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Multi-agent Second Order Average Consensus with Prescribed Transient Behavior
Luca Macellari, Yiannis Karayiannidis and Dimos V. Dimarogonas

Abstract—The problem of consensus reaching with prescribed transient
behavior for a group of double-integrator agents is addressed. The
information exchange of the multi-agent system is described by a static
communication network. We initially set time-dependent constraints on
the transient response of the relative positions between neighboring agents
and we propose a distributed control law consisting of a proportional
term of the transformed error and an additional damping term based
on absolute velocities measurements. We also design an agreement
protocol that can additionally achieve prescribed performance for a
combined error of positions and velocities. Under a sufficient condition for
the damping gains, the proposed nonlinear time-dependent distributed
controllers guarantee that the predefined constraints are not violated
and that consensus is achieved with a convergence rate independent
of the underlying communication graph. Furthermore, connectivity
maintenance can be ensured by appropriately designing the performance
bounds. Theoretical results are supported by simulations.

I. INTRODUCTION

Distributed control of multi-agent systems is a relatively recent
research area that is of great interest due to the large variety of
applications. When dealing with a group of agents the control
objectives can vary from agreement on a measured value, in the case
of sensor networks, to rendez-vous, flocking or platooning, in the
case of multiple vehicles. The problem of ensuring convergence to
the same value is commonly known as consensus. For many linear
consensus protocols both conditions for convergence and the rate
of convergence depend on the eigenvalues of the Laplacian matrix
[1], [2]. In [3] double-integrator systems are investigated, revealing
that the maximum speed of convergence is determined by the largest
and the smallest nonzero eigenvalues of the Laplacian matrix of the
undirected connected graph. Moreover the consensus speed can be
modified by choosing suitable feedback gains.

In order to achieve agreement, connectedness of the underlying
communication graph is an essential requirement. Various solutions
have been proposed to address connectivity maintenance [4]–[6].
For example, in [4] constraints in the edge’s space are imposed,
introducing potential functions which values go to infinity when
approaching the critical distance between two agents. It is also shown
that if the initial conditions are confined within a certain region,
consensus is achieved while preserving connectedness. In [5], instead,
convex state constraints are considered and the consensus protocol has
been enriched by an auxiliary variable utilizing a logarithmic barrier
function to form a convex potential.

In general, constraints in the evolution of the state or the output of
both linear and nonlinear systems have been handled with a variety
of control techniques, e.g. logarithmic barrier Lyapunov functions [7]
and prescribed performance control [8]. A prescribed performance
controller ensures that the error at steady state converges to an
arbitrarily small residual set, with a rate not less than a given value
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and with an overshoot less than a specified value. Recently these
controllers have been successfully applied to robot manipulators
[9], [10], platooning [11] and formation control with connectivity
maintenance for multi-agent systems [12].

Transient constraints are important for multi-agent systems but
have not been tackled systematically up to now. Prescribed per-
formance control is a promising tool in that direction. This paper
builds on this observation and applies the framework of prescribed
performance control to the consensus problem for multi-agent sys-
tems, first introduced in [13]. A set of time-dependent constraints
are introduced on the edge’s space, forcing the errors between
communicating agents to evolve within predefined bounds. Two
different nonlinear time-dependent agreement protocols are proposed:
the first distributed controller is designed in order to ensure that the
position errors between communicating agents evolve within some
predefined bounds whereas the second also guarantees that additional
time-dependent constraints on a combined error of relative positions
and velocities are satisfied. The control input includes a prescribed
performance term with an additional damping term depending on
the absolute velocity of the agent. The use of the absolute velocities
takes into account the cases in which the relative velocities are not
available or are based on measurements that are not reliable. Both
cases are very common in realistic multi-robot applications.

Prescribed performance control guarantees the existence of the
solution that satisfies the constraints compared to classical techniques
such as optimal control approaches, that only allow to impose indirect
bounds, or constrained optimization problems resulting to LMIs
where feasibility and solvability of the constrained problems are not
guaranteed. Since the controller can guarantee that the multi-agent
system response evolves with predefined time-dependent bounds,
the convergence rate of the system can be made arbitrarily fast
by appropriately setting the performance function parameters. Such
behavior cannot be achieved by linear control laws: in [3] the case
of second-order systems is investigated, finding that the tuning of the
speed of convergence requires centralized information regarding the
graph topology. By incorporating bounds on a state transformation in
second order integrator multi-agent systems, prescribed performance
control also allows to additionally introduce bounds on the time
evolution of the velocities of the agents that can further improve
the control input. The problem of constraining the evolution of the
velocities of the agents has not been tackled before in distributed
multi-agent control, but prescribed performance control has been
successfully applied to bound joint-velocity in robot manipulators
[10]. Furthermore, when connectivity maintenance depends on the
maximum relative distance between two communicating agents such
as in [4], [6], the controller can guarantee that the agents remain
connected, given appropriately defined bounds.

Under certain assumptions, all the characteristics of the first-
order protocol are preserved, including convergence to the invariant
centroid. Lyapunov-like methods are used to investigate stability of
the closed loop system and conditions that guarantee convergence are
derived. The controllers are simulated considering different topolo-
gies for the underlying graph for comparison and demonstration
purpose.

The paper is organized as follows: in Section II we introduce the
model and the theoretical background; in Section III the first proposed
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controller is presented and stability and convergence properties are
studied; in Section IV the second proposed controller is presented;
Section V provides for simulation examples while Section VI sum-
marizes the results and discusses future developments.

II. PRELIMINARIES

A. Model and definitions

In this work we will consider a group of N agents each one
described by a double-integrator model

ẋi = vi
v̇i = ui

(1)

where xi ∈ R is the position and vi ∈ R is the velocity of the i-th
agent, for i = 1, . . . , N . For simplicity, but without loss of generality,
we take into account only one dimension for the theoretical analysis.
Let x = [x1, x2, . . . , xN ]> and v = ẋ = [v1, v2, . . . , vN ]> be the
stack vector of absolute positions and velocities, respectively. Let
also x̄ = [x̄1, x̄2, . . . , x̄m]> denote the stack vector of the position
errors (or relative positions) between two communicating agents i
and j, defined as x̄k , xij = xi − xj , with k = 1, 2, . . . ,m, being
m the number of links. We also denote with v̄k , vij = vi − vj the
velocity errors (or relative velocities) with v̄ = [v̄1, v̄2, . . . , v̄m]> the
corresponding stack vector.

B. Graph theory

The communication graph G is characterized by two finite sets:
V = {1, 2, . . . , N} is the set of vertices, indexed by the agents, and
E = {(i, j) ∈ V ×V | j ∈ Ni} is the set of edges, containing pair of
vertices that can exchange information. Let m = |E| be the number
of edges. Each agent i can communicate only with agents belonging
to its neighborhood Ni. A path is a sequence of edges connecting
two distinct vertices. If the starting and ending vertices coincide, then
we have a cycle. A graph is connected if there exists a path between
any pair of vertices. Additionally, a connected graph without cycles
is referred to as a tree.

By assigning and orientation to each edge of G we can define the
incidence matrix, a N ×m matrix denoted by B = B(G) = [bij ].
The rows of B are indexed by the vertices and the columns are
indexed by the edges. In particular bij = 1 if the vertex i is the
head of the edge j, bij = −1 if i is the tail of edge j and bij =
0 otherwise. An important property of the incidence matrix is that
the null space of its transpose, Ker(B>), is spanned by the vector
1 = [1, 1, . . . , 1]>. We can then obtain the Laplacian matrix of G as
L = BB>. For an undirected graph L is a rank deficient, symmetric,
positive semi-definite matrix. If the graph is connected, L has a single
zero eigenvalue with 1 corresponding eigenvector [14]. Finally, it can
be easily verified that Lx = Bx̄ and x̄ = B>x; moreover if x̄ = 0
we have that Lx = 0. The same identities are valid for v and v̄.

C. Prescribed performance control

In this section we will introduce the theoretical background for
prescribed performance control presented in [8], applied to the
problem at hand. The objective is to prescribe the evolution of
the relative positions xij between neighboring agents within the
following bounds, described in Figure 1,

−Mijρij(t) < xij(t) < ρij(t) if xij(0) > 0 (2a)

−ρij(t) < xij(t) < Mijρij(t) if xij(0) < 0 (2b)

defined by the positive, smooth and decreasing performance functions
ρij(t) : R+ −→ R+\{0} and indices Mij representing the maximum
allowed overshoot. Note that limt→∞ ρij(t) = ρ∞ > 0, where ρ∞

ρij(t)

−M ijρij(t)

−M ijρ0ij

0
ρ∞ij

x0ij

ρ0ij

(a) Case of xij(0) > 0
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(b) Case of xij(0) < 0

Figure 1: Performance bounds (dashed lines)
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Figure 2: Error transformation

represents the maximum allowable steady state error for xij(t), while
the rate of descent of ρij(t) is a lower bound on the speed of
convergence. By normalizing xij(t) with respect to the corresponding
performance function we get the modulated (or modified) error

x̂ij(t) ,
xij(t)

ρij(t)
(3)

and we can define the corresponding sets

Dx̂ij , {x̂ij(t) : x̂ij(t) ∈ (−Mij , 1)} if x̂ij(0) > 0 (4a)

Dx̂ij , {x̂ij(t) : x̂ij(t) ∈ (−1,Mij)} if x̂ij(0) < 0 (4b)

that are equivalent to (2). Note that the choice of the set depends
only on the sign of the initial value. Both sets can be used in case
of zero initial value.

The modified errors are transformed through transformation func-
tions that define smooth and strictly increasing mappings Tij :
Dx̂ij −→ R, represented in Figure 2. We denote the elements of
the transformed error ε(ˆ̄x) ∈ Rm with

εij(x̂ij) = Tij (x̂ij) (5)

where we dropped the time argument t for notation convenience.
Figure 2 shows that if the transformed error εij(x̂ij) is bounded,
then the modified error x̂ij is confined within the regions (4). This
implies that the relative positions xij evolve within the performance
bounds (2), as shown in Figure 1.
Differentiating (5) with respect to time, we obtain

ε̇ij(x̂ij) = JTij (x̂ij , t) [ẋij + αij(t)xij ] (6)
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where

JTij (x̂ij , t) ,
∂Tij(x̂ij)

∂x̂ij

1

ρij(t)
> 0 (7)

αij(t) ,−
ρ̇ij(t)

ρij(t)
(8)

are the normalized Jacobian of the transformation Tij and the
normalized derivative of the performance function, respectively. The
functions αij(t) are positive and converge to zero. By further
requiring Tij(0) = 0 we can derive the following inequality (cfr.
[9], Sec. 2.2)

x̂ij
∂εij(x̂ij)

∂x̂ij
εij(x̂ij) ≥ µijε2

ij(x̂ij) (9)

for some positive constant µij , that is useful for the stability analysis.

III. PRESCRIBED TRANSIENT BEHAVIOR FOR THE POSITION

ERRORS

A. Proposed controller

For each agent, the proposed controller is the composition of a
term based on prescribed performance of the relative positions of the
neighboring agents and a second term which is proportional to the
absolute velocity of the agent:

ui = −
∑
j∈Ni

gijJTij (x̂ij , t)εij(x̂ij)− γvi i ∈ V (10)

with gij = gji and γ being positive constants, ∀(i, j) ∈ E .
The terms JTij (x̂ij , t) and x̂ij have been defined in Section II.
The controller (10) will be referred to as PPC1. Independence of
the evolution of the centroid (i.e. the average of the positions) of
the prescribed performance term can be ensured by assuming that
the graph G describing the communication topology of the multi-
agent system is connected and that communicating agents share
information about their performance functions, overshoot indices
and transformation functions, i.e. by requiring ρij(t) = ρji(t),
Mij = Mji and Tji(x̂ji) = −Tij(−x̂ij). This choice implies
JTij (x̂ij , t)εij(x̂ij) = −JTji(x̂ji, t)εji(x̂ji) (cfr. [13], Sec. III).
This also implies that the communication between the agents is
bidirectional, i.e. the graph G is undirected.

The system (1) with the control input (10) can be written in vector
form as follows:

ẍ = −BJT (ˆ̄x, t)Gε(ˆ̄x)− γv (11)

where ˆ̄x is the stack vector of all modified errors x̂ij , G ∈ Rm×m is
a positive definite diagonal gain matrix with entries gij and JT (ˆ̄x, t)
is a time varying diagonal matrix with diagonal entries JTij (x̂ij , t).
The matrix B is the incidence matrix of the graph G describing the
communication topology of the multi-agent system.

B. Stability analysis

The controller (10) is nonlinear and introduces a dependence on
time, hence the closed loop system (11) is nonlinear and time-varying.
We will use Lyapunov-like tools in order to prove that the equilibrium
point is asymptotically stable and at the same time consensus and
prescribed performance are guaranteed.

Theorem 1. Consider the prescribed performance agreement pro-
tocol (10) applied to the double integrator dynamics (1), with
performance functions chosen s.t ρ̇ij(t) < ∞ and transformation
functions s.t. Tij(0) = 0 ∀ (i, j) ∈ E . If the condition

γ > max
t≥0

αij(t) (12)

holds and the initial conditions xij(0) are inside the performance
bounds (2) ∀ (i, j) ∈ E , then i) the relative errors xij(t) will
evolve within the prescribed performance bounds and asymptotically
converge to 0 and ii) the absolute velocities vi(t) will converge to
zero for i = 1, . . . , N .

Proof. Let ξ =

[
x
v

]
be the state vector for the closed loop system

(11) and let IN be the N×N identity matrix. Let us also denote ε(ˆ̄x)
with εˆ̄x and JT (ˆ̄x, t) with JTˆ̄x

for notation convenience. Consider
a positive constant θ, with θ < γ, and the following positive definite
function

V (ξ, ˆ̄x) =
1

2
ξ>Qξ +

1

2
εˆ̄xGεˆ̄x (13)

with Q =

[
θγIN θIN
θIN IN

]
. Differentiating (13) along the trajectories

of (11) and taking into account (6) we obtain

V̇ (ξ, ˆ̄x) = − [θIm −A(t)] x̄>JTˆ̄x
Gεˆ̄x − (γ − θ)v>v (14)

which is negative semi-definite for θ < γ and [θIm −A(t)] > 0,
where A(t) is the m×m diagonal matrix with diagonal entries αij(t).
The last two conditions together yield (12). Note that since ρ̇ij(t)
is bounded maxt≥0 αij(t) < ∞. Hence if (12) is satisfied, V̇ is
negative semi-definite, that in turn implies V (ξ, ˆ̄x) ≤ V (ξ(0), ˆ̄x(0)).
Therefore if ˆ̄x(0) is chosen within the regions (4) then V (ξ(0), ˆ̄x(0))
is finite, implying that ξ, εˆ̄x ∈ L∞, where L∞ is the space of all
essentially bounded measurable functions. As explained in Section
II-C the boundedness of the transformed error εˆ̄x implies that the
position error x̄(t) evolves within the prescribed performance bounds
∀t and we have proved the first part of i). Since εˆ̄x and ε̇ˆ̄x are
bounded, we can conclude that the second derivative of V (ξ, ˆ̄x) is
bounded and subsequently V̇ (ξ, ˆ̄x) is uniformly continuous. There-
fore, by applying Barbalat’s Lemma, V̇ (ξ, ˆ̄x) → 0 as t → ∞.
This means that the trajectories of (11) will converge to the set
E = {(v, ˆ̄x)|v = 0, ˆ̄x = 0} in which V̇ is equal to zero. If the
transformation functions Tij are chosen such that Tij(0) = 0, then
V̇ (ξ, ˆ̄x) → 0 implies x̄ → 0 and v → 0 as t → ∞. This completes
the proof of i) and also proves ii).

Theorem 1 states that under certain assumptions the position errors
of agents connected by an edge asymptotically converge to zero. It
does not specify the state of the multi-agent system at the equilibrium.
In that sense the Corollary below fills this gap:

Corollary 1. The prescribed performance agreement protocol (10)
applied to the multi-agent system (1), under the assumptions of
Theorem 1, ensures that the agents’ positions converge to the centroid
c(t) = 1

N

∑N
i=1 xi(t) if the communication graph is connected.

Proof. The centroid of the multi-agent system (11) evolves according
to

c(t) =
1

N

N∑
i=1

xi(0)−
1

γ

(
1

N

N∑
i=1

vi(0)

)(
e−γt − 1

)
(15)

Utilizing 1
>x(t) =

∑N
i=1 xi(t) we can calculate β ,

limt→∞Nc(t) as follows:

β = 1
> [x(0) + v(0)/γ] (16)

On the other hand if the graph is connected Theorem 1 ensures that
all the agents will asymptotically reach the same absolute position,
i.e.

x∞ , lim
t→∞

x(t) = 1ϑ (17)

By combining (16) and (17) we obtain the linear system[
IN −1
1
> 0

] [
x∞
ϑ

]
=

[
0
β

]
(18)
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with 0 = [0, 0, . . . , 0]>, which clearly implies ϑ = 1
N
β.

Remark 1. Connectedness of the graph means that there exists a
path connecting each pair of agents. Theorem 1 ensures that each
pair of agents connected by an edge converges to the same position.
Thus, connectedness is fundamental for (17) to hold. In case of
disconnected graph, Corollary 1 still ensures average consensus of
the agents forming the different connected components.

Note that when 1
>v(0) = 0, the centroid is time-invariant and

ϑ = 1
N

∑N
i=1 xi(0), therefore average consensus is reached. Note

also that assuming initial zero velocities is reasonable in this type
of applications.

IV. PRESCRIBED TRANSIENT BEHAVIOR FOR THE POSITION

ERRORS AND THE COMBINED ERRORS

A. Combined error

Beside the bounds (2) on the relative positions xij , we now
impose additional bounds to the evolution of a linear combination
of the velocity and the position error (the combined error). Weighted
sums of position and velocity errors have been extensively used for
generating sliding surfaces in order to transform the second order to
a first order stabilization problem [15]. Let us define

q̄k , qij = vij + γxij i ∈ V and j ∈ Ni (19)

with γ positive constant and k = 1, 2, . . . ,m. We want to constrain
these quantities within the following bounds:

−Mij,q̄ρij,q̄(t) < qij(t) < ρij,q̄(t) if qij(0) > 0 (20a)

−ρij,q̄(t) < qij(t) < Mij,q̄ρij,q̄(t) if qij(0) < 0 (20b)

with Mij,q̄ overshoot index and ρij,q̄(t) performance functions, ∀
(i, j) ∈ E . By denoting with q̂ij(t) =

qij(t)

ρij(t)
the modified combined

errors we can define the corresponding prescribed performance re-
gions, ∀ (i, j) ∈ E :

Dq̂ij , {q̂ij(t) : q̂ij(t) ∈ (−Mij,q̄, 1)} if qij(0) > 0 (21a)

Dq̂ij , {q̂ij(t) : q̂ij(t) ∈ (−1,Mij,q̄)} if qij(0) < 0 (21b)

Let us also define ˆ̄q as the stack vector of all combined errors q̂ij
and ε ˆ̄q(ˆ̄q) as the stack vector of all transformed combined errors
εij, ˆ̄q(q̂ij).

Remark 2. The bounds (20a) or (20b) on the combined error (19)
imply a first order perturbed differential equation for the edge-space
position error:

ẋij = −γxij + z(t) (22)

with z(t) being a disturbance input satisfying (20a) or (20b). Fur-
thermore, equation (22) implies indirect bounds on the velocity error
that depend on the bounds on the position and the combined errors
and cannot be chosen arbitrarily. See [10] for more details.

B. Proposed controller

Let Tij, ˆ̄q and Tij,ˆ̄x denote the transformation functions applied to
the modified errors q̂ij and x̂ij , respectively. In order to achieve the
new control objective, the controller that we propose has an additional
prescribed performance term depending on the transformed combined
error:

ui =−
∑
j∈Ni

JTij , ˆ̄q
(q̂ij , t)εij, ˆ̄q(q̂ij)

−
∑
j∈Ni

[
gijJTij ,ˆ̄x

(x̂ij , t)εij,ˆ̄x(x̂ij)
]
− γvi (23)

for i ∈ V , where gij = gji are positive constant gains, ∀(i, j) ∈ E ,
and all the other terms have already been defined. The controller
(23) will be addressed as PPC2. Let G ∈ Rm×m be a diagonal,
positive definite, gain matrix with diagonal elements gij and let B
be the incidence matrix of the graph G describing the communication
topology of the multi-agent system. The closed loop system can be
written as

ẍ = −BJT ˆ̄q
(ˆ̄q, t)ε ˆ̄q(ˆ̄q)−BJTˆ̄x

(ˆ̄x, t)Gεˆ̄x(ˆ̄x)− γv (24)

If we define Γ = γIN and q = v + Γx, we can write (24) as a first
order system:

q̇ = −BJT ˆ̄q
(ˆ̄q, t)ε ˆ̄q(ˆ̄q)−BJTˆ̄x

(ˆ̄x, t)Gεˆ̄x(ˆ̄x) (25)

Such a form will be useful when studying the stability properties.

C. Stability analysis

By denoting with ρij,x̄ the performance function for xij and with
αij,x̄ the corresponding normalized derivative, the conditions that
ensure stability of (24) are given in the following theorem:

Theorem 2. Consider the prescribed performance agreement pro-
tocol (23) applied to the double integrator dynamics (1) with per-
formance functions ρij,x̄(t) having bounded derivative ∀t ≥ 0 and
transformation functions s.t. Tij,ˆ̄x(0) = 0 and Tij, ˆ̄q(0) = 0 ∀
(i, j) ∈ E . Assume also that xij(0) is within the performance bounds
(2) and that γ is chosen such that

γ > max
t≥0

αij,x̄(t) (26)

and qij(0) = vij(0) + γxij(0) is within the performance bounds
(20) ∀ (i, j) ∈ E . Then the position error x̄(t) and the combined
error q̄(t) evolve within the corresponding performance bounds and
asymptotically converge to zero.

Proof. In order to prove the theorem, we omit the arguments ˆ̄q, ˆ̄x
and t from ε ˆ̄q(ˆ̄q), εˆ̄x(ˆ̄x), JT ˆ̄q

(ˆ̄q, t) and JTˆ̄x
(ˆ̄x, t) for compactness

of notation. The proof consists of three parts: a) proof of the
boundedness of the term εˆ̄x, b) proof of the boundedness of the
term ε ˆ̄q , c) proof of the asymptotic stability of the equilibrium.

a) Consider the positive function

V1(q, ˆ̄x) =
1

2
q>q +

1

2
ε>ˆ̄xGεˆ̄x (27)

and its derivative along the trajectories of (24)

V̇1(q̄, ˆ̄x) = −q̄>JT ˆ̄q
ε ˆ̄q − [γIm −A(t)] x̄>JTˆ̄x

Gεˆ̄x (28)

Similar to the proof of Theorem 1, V̇1 is negative semi-definite if
(26) holds ∀ (i, j) ∈ E . Hence q, εˆ̄x ∈ L∞, which implies that
x̄(t) evolves within the performance bounds (2). Furthermore the
boundedness of εˆ̄x ∈ L∞ also implies that JTˆ̄x

is bounded.
b) Based on a), we can define d(t) = −BJTˆ̄x

εˆ̄x ∈ L∞ and write
the system (25) in the form

q̇ +BJT ˆ̄q
ε ˆ̄q = d(t) (29)

as a first order system evolving under the effect of a bounded
disturbance. For this part of the proof, let θ > 0 be an arbitrary
constant and consider the following positive function

V2(ε ˆ̄q, q) =
1

2
ε>ˆ̄q ε ˆ̄q +

θ

2
q>q (30)

Taking into account (6) and (29) we get

ε̇ ˆ̄q = −JT ˆ̄q
B>BJT ˆ̄q

ε ˆ̄q + JT ˆ̄q
B>d(t) + JT ˆ̄q

A(t)q̄ (31)
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By differentiating (30) along the system’s trajectories (25) and taking
into account (31), we obtain

V̇2(ε ˆ̄q, q) =− ε>ˆ̄q JT ˆ̄q
B>BJT ˆ̄q

ε ˆ̄q − ε
>
ˆ̄q JT ˆ̄q

Ṗ (t)ˆ̄q

− θq̄>JT ˆ̄q
ε ˆ̄q + ε>ˆ̄q JT ˆ̄q

B>d(t) + θq>d(t) (32)

Let us recall the definition of JT ˆ̄q
and αij(t) given in (7) and (8)

respectively. Substituting ˆ̄q = P (t)−1B>q, with P (t) a m × m
diagonal matrix with entries ρij(t) the following equality stands:

−ε>ˆ̄q JT ˆ̄q
Ṗ (t)ˆ̄q − θq̄>JT ˆ̄q

ε ˆ̄q = −ˆ̄q> [θIm −A(t)]
∂ε ˆ̄q

∂ ˆ̄q
ε ˆ̄q (33)

The matrix A(t) can be simply bounded from above, i.e.
supt(max(i,j)∈E |αij(t)|) < ᾱ, with some constant ᾱ. By setting
µ̄ := θ − ᾱ we can bound from above the term on the right of (33)
with

−ˆ̄q> [θIm −A(t)]
∂ε ˆ̄q

∂ ˆ̄q
ε ˆ̄q ≤ −µ̄ˆ̄q>

∂ε ˆ̄q

∂ ˆ̄q
ε ˆ̄q (34)

Consider now the remaining terms on the right side of (32). We have
the following inequalities:

−ε>ˆ̄q JT ˆ̄q
B>d(t) ≤ ζ1‖BJT ˆ̄q

ε ˆ̄q‖
2 +

1

4ζ1
‖d(t)‖2 (35)

q>d(t) ≤ ζ2‖q‖2 +
1

4ζ2
‖d(t)‖2 (36)

for some appropriately chosen positive constants ζ1 < 1, and ζ2.
Considering inequalities (34), (35) and (36), we can bound V̇2(ˆ̄q, q)
with

V̇2(ˆ̄q, q) ≤− (1− ζ1)‖BJT ˆ̄q
ε ˆ̄q‖

2 − µ̄ˆ̄q>
∂ε ˆ̄q

∂ ˆ̄q
ε ˆ̄q

+ ζ2‖q‖2 +

(
1

4ζ1
+

1

4ζ2

)
‖d(t)‖2 (37)

Being (1− ζ1)‖BJT ˆ̄q
ε ˆ̄q‖2 ≥ 0, inequality (37) becomes

V̇2(ˆ̄q, q) ≤ −µ̄ˆ̄q>
∂ε ˆ̄q

∂ ˆ̄q
ε ˆ̄q + ζ2‖q‖2 +

(
1

4ζ1
+

1

4ζ2

)
‖d(t)‖2 (38)

Adding and subtracting the quantity µ2‖q‖2, with µ2 being an
appropriately chosen positive constant, (38) can be written as

V̇2(ˆ̄q, q) ≤ −µ̄ˆ̄q>
∂ε ˆ̄q

∂ ˆ̄q
ε ˆ̄q − µ2‖q‖2 + ϕ(t) (39)

where ϕ(t) = (µ2 + ζ2)‖q‖2 +
(

1
4ζ1

+ 1
4ζ2

)
‖d(t)‖2 is a bounded

term given the boundedness of q and d(t).
Furthermore (9) yields

−µ̄ˆ̄q>
∂ε ˆ̄q

∂ ˆ̄q
ε ˆ̄q ≤ −µ̄µ1‖ε ˆ̄q‖

2

where µ1 is defined as µ1 , min(i,j)∈E µij . Hence, by imposing
λ = 2µ2 = 2µ̄µ1 (39) becomes

V̇2(ˆ̄q, q) ≤ −λV2(ε ˆ̄q, q) + ϕ(t) (40)

with

ϕ(t) = (µ̄µ1 + ζ2) ‖q‖2 +

(
1

4ζ1
+

1

4ζ2

)
‖d(t)‖2

bounded term, based on a). By applying Theorem 4.18 of [16], we can
conclude that ε ˆ̄q and, consequently, JT ˆ̄q

are bounded, thus proving
that the combined error evolves within the bounds (20).

c) Let us recall the positive function (27) that we used in part
a) and its first derivative (28). As showed in he proof of Theorem
1, based on the boundedness of V̈1(q̄, ˆ̄x) we can apply Barbalat’s
Lemma to conclude that q̄(t) → 0 and x̄(t) → 0, thus completing
the proof.

Even in this case we can find an analytical solution for the time
evolution of the centroid which is the same as (15). Therefore, along
the lines of Corollary 1, we can state the following complementary
result about the final consensus value:

Corollary 2. Consider the prescribed performance agreement pro-
tocol (23) applied to the double integrator dynamics (1) with all
the assumptions of Theorem 2. The agreement protocol ensures
convergence of the agents’ absolute positions to the centroid if the
communication graph is connected.

Proof. See proof of Corollary 1.

Note that once again, we obtain average consensus if the sum of
initial velocities is equal to zero.

V. SIMULATIONS

1 2 3 4

56

Figure 3: Communication graph of the multi-agent system used in the
simulations: spanning tree G1 in solid lines and connected graph with one
cycle G2 in solid and dashed lines.

In this section simulation results are presented in order to vali-
date the theoretical findings of the previous sections. We consider
N = 6 agents moving on a planar surface. Let pi =

[
xi yi

]>,
i ∈ {1, 2, . . . , N}, be the position of each agent and let d denote
the sum of the distances between the agents and the centroid
d ,

∑6
i=1 ‖pi − pc‖ with pc , 1

6

∑6
i=1 pi and uav the average

control input uav , 1
6

∑6
i=1 ‖p̈i‖.

The position errors are modulated by an exponentially decreasing
performance function

ρij(t) = (ρ0 − ρ∞) e−τt + ρ∞ (41)

which is the same for all the pairs (i, j) ∈ E of connected agents,
and then transformed by the logarithmic function

T (ŷ) =

 ln
(

M+ŷ
M(1−ŷ)

)
if ŷ(0) > 0

ln
(
M(1+ŷ)
M−ŷ

)
if ŷ(0) < 0

(42)

where ŷ = y/ρij(t) with y ∈ {xij , yij} and M = Mij = 0.1
∀ (i, j) ∈ E . Note that the prescribed performance functions (41)
are strictly decreasing, meaning that the relative distances between
communicating agents will not be bigger than ρij(0). Hence if
the connectivity range is at least equal to ρij(0), connectivity
is maintained. With the performance and transformation functions
chosen as in (41) and (42), the condition (12) on the gain, sufficient
for the convergence of the trajectories, becomes γ > τ

(
ρ0−ρ∞
ρ0

)
.

For the first controller (PPC1) we utilize (41) with ρ0 = 8,
ρ∞ = 10−2, and τ = 2: hence the condition on the damping
becomes γ > 1.9975. We also consider three different topologies
for the connections between the agents (Figure 3): a spanning tree
(G1), a connected graph with a cycle (G2) and also a complete graph
(G3). The initial positions of the agents are: p01 =

[
−0.5 −1

]>,
p02 =

[
1 −1.5

]>, p03 =
[
2 2

]>, p04 =
[
2.5 4.5

]>, p05 =[
0 4

]>, p06 =
[
−1 1.5

]>. Furthermore their initial velocities
are equal to 0. Given this set of initial conditions we have that
xij(0) and yij(0) are within the bounds ∀ (i, j) ∈ E and for each
configuration of the communication graph. For the second controller
(PPC2), we choose the same performance function for the relative
positions, whereas the bounds for the combined errors are described



6

−1 0 1 2 3

−2

−1

0

1

2

3

4

5

x [m]

y
[m

]

p01

p02

p03

p04

p05

p06

Figure 4: Trajectories on the x− y plane for PPC1 in case of G1.
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Figure 5: Relative postitions (solid lines) and performance bounds (dashed
lines) for PPC1 in case of G1.
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Figure 6: Total distance from the centroid depending on the graph topology:
G1 (solid line), G2 (dashed line) and G3 (− · −). a) PPC1, b) PPC2, c) linear.

by ρij,q̄(t) =
(
20− 10−2

)
e−3t + 10−2 and the overshoot index is

set to Mij,q̄ = 0.1 ∀ (i, j) ∈ E .
PPC1 has been tuned with the following values for the parameters:

γ = 250, G = 36.5Im. With this settings we have average consensus
(Figure 4) and prescribed transient evolution (Figure 5). Given the
choice of the performance functions ρij(t) each agent can know a
priori the minimum rate of convergence of the system by setting the
value of τ . However Figure 6a shows that when the graph contains
cycles it is also possible to reach consensus faster.

Since the performance function for the quantities xij does not
change, the same behavior is obtained with PPC2 by setting the
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Figure 7: Average control input for a) PPC1 and b) PPC2 with G1.

parameters to γ = 3, G = 2Im (see Figure 6b). By comparing
Figures 7a and 7b we can also notice that with the second controller
the minimum rate of convergence imposed by ρij(t) can be achieved
generating a smoother control input.

We also compared the nonlinear protocol with the linear protocol

ξ̇ = ΓLξ, where ΓL =

[
0 IN
−L −γLIN

]
, which is a particular

case of the protocol investigated in [3]. The value of the parameter
γL has been chosen in order to guarantee the minimum rate of
convergence possible while ensuring that the spectrum of ΓL is real,
in order to avoid oscillations and obtain a behavior that is similar
to our protocol. Figure 6, where the time scales of the three plots
are different, illustrates the advantages of the nonlinear protocol
with respect to the linear one. In fact, by decoupling the speed of
convergence from the graph topology and by appropriately choosing
the prescribed performance function, with G1 and G2 PPC1 and PPC2
ensure consensus in less than 2.5s, whereas the linear protocol takes
50s and 30s in case of G1 and G2, respectively.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed two nonlinear distributed controllers
able to reach consensus while guaranteeing predefined transient
specifications such as maximum overshoot and minimum rate of
convergence in the edge’s space. We considered a group of agents
described by a double-integrator model. By applying prescribed
performance control we were able to constrain the evolution of the
relative positions of neighboring agents within a priori imposed time-
variant bounds, obtaining a rate of convergence which is independent
of the topology of the network. This overcomes a typical problem
of the linear consensus algorithms, in which the convergence is
governed by the algebraic connectivity of the communication graph.
In the second part of the paper, prescribed performance control was
also applied to bound a linear combination of relative velocities and
relative positions.

In both cases the stability analysis yielded a condition for the
damping gain that guarantees convergence of the agents to the
equilibrium, which coincides with the agents’ centroid when the
graph is connected. Note that the aforementioned condition does not
depend on the graph topology but only on the agent’s prescribed
performance function. Moreover we proved that when the sum of
initial velocities is equal to zero, time-invariance of the centroid
is guaranteed provided that the neighboring agents share the same
prescribed performance function and overshoot index and that the
transformation functions have certain symmetry properties. Simu-
lations validated the theoretical findings while demonstrating that
by appropriately designing the performance function, the nonlinear
protocol can achieve a faster convergence compared to the linear one.
We also showed the advantages of the second controller in terms of
control input.
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Future work includes extension of the results to multi-agent sys-
tems with more complex dynamics, such as nonholonomic robots.
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