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Abstract: This paper investigates the rendezvous problem for the autonomous cooperative
landing of an unmanned aerial vehicle (UAV) on an unmanned surface vehicle (USV).
Such heterogeneous agents, with nonlinear dynamics, are dynamically decoupled but share a
common cooperative rendezvous task. The underlying control scheme is based on distributed
Model Predictive Control (MPC). The main contribution is a rendezvous algorithm with
an online update rule of the rendezvous location. The algorithm only requires the agents
to exchange information when they can not guarantee to rendezvous. Hence, the exchange
of information occurs aperiodically, which reduces the necessary communication between
the agents. Furthermore, we prove that the algorithm guarantees recursive feasibility. The
simulation results illustrate the effectiveness of the proposed algorithm applied to the problem
of autonomous cooperative landing.

Keywords: Autonomous cooperative landing, Nonlinear predictive control, Model predictive
and optimization-based control, Distributed nonlinear control, UAVs, Tracking.

1. INTRODUCTION

Coordination and control of multi-agent systems is a vivid
research area with applications in robot manipulators con-
trol, unmanned surface vehicles (USV), unmanned aerial
vehicles (UAV) and space systems, among others. Because
multi-agent systems are composed of agents with embed-
ded computing and communication units, a distributed
control scheme is the most common control approach to
these types of problems.

Search-and-rescue missions are one example of an appli-
cation that is dependent on distributed and multi-agent
control. In such a mission, heterogeneous agents have to
perform tasks together or independently while considering
the common objective of the mission and assisting other
agents if needed. This type of scenario has been tested as a
part of the WASP Research Arena on Public Safety, Pers-
son and Wahlberg (2019). The problem of safely landing
UAVs on USVs while they are moving at high speeds to
ensure agents rendezvous simultaneously has been studied
in Persson and Wahlberg (2021). The rendezvous problem
is challenging due to several reasons, for example, sudden
communication losses or strong disturbances acting on the
agents can lead to disastrous consequences. Moreover, even
the basic tasks to determine if the rendezvous is possible
or not and what strategy to employ when the rendezvous
location has to be updated can be complex. An illustration
of the motivating problem is depicted in Fig. 1.
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Fig. 1. The motivating application is a scenario where
drones must be able to rendezvous and land on a
moving boat.

Model Predictive Control (MPC) has often been used in
such applications because of its ability to explicitly include
advanced system dynamics as well as diverse state and
input constraints directly in the computation of the control
inputs. A question that has not been directly addressed in
previous research is that of efficient communication strate-
gies between the agents. Instead, previous distributed
solutions have exchanged all state and trajectory infor-
mation between the agents at each sample time, Bereza
et al. (2020). In this paper, we consider rendezvous con-
trol through Distributed MPC (DMPC), where the agents
use an aperiodic exchange of information to negotiate
and update their rendezvous point. The agents achieve
cooperation through the iterative updates of the shared
rendezvous point. The exchange of information occurs only
when it is necessary to maintain the feasibility of the
control action, thus reducing the necessary communica-
tion between the agents. The control algorithm is applied
to nonlinear heterogeneous agents with state and input
constraints, and tested and evaluated in simulation on an
example of a UAV landing on a USV.



The main contributions of this paper are outlined as
follows:

• We present the distributed rendezvous algorithm that
enables the aperiodic communication between the
agents based on the deviations from the predicted tra-
jectory, thus eliminating unnecessary communication.
• Moreover, we synthesize the time-varying distributed

terminal sets for tracking that depend on the ren-
dezvous point. These terminal sets are the main in-
gredient in the recursive feasibility proof.
• Finally, we prove that the proposed algorithm guar-

antees recursive feasibility.

Christofides et al. (2013) gives an overview of several
approaches to distributed implementation of model pre-
dictive control. Our focus is on dynamically decoupled
systems that can be coupled with performance criteria.
In Keviczky et al. (2006), the authors assume that each
agent knows the system dynamics of all of its neighbors
to compute their assumed optimal state trajectories. The
stability is established with the requirement that the mis-
match from the actual trajectories of the agent’s neigh-
bors is small. A similar approach was taken in Dunbar
and Murray (2006), in which the stability is imposed by
requiring that the calculated trajectories of each agent do
not deviate from those calculated in the previous time step.
Sequential optimization of the local cost functions can, un-
der some assumptions, guarantee stability and convergence
to the common cooperative goal, as shown in Müller et al.
(2012). In our approach, we are considering the agents
that are unaware of the dynamics of other agents and
achieve the cooperative goal by negotiating the rendezvous
location.

However, most of the mentioned research assumes a pe-
riodical exchange of information between the agents and
recalculation of the control inputs at every sampling time
instance. The recalculated control inputs usually do not
generate much different state trajectories compared to the
ones from the previous time steps, especially if the model
is very accurate and disturbances acting on the system
are small but are critical for feasibility requirements, see,
e.g. Chen and Allgöwer (1998). The aperiodic (distributed)
MPC can be implemented using the event-triggered or self-
triggered strategy Heemels et al. (2012). The triggering
conditions can be cost-based, then the optimal control
problem is recalculated when the cost is not guaranteed
to decrease Hashimoto et al. (2014). Moreover, they can
be trajectory-based and recalculated when the trajectories
deviated significantly compared to the previous ones and
the feasibility of the overall problem might be compro-
mised Hashimoto et al. (2017), Liu et al. (2020). How-
ever, the triggering conditions for nonlinear systems are
based on the worst-case trajectory prediction that involves
Lipschitz continuity assumption and Lipschitz constant,
which for the systems with fast and agile dynamics, like
quadcopters, can lead to very conservative triggering con-
ditions to maintain feasibility and stability. Therefore, in
this paper, we assume that the recalculation of the optimal
control problem is conducted at every time step, and
investigate how aperiodic negotiation of the rendezvous
location can preserve the feasibility.

The paper is organized as follows. First, we state the
problem formulation and the distributed optimal control
problem in Section 2. Then, we present the rendezvous
algorithm in Section 3 and its feasibility in Section 4.
Finally, in Section 5, we describe the models and their
constraints used to generate the results that are also
presented in this section.

Notation: We use P � 0 to denote that a matrix P is
positive definite. The notation ‖x‖ is used as the Euclidean
norm of vector x, and ‖x‖P as a weighted norm of x, where

‖x‖P =
√
xTPx. We denote the system state trajectories

with x(t), nominal state trajectories with x̂(t) and optimal
state trajectories with x̂∗(t).

2. PROBLEM FORMULATION

2.1 Dynamics and optimal control problem

We consider M agents with nonlinear dynamics and addi-
tive disturbances:

ẋi(t) = fi(xi(t), ui(t)) + wi(t),

yi(t) = Cixi(t),
(1)

for t ≥ t0, where for each i = 1, ...,M , the state vector
xi(t) ∈ Rni is measurable, ui(t) ∈ U ⊆ Rmi is the control
input, the output yi(t) ∈ Rp consists of the states we aim
to control for the rendezvous, wi(t) ∈ W ⊆ Rni is the
additive bounded disturbance, and t0 ∈ R is the initial
time.

The following standard MPC assumptions as in Chen and
Allgöwer (1998) are considered in this paper.

Assumption 1. (i) The function fi : Rni × Rmi → Rni
is twice continuously differentiable and fi(0, 0) = 0; (ii)
U ⊆ Rmi is compact, convex and 0 ∈ Rmi is contained
in U ; (iii) the system in (1) has a unique solution for
any initial condition xi,0 ∈ Rni , any piecewise continuous
and right-continuous control ui : [t0,∞) → Ui, and any
disturbance wi : [t0,∞) → Wi; (iv) for the linearized
system around the origin without disturbances, i.e., ẋi =
Aixi(t)+Biui(t), where Ai = ∂fi

∂xi
(0, 0) and Bi = ∂fi

∂ui
(0, 0),

the pair (Ai, Bi) is stabilizable; (v) for each agent i and
its linearized dynamics around the origin, there exists a
matrix Ki such that Ak,i = Ai +BiKi is a stable Hurwitz
matrix.

Remark 2. Note that the requirement fi(0, 0) = 0 is
not restricted to the origin, but can be shifted to any
equilibrium (x̄i, ūi), as well as the linearization in (iv).

Let x̂i(s; tk), ŷi(s; tk) be the nominal state trajectory and
output, respectively, calculated at time instant tk given by

˙̂xi(s; tk) = fi(x̂i(s; tk), ui(s; tk)),

ŷi(s; tk) = Cix̂i(s; tk),
(2)

for s ∈ [tk, tk + T ].

The control objective is to steer the relevant states of every
agent yi to a rendezvous point θ ∈ Rp in finite time. The
set of all admissible rendezvous points is denoted with
Θ ⊆ Rp.



Let us define a set Zi(θ) for each agent i and argument θ ∈
Rp with a tuple (x̄i, ūi, ȳi) such that Zi(θ) = {(x̄i, ūi, ȳi) ∈
Rni+mi+p : 0 = fi(x̄i, ūi), ȳi = Cix̄i = θ}
Assumption 3. There exists a non-empty compact and
convex set Θ ⊆ Rp such that ∀θ ∈ Θ, we have Zi(θ) 6= ∅
for all i.

Considering the motivating application, one can think of
the set Θ as an inflated convex set in the plane of the
USV landing platform that covers the unoccupied space
that UAV and USV can reach.

By this assumption, it is also assumed that there exists an
equilibrium for which the output reference θ is attained for
each agent. Moreover, such an equilibrium can be explicitly
found with a given θ by the following linear mappings
Hxi ∈ Rp×ni , Hui ∈ Rp×mi

x̄i = Hxiθ, ūi = Huiθ. (3)

The following assumption is made to ensure that a such
rendezvous point is reachable (in a similar manner to
Assumption 2. in Keviczky and Johansson (2008)):

Assumption 4. The time planning horizon T is long
enough to reach at least one θ in the rendezvous set Θ.

We choose the cost function to penalize the deviations of
the system trajectories from the desired terminal steady-
state (x̄i, ūi, ȳi):

Ji(x̂i(tk), ui(tk), x̄i, ūi) = ‖x̂i(tk + T ; tk)− x̄i‖2Pi
+

∫ tk+T

tk

‖x̂i(s; tk)− x̄i‖2Qi + ‖ui(s; tk)− ūi‖2Ri ds,
(4)

where Qi, Ri, Pi are positive definite weighting matrices,
T > 0 is the time duration of prediction horizon.

Note that this formulation is a bit different from the
standard tracking MPC formulations (see e.g. Limón
et al. (2008)), because of Assumption 3 that such a tuple
(x̄i, ūi, ȳi) exists and is attainable.

Before we formulate the distributed optimal control prob-
lem we will present a Lemma on the local invariant termi-
nal sets around a steady-state that is formulated following
the ideas of Chen and Allgöwer (1998), Dunbar (2007),
Hashimoto et al. (2017).

Lemma 5. For the nominal system (2), if Assumption 1
holds, then there exists a positive constant αi ∈ (0, ᾱi], a
matrix Pi = PTi � 0, and a local state feedback control
law κfi(xi, x̄i) = Ki(xi − x̄i) ∈ Ui for a steady-state x̄i,
satisfying

∂Vf,i
∂xi

fi(xi − x̄i, κfi(xi, x̄i)) ≤ −
1

2
‖xi − x̄i‖2Q∗

i

for all xi ∈ Xf,i(x̄i, αi), where Q∗
i = Qi +KT

i RiKi,

Vf,i(xi, x̄i) = ‖xi − x̄i‖2Pi and the terminal set

Xf,i(x̄i, αi) =
{
xi ∈ Rni : Vf,i(xi, x̄i) ≤ α2

i

}
. (5)

The proof is omitted for brevity and the main parts can
be found in the aforementioned papers.

Now, we can formulate the distributed optimal control
problem with respect to our objective.

Problem 6. At time tk with initial states xi(tk), i =
1, ...,M , and given reference θ(tk), the distributed optimal
control problem is formulated as

min
ui(·),x̄i,ūi

Ji(x̂i(s; tk), ui(·), x̄i, ūi) (6a)

subject to
˙̂xi(s; tk) = fi(x̂i(s; tk), ui(s; tk)), s ∈ [tk, tk + T ] , (6b)

ŷi(s; tk) = Cix̂i(s; tk), (6c)

x̂i(s; tk) ∈ Xi, (6d)

ui(s; tk) ∈ Ui, (6e)

x̄i = Hxiθ(tk), (6f)

ūi = Huiθ(tk), (6g)

x̂i(tk + T ; tk) ∈ Xf,i(x̄i, αi), (6h)

for agents i= 1, ...,M . For the initial time t0, k= 0, the
agents minimize the cost (6a) subject to (6b–h) for a given
T > 0.

3. RENDEZVOUS ALGORITHM

The distributed optimal control problem stated in (6)
depends on θ(tk) which is the rendezvous point in the
subset of the output space Rp as stated in Assumption 3.
Before we present the algorithm, we need to define how
θ(tk) is going to be initialized and updated.

The rendezvous point θ(tk) at k = 0 can be initialized
as a weighted average of the initial agent positions in the
output space

θ(t0) =
1

M

M∑
i=1

ciyi(t0), s.t.
1

M

M∑
i=1

ci = 1, ci ≥ 0, (7)

where M is the number of agents.

We assume that there exists ci, i = 1, ...,M such that
θ(t0) ∈ Θ according to Assumption 3. If the agents are
operating in an unconstrained and obstacle-free output
space, then any ci will result with θ(t0) ∈ Θ. If this is
not the case, then an admissible ci would need to be de-
termined by another layer of the optimization taking into
account output-space constraints of all agents. Moreover,
future work will include the conditions such that θ(tk)
remains in a constrained output space Θ.

Let us denote the output terminal offset term Vo as

Vo = Vo(ŷi, θ) = Vo(ŷi(tk + T ; tk), θ(tk))

= ‖ŷi(tk + T ; tk)− θ(tk)‖2 . (8)

After the initialization, the agent i updates θ(tk) according
to the rule

θ(tk+1) =

{
θ(tk) Vo ≤ ε

θ(tk)− ηvθ(tk) Vo > ε
(9)

where η and ε are tuning parameters and vθ(tk) is defined
as:

vθ(tk) =
∂Vo
∂θ(tk)

∥∥∥∥ ∂Vo
∂θ(tk)

∥∥∥∥−1

. (10)

Parameter η is a step size that must be chosen as a small
value, in order to avoid overshooting, and it quantifies the
correction of θ in the output space.

Algorithm 1. (Event-triggered DMPC Rendezvous)

(1) Initialization: Set prediction horizon T ; sampling pe-
riod δ; weighting matrices Qi, Ri, Pi; initial state xi,0
at time t0 for each agent i = 1, ...,M ; k = 0; ci, θ(t0)
according to (7) and parameters η and ε;



(2) For each agent i = 1, ...,M :
(a) If new data message received: download θ(tk);
(b) Solve optimization problem (6); obtain the input

û∗i ; generate predicted optimal output trajecto-
ries ŷ∗i (s; tk).

(c) Check the rendezvous condition:

Vo(ŷi(tk + T ; tk), θ(tk)) ≤ ε (11)

(i) If (11) is not satisfied: update θ(tk+1) ac-
cording to the rule (9); send data message
{θ(tk+1)} to other agents.

(d) Check the stopping condition:

‖yi(tk)− θ(tk)‖ ≤ ε (12)

If not satisfied: apply û∗i (tk; tk), set k = k+ 1, go
to step (2)

(3) End

Remark 7. If the rendezvous condition is not satisfied, the
only information that is sent from an agent i at time tk
is θ(tk), and other agents use that θ as they receive it.
Therefore, the algorithm is able to run in parallel and
sequentially, see e.g. Richards and How (2007).

4. FEASIBILITY

In order to show feasibility of Problem 6, we will assume
the initial feasibility and then show that the problem is
recursively feasible.

Assumption 8. Problem 6 is feasible at time t0 for each
agent i = 1, ...,M with θ(t0) initialized as in (7).

The main point in the proof of the rendezvous algorithm
is to ensure feasibility on the consecutive steps where the
rendezvous reference point θ(tk) is updated. The space
shift of the terminal set Xf,i(x̄i, αi) that occurs due to
the reference change θ(tk+1) 6= θ(tk) at some tk can be
quantified using the update rule (9).

Lemma 9. For the nominal system with dynamics in Eq.
(2) and reference change from x̄i(tk) to x̄i(tk+1), given a
local terminal set

Xf,i(x̄i, αi) =
{
xi ∈ Rni : Vf,i(xi, x̄i) ≤ α2

i

}
it holds that if

x̂i(tk + T ; tk) ∈ Xf,i(x̄i(tk), αi(tk))

then

x̂i(tk+1 + T ; tk+1) ∈ Xf,i(x̄i(tk+1), αi(tk+1))

where αi(tk+1) = αi(tk) + η ‖Hxivθ(tk)‖Pi .

The proof can be found in Appendix A. Now, we can state
the recursive feasibility theorem.

Theorem 10. For the agents i = 1, ...,M with system
dynamics given by (1), for which Assumptions 1 and 8 and
Lemmas 5 and 9 hold, Problem 6 is feasible at tk, k ≥ 0.

The proof can be found in Appendix B. Note that this only
guarantees feasibility and does not imply convergence,
which will be the focus of future work.

5. SIMULATION SETUP AND RESULTS

In this section we evaluate Algorithm 1 implemented on
nonlinear models of a quadcopter and a boat. The goal is
to land the quadcopter on a boat landing platform, which

is 1m×1m in size. We denote the quadcopter and the boat
model and parameters with the subscripts i = q and i = b,
respectively.

5.1 Models and constraints

The state vector of quadcopter model xq is chosen as

xq = [px, py, pz, vx, vy, vz, φ, θ, ψ]
T
,

and input uq as uq =
[
v̇z,cmd, φcmd, θcmd, ψ̇cmd

]T
.

The position in R3 is represented with yq = [px, py, pz]
T

,

and [ṗx, ṗy, ṗz]
T

= [vx, vy, vz]
T

. Thus, matrix Cq =
[I3×3, 03×6].

For the derivation of the quadcopter dynamics the reader
is referred to Persson and Wahlberg (2019). The main
difference is that the attitude dynamics are approximated
by the inner-loop attitude dynamics that are of first order,
and for the yaw angular velocity we assume that it can be
instantaneously achieved, see e.g. Kamel et al. (2017).

On the quadcopter we imposed several constraints to
ensure the proper behaviour:√

v2
x + v2

y + v2
z ≤ 17.0 m/s,

|vz| ≤ 4.0 m/s,

|φ| ≤ 0.5 rad,

|θ| ≤ 0.5 rad,

|v̇z,cmd| ≤ 2.0 m/s,

|φcmd| ≤ 0.5 rad,

|θcmd| ≤ 0.5 rad,

|ψ̇cmd| ≤ π/2 rad/s.

The constraints in the left column constitute the set Xq.
The first two constraints are related to the maximum ve-
locity and vertical velocity respectively, which we want to
limit to prevent fast descent. The latter two are constraints
on the roll and pitch angles. The set Uq is formed of
constraints in the right column.

The boat model is chosen as a simple vehicle dynamical
model for the purpose of this work. The state vector of

boat model xb is chosen as xb = [px, py, ψ, vx, vy, ωψ]
T
,

and input uq ub =
[
τx, τy, τωψ

]T
. The position in R3

space is represented with yb = [px, py, 0]
T

. Matrix Cb is
given as Cb = [diag(1, 1, 0), 03×3].

The boat model set constraints Xb also has the velocity

constraints and constraint on the state ωψ, i.e.
√
v2
x + v2

y ≤
15.0 m/s and |ωψ| ≤ 0.5 rad/s. Finally, the input con-

straints Ub has constraints on τωψ , i.e. |τωψ | ≤ 0.5 rad/s
2
.

5.2 Results

Algorithm 1 is initialized with the following parameters.
The planning horizon is set as T = 3s and sampling
period is δ = 0.1s for both agents. The update pa-
rameters for θ(tk) are η = 0.1 and ε = 0.1. For the
quadcopter we choose the weighting matrices as Qq =
diag(30, 30, 6, 1, 1, 1, 1, 1, 1), Rq = I and obtain Pq and
ᾱq = 0.2064 according to Lemma 5. For the boat Qb =
diag(5, 5, 1, 1, 1, 1), Rb = I, ᾱb = 0.7129. This choice of the
tuning parameters prioritizes the synchronization of the
agent’s position in the xy-plane such that the quadcopter
is above the boat and landing platform before the final
descent.
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Fig. 2. Nominal case with terminal constraints.

We set the initial states of the quadcopter and boat such
that the position in the output space is yq = [4, 2, 5]T and
yb = [−3,−1.5, 0]T , respectively. To determine initial θ(t0)
according to Eq. (7) we choose wq = 2/3 and wb = 4/3.
If the initial θ(t0) is not changed then the agents will
rendezvous at a point θ(t0) = [−0.67,−0.33, 0]T that is
twice closer to the boat than to the quadcopter as the
boat is slower. This is visible in Fig. 2 for the nominal
case with terminal constraints without any disturbances.
The difference between the initially predicted and actual
trajectories results from the change of θ(tk) that occurred
for the first four steps and θ(tfinal) = [−0.67,−0.73, 0]T .
A perspective view of the same setup is shown in Fig. 3.
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Fig. 3. Perspective view of the setup for nominal case with
terminal constraints.

In order to show the performance of the update rule for
θ(tk) we added a strong wind disturbance in the positive y-
axis direction acting from t1 = 0.5s until t2 = 2s, depicted
in Fig. 4. This causes the quadcopter to drift several meters
in the direction of the disturbance. However, the feasibility
is preserved at all time steps, and because of the imposed
terminal constraints the updates of θ(tk) are small.

Finally, because we did not experience any feasibility is-
sues, we removed the terminal constraints from Problem 6
to test Algorithm 1 and the update rule. In Fig. 5 we can
notice that the boat made adjustments and approached to
the quadcopter as a result of the rendezvous point updates
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Fig. 4. Strong wind active for t = [0.5s, 2.0s], case with
terminal constraints. Arrows show wind direction.

by the quadcopter. The updates of θ(tk) are shown in
Fig. 6. The bigger changes in θ(tk) compared to the case
with the terminal constraints are due to the update rule.
Vo(ŷi(tk + T ; tk), θ(tk)) is evaluated at the last predicted
ŷi(tk + T ; tk) output for which the corresponding state
x̂i(tk + T ; tk) belongs to a very small set Xf,i(x̄i, ᾱi).
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6. CONCLUSION

In this paper, we presented a rendezvous algorithm for
the distributed MPC scheme for agents with nonlinear
and heterogeneous dynamics. The algorithm is designed
for the problem of autonomous cooperative landing of the
quadcopter on the autonomous boat. During the landing
the agents communicate only when it is necessary to
update the rendezvous point and ensure the feasibility of
the algorithm. The effectiveness of the proposed algorithm
is shown with the simulation of the landing scenarios.

Although we did not experience feasibility issues, in fu-
ture work, we aim to quantify the upper bound on the
disturbance such that the feasibility of the algorithm is
preserved. Furthermore, it will be interesting to include the
obstacles and constraints in the output space and examine
the behaviour of the algorithm on the real systems.
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Chen, H. and Allgöwer, F. (1998). A quasi-infinite horizon
nonlinear model predictive control scheme with guaran-
teed stability. Automatica, 34(10), 1205–1217.

Christofides, P.D., Scattolini, R., de la Pena, D.M., and
Liu, J. (2013). Distributed model predictive control: A
tutorial review and future research directions. Comput-
ers & Chemical Engineering, 51, 21–41.

Dunbar, W.B. (2007). Distributed receding horizon con-
trol of dynamically coupled nonlinear systems. IEEE
Transactions on Automatic Control, 52(7), 1249–1263.

Dunbar, W.B. and Murray, R.M. (2006). Distributed
receding horizon control for multi-vehicle formation sta-
bilization. Automatica, 42(4), 549–558.

Hashimoto, K., Adachi, S., and Dimarogonas, D.V. (2014).
Distributed aperiodic model predictive control for multi-
agent systems. IET Control Theory & Applications,
9(1), 10–20.

Hashimoto, K., Adachi, S., and Dimarogonas, D.V. (2017).
Event-triggered intermittent sampling for nonlinear
model predictive control. Automatica, 81, 148–155.

Heemels, W., Johansson, K.H., and Tabuada, P. (2012).
An introduction to event-triggered and self-triggered
control. In 2012 IEEE 51st IEEE Conference on De-
cision and Control (CDC), 3270–3285. IEEE.

Kamel, M., Burri, M., and Siegwart, R. (2017). Linear vs
nonlinear mpc for trajectory tracking applied to rotary
wing micro aerial vehicles. IFAC-PapersOnLine, 50(1),
3463–3469.

Keviczky, T., Borrelli, F., and Balas, G.J. (2006). De-
centralized receding horizon control for large scale dy-
namically decoupled systems. Automatica, 42(12), 2105–
2115.

Keviczky, T. and Johansson, K.H. (2008). A study on dis-
tributed model predictive consensus. IFAC Proceedings
Volumes, 41(2), 1516–1521.

Limón, D., Alvarado, I., Alamo, T., and Camacho, E.F.
(2008). Mpc for tracking piecewise constant references
for constrained linear systems. Automatica, 44(9), 2382–

2387.
Liu, C., Li, H., Shi, Y., and Xu, D. (2020). Distributed

event-triggered model predictive control of coupled non-
linear systems. SIAM Journal on Control and Optimiza-
tion, 58(2), 714–734.

Müller, M.A., Reble, M., and Allgöwer, F. (2012). Cooper-
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Appendix A. PROOF OF LEMMA 9

Proof. Let us consider the optimal control law û∗i (s; tk)
for interval s ∈ [tk, tk + T ] obtained at tk by solving
Problem 6 and a candidate control law

ũi(s; tk+1) =

{
û∗i (s; tk) s ∈ [tk+1, tk + T ]
Kix̃i(s; tk) s ∈ [tk + T, tk+1 + T ]

(A.1)

that generates the system trajectory x̃i(s; tk+1) based on
the dynamics in (2). It holds that x̃i(tk + T ; tk+1) ∈
Xf,i(x̄i(tk), αi(tk)) and, due to the invariance of the ter-
minal set, x̃i(tk+1 + T ; tk+1) ∈ Xf,i(x̄i(tk), αi(tk)), i.e.

‖x̃i(tk+1 + T ; tk+1)− x̄i(tk)‖2Pi ≤ α
2
i (tk). (A.2)

Then,

‖x̃i(tk+1 + T ; tk+1)− x̄i(tk+1)‖Pi
≤ ‖x̃i(tk+1 + T ; tk+1)− x̄i(tk)‖Pi + ‖x̄i(tk)− x̄i(tk+1)‖Pi
(A.2)

≤ αi(tk) + ‖x̄i(tk)− x̄i(tk+1)‖Pi
(3)
= αi(tk) + ‖Hxiθi(tk)−Hxiθi(tk+1)‖Pi
(9)
= αi(tk) + η ‖Hxivθ(tk)‖Pi = αi(tk+1).

Hence, x̃i(tk+1 + T ; tk+1) ∈ Xf,i(x̄i(tk+1), αi(tk+1)).

Appendix B. PROOF OF THEOREM 10

Proof. If the state xi(tk+1) ∈ Xf,i ⊆ Xi then by the
invariance of the terminal set stated in Lemma 5, it will
remain in that set. Therefore, using the terminal control
law κfi(x) = Kixi ∈ Ui, the cost function in (4) is bounded
and all constraints in (6) are satisfied.

Let us consider again the obtained optimal control law
û∗i (s; tk) at tk for interval s ∈ [tk, tk + T ] and a candidate
control law according to Eq. (A.1) that generates the
system trajectory x̃i(s; tk+1) based on the dynamics in (2).

Because of feasibility at tk, the state x̃i(s; tk+1) ∈ Xi for
s ∈ [tk+1, tk + T ] and x̃i(tk+T ; tk+1) ∈ Xf,i(x̄i(tk), αi(tk)).
Moreover, due to the terminal set properties from Lemma
5, and the result of Lemma 9 the candidate control law
will ensure that the terminal state x̃i(tk+1 + T ; tk+1) is
in the shifted local terminal set x̃i(tk+1 + T ; tk+1) ∈
Xf,i(x̄i(tk+1), αi(tk+1)), which proves recursive feasibility.


