ̄ = 1. The simulation result when applying
the PPC control law (27) with gain matrices Gx̄, Gē whose
diagonal entries are all equal to 1 is shown in Fig. 2.
As a comparison, the simulation result without the PPC
control law (27) is shown in Fig. 3. In both figures, the
black lines indicate the prescribed performance functions.
We can see that the trajectories intersect the performance
bound without extra control, which can be improved by
applying the PPC law (27) such that the controlled system
achieves consensus while satisfying (4),(5) and (18).

5. CONCLUSIONS

In this paper, the consensus problem of second order
leader-follower multi-agent systems with prescribed per-
formance guarantees has been investigated. Under the
assumption of tree graphs, a distributed prescribed per-
formance control law has been proposed for the group
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Fig. 2. The left and right figures show the trajectories
of relative positions and relative velocity errors with
PPC control (27), respectively.
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Fig. 3. The left and right figures show the trajectories of
relative positions and relative velocity errors without
PPC, respectively.

of leaders to drive the followers ensuring that the entire
system can achieve consensus within the prescribed per-
formance bounds. We have proved that when the decay
rate of the performance functions of the relative velocity
errors is within a sufficient bound, the relative velocity
errors can also evolve within certain performance bounds.

Future research directions include considering more gen-
eral graphs that include circles, applying other transient
approaches to this leader-follower framework and also in-
vestigating leader selection problems.
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Yazicioğlu, A.Y. and Egerstedt, M. (2013). Leader selec-
tion and network assembly for controllability of leader-
follower networks. In American Control Conference
(ACC), 2013, 3802–3807. IEEE.

Zelazo, D. and Mesbahi, M. (2011). Edge agree-
ment: Graph-theoretic performance bounds and passiv-
ity analysis. IEEE Transactions on Automatic Control,
56(3), 544–555.


	Introduction
	Preliminaries and problem statement
	Graph Theory
	System Description
	Prescribed Performance Control
	Problem Statement

	Main results
	Simulation
	Conclusions

