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Abstract—A navigation functions’ based methodology, es- gence of the distributed system to a desired configuration
tablished previously for decentralized navigation of multiple poth in the concept of cooperative ([6], [12], [13],) and
holonomic agents, is extended to address the problem of formation control ([1], [8], [23]).

decentralized navigation of multiple honholonomic agents. In cl dl trateqi fl ferable t
contrast to our previous work, each agent does not require any osed loop strategies are apparently preierable 10 open

knowledge about the velocities and the desired destinations 100p ones, mainly because they provide robustness with
of the other members of the team. Furthermore, the control respect to modelling uncertainties and agent failures and

inputs are the acceleration and rotational velocity of each guaranteed convergence to the desired configurations. How-
vehicle, coping in this way with realistic dynamics of classes gyar 3 common point of most work in this area is devoted to
of mechanical systems. Asymptotic stability is guaranteed by . . .
LaSalle’s Invariance Principle for nonsmooth systems. The the case of point ag.ent.s. AIt_ho.ugh this allowsl fqr \{arlable
collision avoidance and g|0ba| convergence properties are degree Of decentrallzatlon, It Is fa.r from I’eallstIC n real
verified through simulations. world applications. For example, in conflict resolution in
Air Traffic Management, two aircraft are not allowed to ap-
proach each other closer than a specific “alert” distance. The
Multi-agent Navigation is a field that has recently gaineadonstruction of closed loop methods for distributed non-
increasing attention both in the robotics and the contrgdoint multi-agent systems is both evident and appealing.
communities, due to the need for autonomous control of A closed loop approach for single robot navigation was
more than one mobile vehicle in the same workspace. Whilgoposed by Koditschek and Rimon [11] in their seminal
most efforts in the past have focused on centralized plamork. This navigation functions’ framework had all the
ning, specific real-world applications have led researchespught qualities but could only handle single, point-sized,
throughout the globe to turn their attention to decentralizexbbot navigation. In [14] this method was successfully ex-
concepts. Examples include decentralized conflict resoltended to take into account the volume of each robot while
tion in air traffic management ([18]), automated highwaya decentralized version of this work has been presented by
systems, communication networks and the field of micrthe authors in [26],[5].
robotics, where a team of autonomous micro robots must The first extension of the latter work to the case of non-
cooperate to achieve manipulation precision in the sulolonomic agents has appeared in [15]. The decentralization
micron level. factor in this work lied in the fact that each agent had
Decentralized navigation approaches are more appealing specific knowledge of the destinations of the others,
to centralized ones, due to their reduced computationhbwever it treated a spherical region around the target of
complexity and increased robustness with respect to agesdch other agent as a static obstacle. In this work we modify
failures. The main focus of work in this domain has beethe proposed control law in order to allow each agent
cooperative and formation control of multiple agents, whereo neglect any knowledge about the others’ destinations.
so much effort has been devoted to the design of systerRarthermore, each agent had to have knowledge of the
with variable degree of autonomy ([9],[17], [25]). Thereothers’ velocities. In this paper, we take advantage of the
have been many different approaches to the decentralizedundedness of the workspace, and design a decentralized
motion planning problem. Open loop approaches use gamentroller that does not take the velocities of the other
theoretic and optimal control theory to solve the problenagents into account. Finally, the control inputs are the
taking the constraints of vehicle motion into account; seacceleration and rotational velocity of each vehicle, coping
for example [2], [10], [24]. On the other hand, closed loopn this way with realistic dynamics of classes of mechanical
approaches use tools from classical Lyapunov theory amystems.
graph theory to design control laws and achieve the conver-The rest of the paper is organized as follows: section Il

I. INTRODUCTION



introduces the decentralized multiagent navigation functiorest in the collision avoidance procedure, even it has already
used in this paper for multiple nonholonomic vehiclesreached its destination. Details for the construction of the
Section Il states the problem and the related assumptiorfanction G; can be found in [26],[5], while the construction
In section IV, we review the necessary mathematical toolsf the f; function is described in subsection Iib.
for the stability analysis of section V. In section V we
present the proposed control scheme and provide stabilf%/
guarantees. Section VI presents simulation results while in To be able to produce a dipolar potential fiejdl, must
section VII conclusions and issues for further research ake modified as follows:
discussed. vai + fi
Pi = 1/k (1)
Il. DECENTRALIZED NAVIGATION FUNCTIONS ((yai + fi)* + Hun, - Gi - Bo,)

In previous work [5],[14],[26] the authors presented arwhereH,,;,, has the form of a pseudo - obstacle. A possible
extension to the navigation function methodology witrselection ofH,,;, would be:
applications to multiple robot navigation. In this section we
present how this novel class of potential functions can be

Decentralized Dipolar Navigation Functions

thi =é€npn + Mnh;

enhanced with a dipolar structure [21] to provide trajectorie®ith 7,,,, = |(¢ — qa) - 14,/|?, where n4, =

suitable for nonholonomic navigation. [cos (B4,) sin(64,)]T . Subscriptd denotes destination.
Let us assume the following situation: We havemobile  Moreover 4 = |l¢: — ¢4, ||°, i.e. the angle is not incor-

robots, and their workspacl’ C R? . Each robotR;, porated in the distance to the destination metfig. =

i = 1...N occupies a disk in the workspac&; = 12 . —I|q¢ — qu, % is the workspace bounding obstacle and
{q ER?:|lqg—ql < ri} whereg; € R? is the center of r,,,,, is the workspace radius. Figure 2 shows a 2D dipolar
the disk andr; is the radius of the robot. The position navigation function. Following the recipe of [5],[16], it can
vector of the robots is represented Qy= [q1...qn].
The orientation vector of the robots is represented by
6 = [0; ...0xN] wheref; represents the orientation of each
robot . LetW; C R? x (—m,n] represent each robot’s
workspace. The configuration of each robot is representec
by pi = [ 6;] € W; and it's target byps, =

[ qa, 04, ] € W; . The following figure shows a three-
agent conflict situation:

s>

u Fig. 2. 2D dipolar navigation function
2 3 [3
A be shown that the proposed modifications of the potential
function do not affect its navigation properties, as long as
° the workspace is bounded anagl, > ¢ (k).
Gaz B. Thef function

The key difference of the decentralized method with

Fig. 1. A conflict scenario with three agents. . ;
respect to the centralized case is that the control law of

As it was shown in [5] the function:p; = each agentvignores the destinations of the others. By using
—Jakli - with a proper selection of!; can be used ¥i = m as a navigation function for agent

((7di+fi)k+Gi1. . . . . . . . . . .
for decentralized motion planning of multiple holonomicthere is no potential for to cooperate in a possible collision

robots and can be made a navigation function by an appreeheme when its initial condition coincides with its final
priate choice of. The functiony,; represents agens ob- destination. In our previous work [15], the other agents
jective which is convergence to a desired destination whilgoal configurations where considered as obstacles by the
the functionG; encodes the possible collision schemes imther ones. Clearly, this is a limiting factor for the level of
which agent; could be involved. The functiotf; encodes decentralization that we aim to achieve.

some form of cooperation between the moving agents and inin order to overcome this limitation,we add a function
particular, guarantees that an agent will cooperate with thg to ~; so that the cost functiop; attains positive values



in proximity situations even whenhas already reached its We make the following assumptions:

destination. A preliminary definition for this function was Each agent has g|0ba| know|edge of the position of the
given in [26]. Here, we modify the previous definition to others at each time instant.

ensure that the destination point is a non-degenerate local, Each agent has knowledge only of its own desired

minimum of ¢; with minimum requirements on assump- destination but not of the others.
tions. We define the functioff; by: « We consider spherical agents.
3 _ « The workspace is bounded and spherical.
fi(Gy) = aO*J; a;G, Gi < X 2) Our assumption rega_rding the spherical s_hape of_the
0, G > X agents does not constrain the generality of this work since

it has been proven that navigation properties are invariant
whereX,Y = f;(0) > 0 are positive parameters the role ofynder diffeomorphisms ([11]). Arbitrarily shaped agents dif-
which will be made clear in the following. The parameter§eomorphic to spheres can be taken into account. Methods
a; are evaluated so thaf; is maximized whenG; — 0 for constructing analytic diffeomorphisms are discussed in
and minimized wherG;; = X. We also require thaf; is  [22] for point agents and in [19] for rigid body agents.
continuously differentiable ak'. Therefore we have: The second assumption makes the problem decentralized.
—3Y 2V Clearly, in the centralized case a central authority has
Xz BT X3 knowledge of everyones goals and positions at each time

. ipstant and it coordinates the whole team so that the desired
The parameterX serves as a sensing parameter tha

. . . - specifications (destination convergence and collision avoid-
activates thef; function whenever possible collisions are : A .
. . ance) are fulfilled. In the current situation no such authority
bound to occur. The only requirement we have foris

that it must be small enough to guarantee thavanishes exists and we have to deal with the limited knowledge of

whenever the system has reached its equilibrium, i.e. whe("\rﬂiCh agent.

everyone has reached its destination. In mathematical terms: |V. ELEMENTS FROMNONSMOOTHANALYSIS

ap=Y,a1 =0,a3 =

X < Gi(qa1s- - qan) Vi () In this section, we review some elements from nonsmooth
o ) ) analysis and Lyapunov theory for nonsmooth systems that
That's the minimum requirement we have regarding knowkye yse in the stability analysis of the next section.

edge of the destinations of the team. ~ We consider the vector differential equation with discon-
The resulting navigation function is no longer analytiGinyous right-hand side:

as required by the classic definition in [11], but merely _
C' at G; = X. However, by choosingX large enough, &= f(x) (5)

the resulting function is analytic in a neighborhood of th%vheref . R" — R" is measurable and essentially locally

boundary of the free space so that the characterization of E%unded

critical points can be made by the evaluation of its HeSSi,arﬁ)efinition 4.1[7] In the case whem is finite, the vector
Hence, the parameteX must be chosen small enough ing,ehion () is called a solution of (4) into, t1] if it is
order to satisfy (3) but large enough to include the reg'oﬂbsolutely continuous ofty, 1] and there existsV;
described above. Clearly, this is a tradeoff the control desigp,, (Ny) = 0 such that for all\N c R™, u(N) = 0 and
has to pay in order to achieve decentralization. Intuitively,;Or 7alm0'st allt € [to, t1] ’
the destinations should be far enough from one another. ’

@ € K[f)(x) = { lim f(z;)|e; ¢ Ny UN}

IIl. SYSTEM AND PROBLEM DEFINITION

We consider the following system ad¥ nonholonomic

agents with the following dynamics The above definition along with the assumption tlfais

measurable guarantees the uniqueness of solutions of (4)[7].

@ = v; cos0; Lyapunov stability theorems have been extended for
Yi = vi sin 6; ief1 N 4) nonsmooth systems in [20],[3]. The authors use the con-
0; = w; ’ B cept of generalized gradientvhich for the case of finite-

U = U4 dimensional spaces is given by the following definition:

é)efinition 4.2 [4lLet V : R™ — R be a locally Lipschitz

wherev;, w; are the translational and rotational velocitie ) . . Y
function. The generalized gradient &f at = is given by

of agent: respectively, and.; its acceleration.

The problem we treat in this paper can be now stated as AV (z) = @of lim VV (z;)|z; ¢ Qv}
follows: “Given the N nonholonomic agents (4),consider i
the rotational velocityw; and the acceleratiom; as control where )y, is the set of points ilR™ where V' fails to be
inputs for each agent and derive a control law that steerdifferentiable.
every agent from any feasible initial configuration to its Lyapunov theorems for nonsmooth systems require the
goal configuration avoiding, at the same, collisidns. energy function to beegular. Regularity is based on the



concept ofgeneralized derivativavhich was defined by Vip; = { a;_’;-f ij }

Clarke as follows:

Definition 4.3 [4] Let f be Lipschitz near: and v be a In particular, we prove the following theorem:

vector inR™. The generalized directional derivative ffat Theorem 5.tUnder the control law (6), the system is

z in the directionv is defined asymptotically stabilized tp; = [pa1, - - - ,pdN]T.

o Fly +tv) — f(y) Proof: Let us first consider the case;| > 0Vi. We use

f7(z;v) = lim sup ————==

YT 410 t 1 2

V=> Vi Vi=i+ vl + 5 (0i = 0a; — Onri)

Regularity of a function is defined:

rDezfl:rll::oip 4.4 [4] The functionf : R* — It is called as a Lyapunov function candidate. Hof| > 0 we have

1) Vv, the usual one-sided directional derivative T N
f'(x;v)exists and v Z . Z { %:v; (Vi) - nj + sgn(v; ) v;+ }
2) Yo, f'(w;0) = fO(x;v) i 7 U+ (00 — Oai — Onni) (05 — Onni)

The following chain rule provides a calculus for the time
derivative of the energy function in the nonsmooth case: and substituting
Theorem 4.5[20] Let = be a Filippov solution toi =
f(z) on an interval containing andV : R" — R be a -
Lipschitz and regular function. The¥i(z(t)) is absolutely ~ * — ; %:”j (Viepi) - = vl (I(Vigi) - mil + M)
continuous,(d/dt)V (x(t)) exists almost everywhere and v

) ( / ) (N( )) _;WMKMK%_;% |’Ul|

ZV®) e V)= (| E[f) 3 Ko, (05 — O — Oun)?

£€0V (x(t))

We shall use the following nonsmooth version of LaSalle’d N€ first term of the right hand side of the last equation can
invariance principle to prove the convergence of the prdl€ rewritten as

scribed system:

Theorerr'll 4.6 [20] I_'et 2 be a compact set sugh that S i (Vipi) - my — |vil ((Vigs) - mil + M) ¢ =

every Filippov solution to the autonomous systéem= i | J

f(x),2(0) = x(to) starting inQ is unique and remains if? vi (Vi) - mi +vi 22 (Vigj) - mi—

forallt > to. LetV : Q@ — R be atime independent regular = =0
function such that < 0vv € V(if V is the empty set then

this is trivially satisfied). Defines = {z € Q|0 € V}. so that
Then every trajectory if2 converges to the largest invariant

J#i
= il (I(Vis) - mil + M)

setM, in the closure ofS. V<= K K=Y gilvil =) Ko, (0; — 0ai — Onni)?
V. NONHOLONOMIC CONTROL AND STABILITY ' ’ ‘
ANALYSIS where the inequality—=— > 1 for z > 0.
We will show that the system is asymptotically stabilized The candidate Lyapunov function is nonsmooth whenever
under the control law v; = 0 for somei. The generalized gradient &f is given
v b
u; = —vi{| Vi - nil + M;} — givi — WKWK% y i i
Wi = _KGZ' (91 - adi - H’nhi) + enhi Zz vl(Pi
o © :
where K, , Ky,, g; > 0 are positive gains, S Ve
Op; . 0p; dlv
Onh, = arg(ai c s i (;;Z - 8;) ‘: 1|
s; = SQN((qi — qai) - Mai) 5V dlvn|
n; = [ cost; sinb; ]T /2Vor (01— Oar = Onna)
. T .
Ndi = [ coslly; sinfg; ] oV (O — Oan — gnhN);
K.i = [IVioil® + llai — qaill® 1oVe,, (01 — a1 — Onp1)

M; > |Z Vzgoj . 7]i|mam
J#i

1oV onnn (O — Oan — Onnn)? ]



and the Filippov set(def.4.1) of the closed loop system byheorem. We have that = {z]|0 € 17} ={z: (v, =

[ vy cosby [ vy cosby
V1 sin 04 v1 sin 64
v cos O v cos O
vy sin Oy vy sin Oy
U1 K [ul]
K[f] = = '

[f] un K [un]
w1 w1
wWN wWN

onhl enhl
L Oannv L Oannv

We denote by
D2 {r:3e{l,...N}stw; =0}
the “discontinuity surface” and
Dg 2 {ie{l,...N}stw; =0}

the set of indices of agents that participatelin We then
have

V= K[f]=
eV
V1 <ZV1§01’> ‘L + ...t on <ZVN%) “MN
+ n fTK ['U,ﬂ + ...+ ﬂ fTK [UN]
£edlvy| §€0|un|

+ XZ: (0; — 04 — Onni) (Wi - enhi) =

V=X {%‘ (ZZ: Vz‘%‘) ~7; + sgn (Ui)uz}

i¢Ds
+ Y N K] - X Ko, (i — Oai — Ouni)’
i€Ds £€0|v;| i
Fori € Dg we haved |v;|, _, = [-1,1] and
K [uin:O - [_ ‘KviKzi| 5 |K’ULKZZ|]
so that
) &K u]=0
£€d|v;|

From the previous analysis we also derive that

gZZ: {'Ui (Z Vi(Pj> -1; + sgn (v;) uz} <
i¢Dg 7
- Z {KUiKzi + gi |'U4‘}

igDs

Going back to Theorem 4.6 it is easy to see thak

0Vi) A(0; — 4; = 0,1:Vi)}. The trajectory of the system
converges to the largest invariant subse$ oFor this subset
to be invariant we must have

U, =0= Km'Kzi =0= (Vzgoz = 0) A (qi = qdi)Vi
For V;p; = 0 we haved,,;; = 0 so thatd; = 4. &

VI. SIMULATIONS

To demonstrate the navigation properties of our decen-
tralized approach, we present a simulation of four nonholo-
nomic agents that have to navigate from an initial to a
final configuration, avoiding collision with each other. The
chosen configurations constitute non-trivial setups since the
straight-line paths connecting initial and final positions of
each agent are obstructed by other agents.

Figures 3,4 involve four nonholonomic agents with dy-
namics described by (4) navigating under the control law
(6). Figure 3 shows the initial positions and desired des-
tinations of each agent. In this figuré,— i,7 — ¢ denote
the initial position and final desired destination of agént
respectively.

D T3

1 aut T4

12

a

14 acs T1
13 T2
D B A
* In:\tlal P(;sltlonns:S ' Final Destinations
Fig. 3. Initial and Goal Configurations for 4 dynamic nonholonomic

agents

In figure 4, screenshots A through G show the evolution
of the four agent team. The conflict resolution procedure
takes place in screenshots B through E, while in the last
two screenshots the agents converge to their goal config-
uration free of collisions. Based on the control law (6),
the parameters chosen for this simulation afe= r, =
rs = r4 = 0.01, Y = 0.001,X = 0.0001, e, = 1075,
Ek=90,A=1,h=5 M=g=K, =102, Ky = 1.

The collision avoidance procedure shown in screenshots
B through E reveals the cooperative nature of our approach.
As seen in screenshots B,C agents 1,2 backtrack from their
desired destination to create free space for agents 3,4 to
navigate towards their desired destinations. The conflict
resolution maneuvers of screenshots D,E allow agents 1,2
to find free space and converge to their goal configuration.

VIl. CONCLUSIONS

The navigation functions’ based methodology, estab-
lished previously for decentralized navigation of multiple

0Vv € V. Each functionV; is regular as the sum of regular holonomic agents, has been extended to address the prob-
functions ([20]) andV is regular for the same reason.lem of decentralized navigation of multiple nonholonomic
The level sets of are compact so we can apply thisagents. In contrast to our previous work ([15]), each agent
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Fig. 4. Collision avoidance and convergence to the destination for 4
dynamic nonholonomic agents [16]

does not require any knowledge about the velocities ar%ﬂ
the desired destinations of the other members of the team.
Furthermore, the control inputs are the acceleration a %:g}
rotational velocity of each vehicle, coping in this way
with realistic dynamics of classes of mechanical systems.
Asymptotic stability is guaranteed by LaSalle’s Invariancé?®]
Principle for nonsmooth systems. The collision avoidypy
ance and global convergence properties have been verified
through simulations.
L . [22]

Current research directions are towards applying the
methodology to the cases where each agent has limited
knowledge of the positions of the others and where there &
some form of uncertainty in the agent movement. [24]
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