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Abstract

Multi-agent systems under temporal logic tasks have great potential due to their ability to deal with complex tasks. The
control of these systems, however, poses many challenges and the majority of existing approaches result in large computational
burdens. We instead propose computationally-efficient and robust feedback control strategies for a class of systems that are,
in a sense, feedback equivalent to single integrator systems, but where the dynamics are partially unknown for the control
design. A bottom-up scenario is considered in which each agent is subject to a local task from a limited signal temporal logic
fragment. Notably, the satisfaction of a local task may also depend on the behavior of other agents. We provide local continuous-
time feedback control laws that, under some sufficient conditions, guarantee satisfaction of the local tasks. Otherwise, a
local detection & repair scheme is proposed in combination with the previously derived feedback control laws to deal with
infeasibilities, such as when local tasks are conflicting. The efficacy of the proposed method is demonstrated in simulations.
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1 Introduction

Control of multi-agent systems is a promising research
area where scholars have addressed multi-agent navi-
gation (Dimarogonas et al., 2006), consensus (Ren and
Beard, 2005), formation control (Tanner et al., 2003),
and connectivity maintenance problems (Zavlanos and
Pappas, 2008), see Mesbahi and Egerstedt (2010) for
an overview. More recently, ideas from model checking
(Baier and Katoen, 2008) have been used where the task,
which is imposed on the system, is a complex temporal
logic formula. Control of single-agent systems under
linear temporal logic (LTL) tasks has been considered
in Belta et al. (2007); Fainekos et al. (2009); Kress-
Gazit et al. (2009) while the multi-agent case has been
addressed in Filippidis et al. (2012); Guo and Dimarog-
onas (2013, 2017); Kloetzer and Belta (2010); Tumova
and Dimarogonas (2016). The aforementioned works
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rely on an abstraction of the workspace and the agent
dynamics. This abstraction process and the subsequent
plan synthesis are limited, especially for multi-agent
systems, due to their high computational complexity.
For single-agent systems, probabilistically optimal and
complete sampling-based methods have been proposed
in Vasile and Belta (2013) and Karaman and Frazzoli
(2012) to avoid these computational burdens by in-
crementally building and model-checking a transition
system. For the multi-agent setup, two paradigms exist:
one where all agents are subject to a global task (top-
down) and one where each agent is subject to a local
task (bottom-up). These local tasks can be obtained in
two ways. Either a global task is decomposed into local
ones as in Schillinger et al. (2016), which in some sense
is a mix of top-down and bottom-up, or each agent is
assigned a local task regardless of what other agents are
assigned. Especially in the latter case it may happen
that the satisfaction of a local task also depends on the
behavior of other agents. By behavior of an agent we
mean the corresponding agent trajectory. A challenge is
hence that local tasks may be in conflict, i.e., satisfia-
bility of each local task does not imply satisfiability of
the conjunction of all local tasks. The authors in Guo
and Dimarogonas (2013) find least violating solutions in
these conflicting situations. Opposed to the aforemen-
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tioned works using LTL, signal temporal logic (STL)
(Maler and Nickovic, 2004) is based on continuous-time
signals and suited to impose continuous-time tasks.
STL entails space robustness (Donzé and Maler, 2010),
a form of the robust semantics (Fainekos and Pappas,
2009), which states how robustly a signal satisfies a
task. These robust semantics are mainly used for control
under STL tasks, which is, however, a difficult prob-
lem due to the nonlinear, nonconvex, noncausal, and
nonsmooth semantics. Control of discrete-time single-
agent systems under STL tasks has been considered in
Raman et al. (2014) and Lindemann and Dimarogonas
(2019); Raman et al. (2014) obtain a computationally
expensive mixed integer linear program for which robust
extensions have been presented in Raman et al. (2015)
and Sadraddini and Belta (2015), while an extension
to multi-agent systems has been reported in Liu et al.
(2017). The authors in Pant et al. (2018) use smooth
approximations of the robust semantics within a non-
convex optimization problem for discrete-time systems,
while providing conservative continuous-time guaran-
tees for the corresponding continuous-time system.

We consider continuous-time multi-agent systems in a
bottom-up fashion. Each local task stems from a limited
STL fragment and may depend on the behavior of other
agents, while agents may also be dynamically coupled.
The agent dynamics are described by nonlinear control-
affine systems where the corresponding driftless system
is feedback equivalent to a single integrator system, but
where the drift term is unknown. The limited STL frag-
ment allows to encode concave temporal tasks such as
eventually within 5 sec reach a region and stay there for
the next 10 sec while staying close to other agents. Spec-
ifications such as eventually within 5 sec reach a region
while always avoiding another region induce a mix of con-
vex and concave temporal tasks and are not permitted
here. These assumptions are necessary to achieve finite
time stability results under arbitrarily short deadlines
and to obtain closed-form and continuous feedback con-
trol laws. We derive a robust continuous-time feedback
control law that, under some sufficient conditions, guar-
antees satisfaction of all local tasks. When these condi-
tions do not hold, we propose a local detection & repair
scheme, expressed as a hybrid control system (Goebel
et al., 2009), that detects critical events to repair them
in a three-stage procedure. We discretize neither the
environment nor the agent dynamics in space or time.
To the best of our knowledge, this is the first approach
not making use of discretizations in space or time and
directly providing continuous-time satisfaction guaran-
tees. Our main contribution is a robust, abstraction-free,
and computationally-efficient control strategy for cou-
pled multi-agent systems that finds least violating solu-
tions for conflicting local specifications. This paper is an
extension of Lindemann and Dimarogonas (2018).

Section 2 presents preliminaries and the problem defi-
nition. Section 3 states our proposed problem solution,

while simulations in Section 4 demonstrate the efficacy
of our method. Conclusions are given in Section 5.

2 Preliminaries

The set of integers, natural, non-negative, and positive
real numbers are Z, N, R>, and R, respectively. True
and false are T and L and 0,, is the n-dimensional zero
vector. For the column vectors ¢; and ¢, and instead

of [ClT Cg]T7 we let [Cl CQ] be a column vector, while
partial derivatives are assumed to be row vectors.

2.1 Signal Temporal Logic (STL)

Signal temporal logic (STL) (Maler and Nickovic, 2004)
consists of predicates p that are obtained by evaluating a
continuously differentiable predicate function h : R? —
R as p:= T if h(¢") > 0 and p := L if h(¢') < O for
¢’ € R?. The STL syntax is then defined as

o u=Tlp|l-0l @ AN" | Fap@ | Glape;

where ¢’ and ¢ are STL formulas and where =, A, Fig y),
and G, are the negation, conjunction, eventually and
always operators, respectively, with a,b € R>¢. For a
continuous-time signal ¢ : R>o — RY, the satisfaction
relation ({,t) = ¢ indicates if ¢ satisfies ¢ at time t.
These STL semantics are formally defined in Maler and
Nickovic (2004). Robust semantics have been introduced
in Fainekos and Pappas (2009) as a robustness measure
for temporal logics. Space robustness (Donzé and Maler,
2010) are robust semantics for STL and defined as

P4(C.1) = h(C (1)

ﬁ“"(c,t) =D

2 ) = min (77 (6 1). 077 (€. 1)
() = e n)
pllan? (¢, 1) = t1e[ﬁiclnt+b]ﬁ¢(c, )

The function p¥ determines how robustly ¢ satisfies ¢
at time ¢ and it holds that ({,t) = ¢ if p?(¢,t) > 0. We
assume a fragment of the STL introduced above. Let

Y o= T p ] op ] Yay A (1a)
¢ = Flay¥ | Gy | FlayGan? (1b)

where 9 in (1b) and (1,9 (2) in (la) are formulas of
class ¢ given in (la) and where a,a,a,b € R and
b, b€R>0Uoovv1tha<b a < b, and @ < b. We refer to
1/) as non-temporal (boolean) formulas and to ¢ as tempo-
ral formulas. Let S be the set of all possible signals with
time domain Rsq. Note that p¥(¢,t) and p?(¢,t) map
from & xR> to R. For non-temporal formulas 1, we can



equivalently use p¥ (¢(t)) by a change of notation where
now p¥ : R® — R. The notation of p¥({(t)) is used to
highlight that ¢ is only contained in p¥ through the com-
position of p¥ with ¢. The non-smooth robust semantics
of ¥(1) A2y are replaced by a smooth approximation,

denoted by p?(¢,t). For the formulas in (1), we define

p(€(t)) :== h(C(t))
p (€)== —p"(C(1))
2
pwu)/\w&) K@) = —% In (Zexp ( - Upw(”(C(t))))

plen(Cit) = | max o (C(1)
pCln¥ (¢ t):=  min  p¥(¢(t))

t1 E[t+a,t+b]

pF[g,b]G[a,Elw(C,t) = max min pd}(C(tQ))

t1€[t+a,t+blta€[t1+a,t1+b]

where n > 0 is a design parameter that deter-
mines the accuracy by which p¥®/ %@ ({(t)) approx-
imates p¥M"¥® ({(t)). In fact, it can be shown that
PO (L(t) = pYO@ ({(t)) as n — oco. Regardless
of 1, it holds that p¥®™ Y@ ({(t)) < pYm Y@ (L(t)),
which is stated in the next lemma where the proof can
be derived from Boyd and Vandenberghe (2004, p.72).

Lemma 1 Consider a conjunction of ¢ non-temporal
formulas 9 ;) as ¢ = A?:ﬂ/’(j) where each ;) does not
contain any further conjunctions itself. Then,

pP(C(1) < pY(C(1) < p*(C(2)) +1n(q) /n.

Remark 1 The fragment in (1) can be extended to in-
clude sequential formulas. For single-agent systems, this
extension is explained in Lindemann et al. (2017) by
employing a hybrid control strategy. For the multi-agent
setup, this extension can be done in the same way and
is omitted. Note that the fragment in (1) does not allow
to pose reach-avoid specifications, which require at least
discontinuous feedback control laws (Liberzon, 2003, Ch.
4), while we focus on continuous feedback control laws.

2.2 A Bottom-up Approach for Multi-Agent Systems

Consider M agents modeled by an undirected graph
G := (V,€&) (Mesbahi and Egerstedt, 2010) where V :=
{v1,...,up} while £ € V x V indicates communica-
tion links. At time ¢, let ;(t) € R™, u,;(t) € R™, and
w;(t) € W; C R™ be the state, input, and additive noise
of agent v; with W; C R™ being a bounded set and

i(t) = fi(wi(t)) + f7 (@(1)) + gi(@:(t))wi(t) + wi(t()2>

where x(t) := [@1(t) ... ()] € R with n :=n; +
...+ na. Also define & (t) == [z, (t) ... xj,,_,(t)]

such that vj,,...,vj,, , € V\ {v;}. We also define the
behavior of agent v; to be agent v;’s trajectory, i.e., the
solution x; : R>¢g — R™ to (2). The functions f; and f¢
are unknown apart from a regularity assumption.

Assumption 1 The functions f; : R™ — R™, ff :
R™ — R™, and g; : R™ — R™>*™:i gre locally Lipschitz
continuous, and g;(x;)gi(x;)" is positive definite for all
x; € R™; w; : R>g — R™ is piecewise continuous.

Remark 2 We emphasize that f; and f{ are unknown
so that (2) is not feedback equivalent to &;(t) = u;(t) +
w;(t). Note that g;(x;)gi(z;)" is positive definite if and
only if g;(x;) has full row rank. This assumption captures,
for instance, the dynamics of omnidirectional robots as
in Section 4; ff describes given dynamical couplings
between agents, e.g., a physical connection when two
or more agents collaboratively carry an object. Using
u; = gi(mi)T(gi(mi)gi(wi)T)ilfiu(m) +v;, the dynamics
z; = filw) + ff(x) + fA(x) + gi(@;)v; + w; resemble
(2) if f¥(x) is locally Lipschitz continuous; f¥*(x) can be
used for other objectives such as collision avoidance, con-
sensus, formation control, or connectivity maintenance.

Each agent v; € V is now subject to a local STL formula
¢; of class ¢ given in (1b), i.e., ¢; is of the form

bi = F[aiybi]wi | G[ai»bi]wi | F[g«q‘,ybi]G[ﬁi,Bi]’(/}i' (3)

where 1; is a non-temporal formula of the form (1a).
Satisfaction of ¢; depends on the behavior of v; and may
also depend on the behavior of agents in V' \ {v;}. If the
satisfaction of ¢; depends on the behavior of v; € V, we
say that ¢; depends on v;. Equivalently, we then say that
agent v; is participating in ¢;; ¢; consequently depends
on a set of agents denoted by V; := {vj,,...,vj, } CV
where P; indicates the total number of agents that par-
ticipate in ¢;. We call ¢; a non-collaborative formula if
P; = 1. Otherwise, i.e., if P; > 1, we call ¢; a collabora-
tie formula. Let p; :==ny, + ...+ n;, and define
@ (t) := [, () ... xj, (t)] € RP.

Assumption 2 Fach formula ; in (3) is: 1) s.t.
p¥i(Z;) is concave and 2) well-posed in the sense that
p¥i(z;) > 0 implies ||Z;]| < C < oo for some C > 0.

Remark 3 Recall the syntaz of class ¢ formulas in (1a)
and consider; := 1)\ (q). Part 1) of Assumption 2 is
satisfied if p¥® (Z;) and p¥® (&;) are concave. This as-
sumption is needed since the controller presented in this
paper uses the gradient of p¥i(Z;). Local extrema may
hence lead the system to get stuck. Part 2) of Assump-
tion 2 will ensure bounded solutions and is not restrictive
since Y4552 .= (||z;]| < C) can be combined with 1; for
a sufficiently large C' so that ¥; A szSS‘Z is well-posed.



The signal ; : R>¢ — RP locally satisfies ¢; if (Z;,0) |=
¢; and ¢; is locally satisfiable if 3%; : R>q — RP# such
that &; locally satisfies ¢;. The signal & : R>o — R”
globally satisfies {¢1,..., ¢} if &;, which is naturally
contained in x, locally satisfies ¢; for all agents v; €
V. The set of formulas {¢1,...,¢r} is globally satis-
fiable if 3 : R>9 — R™ such that x globally satis-
fies {¢1,...,0r}. Consider also the undirected graph
Ga = (V, &) where there is an edge (v;,v;) € Eg C VXV
if ¢; depends on vj; = C Vis a mazimal dependency
cluster if Vv“ v; € Z there is a path from v; to v; in Gy
and fv; € 2 =, vr € V\ E such that there is a path from v;
to vy. Here, a path is a sequence v;, Vg, , . . ., Ukp, V5 such
that (vi,vkl), vy (Vkp,vj) € Eg. A multi—agent system
under {¢1,..., ¢nr} hence induces L < M maximal de-
pendency clusters = := {Z;,...,E}.

Assumption 3 For each Z; withl € {1,...,
that (v;,v;) € € for each v;,vj € ;.

L} it holds

In Section 3, each agent v; € V is equipped with logical
variables so that v; is associated with a hybrid state
z; € Z; C R™ where Z; is a hybrid domain of dimension
n,. Hybrid systems with internal and external inputs
wl™ € UM and uf* € U, respectively, have been
presented in Sanfelice (2016) where U™ and U are
input domains. Let §; := Z; x UM x U, The value
of the state z; after a jump, i.e., after an instantaneous
change in z;, is denoted by 2;. A hybrid system is now
a tuple Hz = (CZ,F“D“GZ) where Cz Q f)i, Dl Q f)i,
F;: 9; = R"= and G; : $H; = R"= are the flow and jump
set and the set-valued flow and jump map, respectively.
The continuous and discrete dynamics are governed by

Xty for  (z;,ult ut™t) € C;

%; € Fi(z;,u} int @)
ety for (24, ul u$t) € D;.

U
z2; € Gi(zi, ‘nt,u
Solutions to (4) are parametrized by (t,j); t repre-
sents continuous time indicating flow according to
F(z;, ul™, u$**) while j is a counter of the jumps that

occur according to G;(z;, ul"®, ug*') . A detailed review

can be found in Goebel et al. (2009, 2012).
2.8 Problem Statement
Let the supremum of p¥: (Z;) and p¥i(Z;) be

PPt = sup pV(2;) and pi™ = sup p¥i(z;)
&, ERPi T, ERP:

where p¢®* is in particular straighforward to compute
since p¥i (Z;) is continuously differentiable and concave.
Assumption 4 p** is such that p{** > 0.

Assumption 4 implies that v; and hence ¢; are locally
satisfiable. Note that there always exists an 7 such that

PPt > 0 if pP' > 0 since p¥i(&;) = p¥i(&;) as ) — oo.
We then find 1 by solving a convex feasibility problem by
selecting 7 > 0 such that p¥(z;) > 0 for some &; € RP:.
If this feasibility problem, however, is not feasible, we
set 7 := 1. It then holds that p®" < 0 and ¢; is not
satisfiable if p?** 4 In(q) < 0 with ¢ as in Lemma 1.
Let p¥* > 0 be a parameter indicating how much ¢; is
violated. If Z; : R>q — RPi is such that r; < p® (z;,0)
for r; with pP* — p8% < 1y < p' we say that &; is a
least violating solution with a given gap of p?*". The goal
is to derive w;(Z;,t) such that r; < p% (z;,0) < piax
where r; € R is a robustness measure, while pj*** € R
with r; < pi"®* is a robustness delimiter.

Problem 1 Let n be selected for each v; as instructed
above. Given the pammeters pI™ > 0 and 6; > 0, derive
for each cluster Z; € = a control strategy as follows
Case A) Under the assumption that ¢; = ¢, for each
v;, v € Z, design w;(Z;,t) such that r; < p% (x;,0) <
P for each v; € E; and where r; is chosen such that
maz ;f 0Pt opt _ gap i opt
O<rl<p if p; >Oandr,>p T ifp;t <0.
Case B) Otherwise, i.e., Jv;,v; € 5, such that ¢; # ¢,
assume nevertheless that each agent v; € Z; initially ap-
plies the derived control law uz(:i'v, t) for Case A. Design
a local online detection & repair scheme for each v; € Z;
such that r; < p®i(z;,0) < p™ where either r; > 0 or
r; 18 mazimized up to a precision of §; > 0.

By a maximization up to a precision of §; we mean that
r; is successively reduced by d; whenever it turns out
that u;(Z;,t) can not achieve r; < p®(Z;,0) < pax,

3 Proposed Problem Solution

Following a funnel-based control strategy (Bechlioulis
and Rovithakis, 2014), we define a performance function

Yi(t) = () = 95°) exp(—Lit) +~;°

where 79,7 € Ry with 49 > 42 and I; € R>(. We
achieve r; < p® (Z;,0) < pa* by prescribing a temporal
behavior to p¥i(&;(t)) through v; and pi** as

—i(t) + P < p¥ (@(1)) < P (5)

If v; and p*®* are chosen properly (as shown later) and
if (5) holds for all t > 0, then r; < p% (&;,0) < pmax,

Let e,(@;) i= p () — p™, &(@,1) = 220 and

Ei((fii, t) = S(fl(il, t)),

where S(§) = In (752'1), then (5) is equivalent to
—7i(t) < e;(t) < 0 and hence to —1 < &(t) < 0 where
ei(t) = ez(wz( ),t) and &(t) := &(®i(t),t). Applying



S() to =1 < &(t) <0 gives —oo < €(t) < oo with
€ (t) :== e;(x;(t),t). If €;(t) is bounded for all t > 0, i.e.,
&i(t) € Q¢ := (—1,0), then (5) holds for all t > 0. The

connection between p¥i(Z;(t)) and p® (Z;,0) is made by

v; and pi***, which need to be designed as instructed in
Lindemann et al. (2017). If Assumption 4 holds, select
[Cli, bz] if ¢1 F[a“ %
t; € ¢ {ai} it bi = Gla, )i (6)
[ai + @i, b + @] if i = Fig, ,1Ga, 5. %is
PP e (max (0, p¥ (:(0))), pi’pt) (7)
,,,Z_ de) (8)
max d,u Srok
0 — p¥i(2;(0)), 00) if £ >0
Yi S { max __ pwl $1(O)) pznax _ Ti] else (9)
’77?0 (Oa min (’Yz ’p;nax - 7’1)} (10)
0 if —A9 + pmax > p,
l; = { 1 (Ti_"l‘(’l’; L )/t* else (11)

where it needs to hold that p¥i(z;(0)) > r; if t; = 0. It
now holds that 0 < r; < p%(Z;,0) < pina* if (5) holds
for all £ > 0. The intuition here is that by the choice of
7; it is ensured that p¥: (a’:l(t)) > r; forallt > t¥. By the
choice of t} it consequently holds that p®(z;,0) > r;.
For the case that Assumption 4 does not hold and to
guarantee a least violating solution with a given gap of

P, pn@* and r; are instead of (7) and (8) chosen as

o (mw@%@mmm?t PEP) A (12)

t
€ [pi™ = pF, pi") (13)
Remark 4 The choices oft}, pi***, r;, and~y; allow some
freedom. In practice and to avoid input saturations, how-
ever, it is advisable to avoid a steep performance function

vi. Furthemore, a broader funnel (5) is recommended as
t — 00, i.e., v and p*** should be selected rather large.

3.1 Global and Local Task Satisfaction Guarantees

We first present global task satisfaction guarantees.

Theorem 1 Let Assumptions 1-4 hold. Assume for each

Z; € E that for all Vi, v €Zy: 1) ¢y = @5 and 2) tf = t%,
Pt = pt*t, vy = rj, and v; = 7y; are chosen as in (6)-
(11). If each agent v; € V applies
o i T;
wil@i ) = @ Dole)” 2T )
T

then it holds that 0 < r; < p®i(Z;,0) < P for all
agents v; € V, i.e., {¢1,...,¢m} are globally satisfied.
All closed-loop signals are continuous and bounded.

PROOF. In Step A, we apply Sontag (2013, Thm. 54)
and show that for each v; € V there exists a maximal
solution &;(t) such that &(t) := &(x;(t),t) € Qe =
(—1,0) for all t € J := [0, Timax) € R>( where Typax > 0,
which is the same as requiring that (5) holds for allt € 7.
Step B consists of using Sontag (2013, Prop. C.3.6) to
show that Tnax = 00. Note beforehand that

de; e d&; —1 op¥i(z;) . .

= = — & 15
dt — 06 dt — v&(1 +fi)( or 5”2) (15)
since g—? = gi(1_+1§) and dfl = (d“ &Ai). Tt also

8p¢" (‘l’z)

hOldS that % = 8?8(1:1)w Wlth aea(mmz) )
Step A: First, define £ := [51 . §M} and y = [:1: 5]

By inserting (14) into (2), we get &; = Hy, (2, ;) with
Ha, (%, &) = fi(x:) + fi (z)

*111( &51 )gz( )gi(mi)Tpri(ji)+

w;.
8(131'

Let Hy(x, &) = [Ho, (z,&1) ...

& = Hy(x,€). We also obtain ddgt

H,,, (m,{M)] so that
Hgi (.’B,fi,t) with

Hfi (CE, gia t) =

%@(45§*Hﬂ%®—&%@)

Let now He(x,€,t) == [H&(m &,t) ... Hey (2,80, 0) ]
so that & = He(x,&,t), which rebultb in gy = H(y,t)
with H(y,t) := [Ha(x, &) He(x, €, t)]. Note that w(O)
is such that &(&;(0),0) € Q¢ := (—1,0) holds for all
agents v; € =; due to the choice of 7?. Next define
Q;(t) == {:%i e RPi| — 1 < &(&,t) < O} and note that
Q;(ta) C Q(t1) for t; < tg since 7; is non-increasing
in ¢t. Note also that &;(0) € €;(0) and that €;(¢) is
bounded due to Assumption 2 and since 7y; is bounded.
Due to Aubin and Frankowska (2009, Prop. 1.4.4) the
inverse image of an open set under a continuous function
is open By defining &; o(Z;) := &(&;,0), it holds that
fz 0~ () = Q,(0) is open. Next, select v;, € Z; for each

l€{1,...,L} and define Q, :—Q L(0)x ... xQ;, (0) C
R™, Qg—QgX XQ&CR ande._waQgc
R”*M , which are open, non—empty, and bounded sets so
that y(0) = [x(0) £(0)] € Q. Let us check the exis-
tence conditions of solutions for the initial value problem
y = H(y,t) with y(0) € Qy and H(y,t) : Qy X R>¢ —
R™"+M: 1) H(y,t) is locally Lipschitz continuous on y

since fi(x;), ff(x), gi(x;), €, = ln( 5?1) and M
are locally Lipschitz continuous on y for each t € Rzo
2) H(y,t) is continuous on t for each fixed y € €, due
to continuity of «; and 4;. Due to Sontag (2013, Thm.
54) there exists a maximal solution y(t) € €, for all
t € J = [0,Tmax) € R>p and Tmax > 0 and hence
£(t) € Qe and x(t) € Qp for allt € J.

Step B: We show that mu.x = oo by contradiction of




Sontag (2013, Prop. C.3.6). Therefore, assume Timax <
oo. Note that fi(ii,t) = fj(lij,t), Ei(lii,t) = €j(§3j,t),
and p’p’(_ ) = p¥i(z;) for all v;,v; € E; since &; = Z;
and since p;"** = p*** and v; = ;. We first show that
€;(t) is bounded for all t € R>¢ and then it consequently
follows that €;(t) is bounded for all v; € Z; \ {v;}. Since
the clusters are maximal we can then deduce the same re-
sult for the other clusters. Consider the Lyapunov func-
tion candidate V(¢;) := J€Z. By using (15), it follows

- de; 1 ¥ (Z) . .
Vie) =€ dt —51(_ %&(1-#&)( O CB—&%))
Vi (7.
< a2 B g @, 6) 4 ok (16)
ox
where a;(t) = —W and k; is a positive con-

stant such that 0 < |£;4;] < k; < oo. This follows since
&i(t) € Q¢ for all t € J and +; is bounded by defini-
tion; «a;(t) satisfies a;(t) € [%,oo) for all ¢t € J since

4 1 1 1

WS TEEe) S Thmare) S Tyraaie) < %
0, Wi X ;

for & € Q¢ We note that pT(m)Hw(ac,E) =

P & .
Sy e Lot Hy, (2, &;). Using (2) and (14), then

Op¥s (2 )
2 06) = 0 LD () + fie)
0
*Ejgj(wj)gj(%)T% +w ) < |ei| M — |ei* A5
J

where €; = €; as remarked previously; A; > 0 is the pos-

itive minimum eigenvalue of g;(x;)g; (a:j)T according to
i =

Assumption 1, and ||8p]7(m‘7)(fj($j) + fi(x) + 'wj)|| <

M, < oo due to continuity of Se J(]_L), fi(z;), and f5(x)
and the fact that {1 and W, are bounded. The lower
bound J; € R arises naturally due to the norm oper-

Yi(z,
ator as 0 < J; < ||8'U'C,;7m(_m”))H2 < 00; (16) now implies
J

V(El) S ai|€i|(Mz — |el|jz) (17)

where M; = ZvjeEz M; + k; and Ji =
Note that .J; > 0 since %@(fi) -0

p¥i(z;) = pP*, which is excluded since (5) holds for all
t € J and p"®* < pP" (recall that p¥s (&) is concave).
In other words, at least one J; in v; € & is greater than

zero. It holds that V(e;) < 0 if Ml < |e;|. Hence, |¢e;| will
be upper bounded as |¢;(t)] < max (|ez( ), Af—), which

implies that €;(¢) is upper and lower bounded by some
constants € and €, respectively, so that €} < ¢;(t) < €¥
for all t € J. By defining ¢! = — and & =

> v, ez, Aidie
if and only if

1
xp(+1)

—ma &i(t) is bounded by —1 < 55 <&i(t) <& <
0, which translates to §;(t) € Q, := | L ev] c Qg for all
t € J. Note that if §;(¢) evolves in a compact set, then
p¥i(x(t)) will evolve in a compact set (0} := [pl, p¥] for

some constants p! and p%. Due to Aubin and Frankowska
(2009, Prop. 1.4.4) it again holds that

0= o (@) = (@i € 0)l6} < (@) <t}

is closed and also bounded since €2, C €©;(0). Select v;, €
= for each I € {1,..., L} so that z;,(t) € ] C ;(0)
for all t € J and all v;,. Define the compact sets Q=
QX ..oxQ CR™ Q= Qp x...oxQ CRM,
and Q= Q x QO C R"*+M for which it holds that
y(t) € @y forallt € J. It is also true that Qj C Q, by
which it follows that there is no t € J := [0, Tiax) such
that y(t) ¢ €. By contradiction of Sontag (2013, Prop.
C.3.6) it holds that Tyyax = 00,1.€., J = R>¢. This means
that (5) holds for all v; € V and for all t € R>q. By the
choice of p®* r;, and 7; asin (7)-(11), it then holds that
0 < r; < p®i(2,0) < p®* for each v; € V. The control
law w;(Z;, t) is continuous and bounded because p¥* (Z;),
€;(Z;, 1), and g;(x;) are continuous. Furthermore, ~; is
continuous with 0 < () < oo. Due to the compact
domain €, these functions are also bounded. |

Remark 5 IfL = M, i.e., |V;| = 1 for each agent v; €
V, Theorem 1 trivially applies. If m; = n; and g;(x;) is
positive definite for all ; € R™, the control law (14)

can be replaced by w;(Z;,t) := —e; (T, t)apai(j”’) i.e., no
knowledge of f;, ff, and g; are needed.
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For a cluster Z; € = that satisfies Case A in Problem 1,
we next guarantee local satisfaction of ¢, for each v; € 5,
while one or more clusters Z; € =\ E; do not satisfy the
assumption of Case A. We first derive a more general re-
sult by disregarding clusters. Therefore, consider a for-
mula ¢ as in (1b) and the set of agents V,; C V that par-
ticipate in ¢. Satisfaction of ¢ will be guaranteed when
the trajectories of agents in V \ V4 remain bounded.

Assumption 5 Given, for each v; € Vy, a sufficiently
regular control law u,, there exists, for each vy, € V\Vy, a
sufficiently reqular control lawu), so that, for eachv; € V,
there is a solution x; : [0, Tmaz) — R™ to (2) with Tpmaz >
0 so that, for each vy, € V\ Vy, T (t) stays in a compact
set. By “sufficiently reqular’ we mean a controller so that
the conditions in Sontag (2013, Thm. 54) are satisfied.

Theorem 2 Let each agentv; € V satisfy Assumption 1.
Consider ¢ as in (1b) and let each v; € Vy be subject to
@i = ¢. Assume that for all v;,v; € Vy it holds that: 1)
(vi,v;) € € and 2) t] = t%, p"** = pI"%, r; = r;, and
vi = ; are chosen as in (6)-( 1). Assume further that
each v; € Vy applies (14) and that Assumptions 2 and 4



hold. If Assumption 5 holds and all agents v, € V \ Vg
apply w},, then it holds that 0 < r; < p®(Z;,0) < pa.

PROOF. Define £ := [fil Silvw] and y := [:B E]
where v;,, . .. Vi, € Ve Due to u; and uj, being suf-
ficiently regular and similarly as in the proof of Theo-
rem 1, there exists a maximal solution y(t) € Q, for
all t € J := [0, Tax) With Tmax > 0 and for an open,
non-empty, and bounded set €, C R"*1V2|. Since x;(t)
evolves in a compact set for all t € 7, it can again be
shown that y € Q; C €, for a compact set 2 so that

Tmax = 00. It follows that 0 < r; < p?(2;,0) < pPa*. A

If all v; € Vy apply (14) under the conditions in Theo-
rem 2, we say that the agents in Vy use collaborative con-
trol to satisfy ¢. Theorem 2 solves Case A of Problem 1
with p?P* > 0 even when Theorem 1 does not apply, i.e.,
some other clusters do not satisfy Case A. Note also that
Theorem 2 is more general than that as exemplified next.

Example 1 ConsiderV := {v1, va, v3,v4} with the tasks
¢1 = P2 := Flo5(||l1 — 2| < 1), ¢3 := Flo5([|l2s —
x| < TN |lez — x4l < 1), s := Fjo 5(||24]] < 1), hence
inducing only one mazimal dependency cluster = == =,
to which Case B of Problem 1 applies. If agents v and
v use collaborative control to satisfy ¢ = ¢o, then The-

orem 2 guarantees satisfaction of 1 = ¢po.

Extensions of Theorems 1 and 2 to solve Case A when
pP* < 0 are stated in Corollary 1.

Corollary 1 Assume that all assumptions of Theorem 1
(Theorem 2) hold except for Assumption 4 and the choice
of p"®® and r;. If instead p** and r; are as in (12) and
(13), respectively, then it holds that r; < p®i(x;,0) <
P (< p(@1,0) < pre).

3.2  An Online Detection € Repair Scheme

Assume now that =; € = may not satisfy the assumption
of Case A in Problem 1 and Case B applies. We propose
that each agent v; € Z; initially applies (14) with prop-
erly chosen initial parameters t¥, p®* r; and v;; (14)
consists of two components, one determining the con-
trol strength and one the control direction. The closer
& (®;,t) gets to Q¢ := {—1,0}, the bigger will ¢,(Z;,t)
and consequently ||u;(Z;,t)| become, i.e., |[u;(Z;, t)| —
00 as &(&;,t) — Q¢. The control direction is given by
—%ﬂfi). We reason that applying (14) is hence a good
initial choice. However, the resulting trajectory &; may
still lead to & (&;(t)) = {—1,0}, which is equivalent to
a violation of (5), for some ¢ > 0 and result in critical
events. The next two examples exhibit such behavior.

2. Stage
"
Iyt

2

Fig. 1. Overview of the three repair stages.

Example 2 Consider V = {v1,vq,v3,v4} with the
collaborative formula ¢1 = Gpa5((|z1 — @2 <
25) A (o1 — ®s]| < 25) A (o1 — ®4]] < 25)) and
the non-collaborative formulas ¢o := G5 ([T —
[10 90][| < 5), ¢3 := Gp10,15) (|3 — [10 10]|| < 5), and
¢4 1= Gpo5)([|[Ta — [45 20]|| < 5). The set of formulas
{b1, b2, P3, P4} is not globally satisfiable, although each
formula is locally satisfiable. Under (14), agents va, vs,
and v4 move to [10 90], [10 10], and [45 20], respec-
tively. Agent v1 can hence not satisfy ¢1 and will violate
(5) for somet > 0. A solution is to decrease the robust-
ness online so thatry < 0 to achiever; < p®(21,0) < 0.

Even if the set {¢1,...,¢n} is globally satisfiable, the
resulting trajectory may violate (5) for some ¢ > 0.

Example 3 Consider V := {vs,ve, v7} with the collab-
orative formula ¢s := Fs 10) (|5 — x6]| < 10) A (|| —
z7|| < 10) A (Jles — [110 20]|| < 5)) and the non-
collaborative formulas ¢g := Fi5 15 (||x6 — [50 20]]| < 5)
and ¢7 := Fis15)([|lw7 — [110 80]|| < 5). Under (14),
vg and vy move to [50 20] and [110 80] by at latest 15
time units, respectively. However, vs is forced to move to
[110 20] and be close to vg and vy by at latest 10 time
units. This may lead to critical events where vs violates
(5) for somet > 0. If vg and vy collaborate, satisfaction
of ¢g and @7 can be postponed and ¢s can be locally sat-
isfied first, e.g., by using collaborative control for ¢s.

We propose an online detection & repair scheme by us-
ing a local hybrid control system H; := (Cy, F;, D;, G;)
for each v; € Z;. We first detect critical events, i.e., when
(5) is violated, by using D;. Then, a three-stage repair
procedure is initiated as illustrated in Fig. 1 where re-
pairs are according to G;. In the first repair stage, de-
tected by Dgyl, the design parameters t}, pi***, r;, and
~; are modified locally without communication among
agents by the jump map ggyl. If this is not successful,
collaboration among agents will be considered in the sec-
ond repair stage. Here, critical events of agent v; are
detected by D] , and collaborative control is requested
from agents v; € V; \ {v;} by D7, to handle ¢; as in
Example 3. If this second repair stage is not applicable,
the third repair stage is detected by Dj ; that succes-

sively decreases r; by §; > 0. First, define p] := [ni ci]



where n; € N indicates the number of repair attempts in
the first repair stage, while ¢; is used in the second re-
pair stage; ¢; € {1,..., M} indicates collaborative con-
trol for the formula ¢.,. If ¢; = 0, then v; tries to lo-
cally satisfy ¢; by itself and if ¢; = —1, then v; is free,
i.e., not subject to a task. For convenience, we abbrevi-
ate p] == [0 ¥ ;] and pf == [t] pi“dx ri P}l
where p! defines the funnel (5). For agent v;, define
z; == [@; p! pi] € Z; where Z; :== R" x RY x Z°.
The initial state is z;(0,0) := [2;(0) pf(0) 0 ] with

£y — it: P Ty ’YZ ¥5° l] if p°pt >0
pz(o) = {[t: pinax ;z ,yl ,yi lz] lf popt < O

where ¢, pPaX r, 49 42 1, p1¥ and 7; are chosen

according to (6)-(13), respectively, and where p"®* >
7 > piP" — &; so that r; is maximized up to a precision
of 4; > 0. Additionally, pi(0) = p]( ) if Case A holds
for all agents v;,v; € ;. The flow map is given by

F (z“uint7 ext) .

where the control law is given by

—€; (fii,t)gi(%‘)Tw

_ . ifc; =0 (18a)

9p™ (@) ip . < 0. (18b)

If ¢; > 0, then collaborative control for ¢, is used. Ex-
ternal inputs contained in u$** are w; and x¢**. By as-

t .
suming v; € Z;, we define ¢ := [¢;, ... c.j\E”—l] and
fext | ) )
p; = ipj1 pj‘_ . ] such that Vjpsevs Vjiz,q €

=0\ {vl} Note that ¢t and p"™* contain states of all
agents in the same dependency cluster =Z;. Ultimately,

define the external input s Xt Pf em] .

ext ext e

= [wi ZT;

Detection: To detect a critical event, the jump set
D} = {(zi,u™, uf™) € Hi[€(t) € {~1,0}, ¢ =0}

is used. Throughout this section, we assume that agent v;
detects the critical event, while the agents with subscript
jasv; €V;\ {v;} are possibly asked to collaborate. We
introduce the notation {2; € Z;|2;, = z; ; exception}
denoting the set of 2z; such that z; = z; after the jump
except for the elements exception in z; that change dur-
ing a jump and that are explicitly mentioned after the
semicolon. The set D is split into disjoint sets indicat-
ing repairs of the first, second, and third repair stage.

Repair Stage 1: The first repair stage is indicated by

Di,l =D; N {(Zz',uim,u?(t) € Hiln; < N;}

[fim) + [ (@) + gi(®i)ui™ + w; Os]

popt
1 max A?lax

[ - o ___rC_.

T4 . R e gl
N S e —— ;
0| p¥i (@i(1)) Q_,_/‘L% 6 7

-1

=7i(t) + pi™*
Fig. 2. Funnel repair in the first stage for ¢; := Fi4 ¢)%i.

where N; € N is a design parameter that represents
the maximum number of repair attempts in the first
stage. A good choice of N; may in practice depend on
the dynamics and tasks of the agents. If (z;, ul"®, u$**) €

D; ;, we first relax the parameters t;, pj***, r;, and ;.

Example 4 Consider ¢; := Fiy 61 withr; == 0.4 (ini-
tial robustness), which is supposed to be achieved att} :=
4.5. The initial funnel with p]*** and —y; + p*** is shown
in Fig. 2. Without detection of a critical event, it would
hold that p®i (x;,0) > r; since p¥i (:El(tz*)) > r;. How-
ever, att, := 2, wheret, indicates the time where a criti-
cal event is detected, the trajectory p¥ (:El(t)) touches the
lower funnel boundary and repair action is needed. This
is done by setting tf := 6 (time relavation), 7; := 0.15
(robustness rela:mtzon) p7e* = 1.1 (upper funnel relaz-
ation), and adjusting 4; (lower funnel relamation) The
funnel is hence relaxed to p*** and —%; + p*** as in
Fig. 2. At the time t,., the lower funnel is relazed to
—’Ayl( r) + P where we denote y] := 4;(t,). Due to re-
pair action, &; locally satisfies ¢; as shown in Fig. 2.

With Example 4 in mind, set
={Ei € Zilzi= 2 1 =T, PP =P+ (
7 € Ri, p] = p"™", ﬁi =n; +1}
where, to achieve time relaxation, we define
{bi} if ¢; = Fla, b Vi

Ti =< {a;} if i = Gla, b,)%i
{bz + C_Li} if ¢l = F[gmbiiG[fli,Ei]wi'

The parameter r; is decreased to 7; € (0,r;) if r; > 0 and
set to 7; := r; —d; otherwise (robustness relaxation), i.e.,

Ce— . S (Ovr’i) if i > 0
Ri = {n € Rif: € {m =0 ifri <0 }

The variable (}' relaxes the upper funnel and needs to
be such that p;"** = pi"® + (' < pfpt (upper funnel

relaxation) according to (7), i.e., let ¢ € (0, pP* —pinax),



At t,, the detection time of a critical event, we set ] :=
Fulty) = P — ps (@i(t,)) + ¢! with

Cl R<q if £ > t,
(0, p¥i(Zi(t,)) — 7;] otherwise,
which resembles (9) (lower funnel relaxation). Let
p] " = [’y? MW 2R new ] and select

Vot € (0,min(y], g — 7))

K2
0 i — A7+ P > 7
e = { g (Lt
e,

o else

similarly to (10) and (11). Finally, set 4" := (y/ —
v ncw) exp(I2Vt,.) + ;7 "". The choices of p?‘ax, 74
and 4; follow the same intuition as in Remark 4.

Repair Stage 2: The jump set
D; (2.3y =Di N {(z5, wi™, u$™) € Hn; > Ni}

detects repairs of the second or third stage. After N; un-
successful repair attempts, the second stage is initiated
if some timing constraints (formalized in D} ,) are satis-
fied. Collaborative control for ¢; by all agentb in V; will
then be initiated and guarantee that there are no further
critical events. The second stage is then detected as

to =D a3y N {(zi, w™, uf™) € 9i[Vo; € Vi\ {wi}),
(j:—l) or (CjZO, b; <73)}

To use collaborative control to deal with ¢;, the in Dj ,
formalized timing constraints need to hold, i.e., each
agent v; € V;\{v;} is either not subject to a task or there
is enough time to satisfy ¢; after ¢; has been collabora-
tively satisfied. In this respect, the control law switches
from (18a) to (18b) for agent v;. Therefore, set

Gio={2i € Zi|2i = zi; pI"™ = p™ + (',
P € Riy ] =p;"", & =i}

where ¢, := i indicates collaborative control for ¢,,
while again relaxing the funnel parameters as in the first
repair stage. Now changing the perspective to the par-
ticipating agents v; € V;\ {v;}, all agents v, need to par-
ticipate in collaborative control. Assume that v; € &,
then

;/72 : {(zj’uij'nt7u§)(t) € ij|Cj € {7170}a
dv; € & \ {Uj},’l)j eV, ¢ = i},

is activated when agent v; asks agent v; for collaborative
control (detected by D} ,). If (z;, w™, ug**) € D, the

control law for each v; € V; \ {v;} switches to (18b) by
1=z € 22 =2 Dy =pi =)

where ¢; = ¢; and ¢ Pt pg enforce that all conditions in
Theorem 2 or Corol iary 1 hold after the jump.

Remark 6 The second repair stage is iniated solely
based on ¢; and T;. Note that no future state predictions
can be made since fj (x;) and ff(x) are unknown (fi(z;)

and ff(x) are in general unknown) and that agent v;
only has knowledge of ¢; and a;, b;, or b; +a; depending
on whether an always, eventually, or always-eventually
task is considered, so that ahead planning is not possible.

Repair Stage 3: If the timing constraints in Dg’z do not
apply, repairs of the third stage are initiated by

Di,g 3:Di,{2,3} \Di,z-

Agent v; reacts in this case by reducing the robustness
r; by §; > 0 as illustrated in Example 2 and according to

~max HlaX u
+ G

Gis={2 € Zi|lzi=zi; p}

fi =T — 5“ pmax - pipt + g, pl =D; neW}

Amax v, new

where 4} = pmax—p¥i(z,)+d; is used to calculate p;
and o > 0 is a small constant that avoids Zeno behavior.
The Overall System: It needs to be detected when

L max ¢; ife¢; >0
ri < p%i(&4,0) < pi**. Define v; := {z e =0 and

Dz ,sat = { z“umt’ ?Xt) S S/.')i|7nu7; S Pw"" (:iul) = prur:ax,
¢ > 0,t € T} \ (D;UD],),

with

[avi 5 bul] if ¢Vi - F[a,,i,b,,i]wvi
ﬁsat = bI/i -~ lf ¢l/i = G[ayi ib,,i]wl/i
t; +by, gy, = F‘[gui ,bui]G[&yi ,B,,i]ww

and where the set substraction of D; U D}, exludes the
case where D] or D}y apply simultancously with D; sat-

If (z;,ul™ u$') € D, s and in case of collaborative
control, the agents v; € V; \ {v;} are then either not
subject to a task or need to continue with ¢;. Hence, set

Gi sat 1:{21 €Zilz =z by =T,
iAmax ] _ o] i g™ >0
5 s i) — [pzmax 7:7,] if p?Pt < 0

N . 0 ife¢>0andc; #4
Y _ pymew & i i
pz pl > G {—1 lf c; = 0 or ¢ EY) }



X ax

where p"® ;. p®* and 7; are according to (7),
(8), (12), and (13) but evaluated with Z;(¢) in-
stead of &;(0). Finally, H; is given by D; := D; U
D}y U Djgar, Ci = Z; \ D;, and Fl-(zhu;»“t,uf"t)
as_ defined before. The corresponding jump map
G (z“umt’uext) is gl 1(Zl’u1nt’uext) if (zz,umt’ulext) c
D; 4, QZQ(zz,u““7 f"t) if (25, ultt u$t) € D; ,, and
1 a(zi, w™, s if (2, wl™, u$*) € Dj 5 for the detec-
tion of critical events. Furthermore, G (zi, wlt®, usx®)

7
is gl 2(2“ ulnt’ u;:xt) if (Z“ ulnt’ ucxt)

¥ € Dy, and
G bat(zz,umt7 uP) if (2, wl" u) € D; gar. It is cru-
cial that the behavior of H; does not exhibit two or
more jump options at the same time, i.e., H; should be
deterministic with respect to jumps permitted by H,;.
Note that D} = D}, UD;, UD; 5 and that D;,, D} ,,
and D 3 are non-intersecting. Note also that the sets D
and D; gt as well as DY’ 5 and D; gat are non-intersecting.
However, D and Dj ; ', are intersecting. Therefore, if
(zl,umt,uf"t) € D; N D}y, we only execute the jump
induced by D;’, to account for the logic modeled by the
hybrid system. This can be achieved by modifying D
to D; \ Dy 5.

Theorem 3 Let each agentv; € V be controlled by H; :=
(Ci, F;, Dy, G;), while Assumptions 1-8 and 5 are satis-
fied. For v; € =, it holds that p®i(Z;,0) > r; where ei-
ther r; := 1r;(0,0) (initial robustness) if Case A applies
or r; s lower bounded and mazximized up to a precision
of §; > 0 if Case B applies. Zeno behavior is excluded.

PROOF. Without critical events, it is guaranteed that
either ¢; is locally satisfied if p(’pt > 0 or a least violat-
ing solution with a given gap of p&** is found if p{** < 0
due to Theorem 2 and Corollary 1, respectively. In the
first repair stage, the parameters t* pmax iy A0 y00
and [; are repaired in a way that stlll guarantees local
satisfaction of ¢; if piP' > 0 or, otherwise, r; is reduced
by §;. Zeno behavior is excluded for this stage since only
a finite number of jumps, i.e., IV; jumps, are permitted.
For the second repair stage, collaborative control for ¢;
guarantees achieving the task ¢; with a robustness of r;
by Theorem 2 and Corollary 1. Afterwards, participating
agents v; € V; \ {v;} have enough time to deal with their
own local task ¢;, which is guaranteed by the timing
constraints in D; , that need to hold in order to initiate
collaborative control The third repair stage successively
decreases r; by §;. Note that r; has to be lower bounded
due to Assumption 2, which states that for local satis-
faction of ¢; the state &; is bounded. Hence, all agents
aim to stay within a bounded set. Consequently, succes-
swely reducing r; Wlll eventually lead to p® (Z;,0) > 7,
i.e. maximizing p® (&;,0) up to a precision of §;. This
again means that only a finite number of jumps is possi-
ble when the lower funnel is touched. Touching the up-
per funnel will also only lead to a finite number of jumps

t . . .
since pi*** = p?P" + o in G/ 4, exluding Zeno behavior.
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4 Simulations

Consider M := 9 agents represented by three-
wheeled omni-directional mobile robots as in Liu
et al. (2008) with two states z; and zo indicating
the robot’s position and one state x3 indicating the
robot’s orientation with respect to the xi-axis. We
denote z;, with k& € {1,2,3} as the k-th element
of agent v;’s state and define p; := [z;1 ;2] Let
x; := [p; v; 3] € R®so that © := [x1 ... xp] € R,
As in Remark 2, we use induced dynamical couplings
i) = [fh(x) fly(x) 0] as a means of collision

. . 9 Tik—Zjk
u fp— ty NI
avoidance with f}' (z) == 375 ;. ki Tpi=p.[0.000001

for k € {1,2} and where k; := 10. By chosing

f(x) as above, each agent v; needs knowledge of

the states of all agents, which can be prevented by

only including the states of agents in the proxim-

ity of agent v;. The dynamics are given by x; =
cos(x;3) —sin(x;3) 0

~1
fi(x) + |sin(z;3) cos(z;3) O (BZT) Riv; + w,,

0 0 1
where R; := 0.02 is the wheel radius and B; :=
0 cos(m/6) —cos(m/6)
—1 sin(w/6) sin(m/6) | describes geometrical con-
L; L; L;

straints with L; := 0.2 (radius of the robot body).
The simulations have been performed in real-time on
a two-core 1,8 GHz CPU with 4 GB of RAM. Using
the forward Euler method with a sampling frequency
of 500 Hz, calculations of the local control laws took
on average 50 us. The noise w; is drawn from a trun-
cated normal distribution with mean 0 and variance
100. The simulation example resembles Examples 2
and 3. We additionally add requirements on the robot’s
orientation. For the first cluster (as in Example 2),

here denoted by =i, we let ¢; := G 15] ((||p1 —pol <
25) A (lpy = psll < 25) A (lpy — pall < 25)),
$2 := Gl10,15) ((||P2— [10 90] | <5)A(|lw2,3+45] < 7'5))
¢3 := Groas) (([ps—[10 10] || < 5)A(|233—45] < 7.5)),
and ¢4 := G015 (|| (P4 — [45 20] || < 5) A (|43 — 135 <

7.5)). We added the requirements that agents wvs, vs,
and w4 should eventually be oriented with —45, 45,
and 135 degrees and remain with this orientation
from then on. For the second cluster (as in Exam-
ple 3), denoted by Eo, let ¢5 = F[5710]((||p5 —pgll <

10) A (Ilps — p7ll < 10) A (llps — [110 20]|} < 5)),
o0 = oo (oo - 150 20]| < 5) A (jas.5 — 45| < 7.5)),
and g7 := Fps.15) ((lp7 — [110 80] | < 5) A (larr 3+ 135] <
7.5)). We here added the requirements that agents
ve and v; should eventually be oriented with 45 and

—135 degrees; =; and Eg correspond to Case B in
Problem 1. For the third cluster, denoted by Z3, let

ps = ¢g = Fiz15 (w81 — 29,1 < 10) A (28,1 — To1 >
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Fig. 3. State trajectory for the clusters =1, 22, and Z3. Note
that the triangles indicate the orientation of each agent.

5) N (LU&Q — Z9,2 < 10) N (LU&Q — T9,2 > 5)), hence satis-
fying Case A in Problem 1. We remark that all agents
have been equipped with a formula 1/1{\55'2 as mentioned
in Remark 3. We select n := 1 for which it holds that

pcl)pt = 23.9, pgpt = pgpt = prt = 4.92, pgpt = 4.97,
PPt = PPt = 492, and pP* = pP* = 1.11 so that

we initially choose r; := 0.5 for all ¢ € {1,..., M} and

prlnax = 20’ pr2nax = p:r))nax = pznax = pr5nax = pr6nax =
p7* == 4.9 and pg'®™* := pg'®* := 1.1. For the parame-
ters of the hybrid system, we set §; := 1.5 and N; := 1.
The resulting trajectory is shown in Fig. 3. For =, it
can be seen that v; does not satisfy ¢1, but finds a least
violating solution by staying as close as possible to vs,
vs, and v4. The latter agents independently satisfy their
own formulas. For v; and vs, the corresponding funnels
are shown in Fig. 4a and 4b. It can be seen that vy first
tries to repair the parameters in the first repair stage
and then successively decreases the robust r; by J; in
the third repair stage. For vs, vg, and v7, it can be seen
that all agents satisfy their formulas. In particular, vs
uses collaborative control together with vg and v7 in the
second repair stage after an unsuccessul repair attempt
in the first stage. This can be seen in Fig. 4d, while Fig.
4e and 4f show the behavior of the collaborating agents
ve and vy. The third cluster Z3 with vg and vg satisfies
collaboratively their formulas according to Theorem 2.
The funnel for vg can be seen in Fig. 4c. All tasks, except
of ¢1, are satisfied with a robustness of r; := 0.5. Our
method is hence robust with respect to additive noise
and with respect to the formula, where the designer can
impose a robustness r;. Note also in Fig. 3 that collisions
are avoided. A comparison with the methods in Raman
et al. (2014) and Pant et al. (2018) was not possible due
to their high computational complexity rendering the
entailed optimization programs intractable. Note that
Raman et al. (2014) and Pant et al. (2018) focus on
single-agent systems so that a high-dimensional central-
ized multi-agent system with 27 states had to be used.
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5 Conclusion

A framework for the control of multi-agent systems un-
der local signal temporal logic tasks has been presented.
The local tasks may depend on the behavior of other
agents and may hence be conflicting. In a first step, we
identified conditions under which a local feedback con-
trol law guarantees the satisfaction of the local tasks if
they are satisfiable. For not satisfiable tasks, a least vio-
lating solution can be found. If the identified conditions
do not hold, we proposed to combine the previously de-
veloped local feedback control law with an online detec-
tion & repair scheme. This detection & repair scheme
is expressed as a local hybrid control system. Critical
events are detected and repaired in a three-stage proce-
dure so that cases with locally conflicting formulas can
be resolved.

References

J.-P. Aubin and H. Frankowska. Set-valued analysis.
Modern Birkhé&user Classics, Boston, MA, 1 edition,
2009. ISBN 1877-0533.

C. Baier and J.-P. Katoen. Principles of Model Check-
ing. The MIT Press, Cambridge, MA, 1 edition, 2008.
ISBN 026202649X, 9780262026499.

C. P. Bechlioulis and G. A. Rovithakis. A low-complexity
global approximation-free control scheme with pre-
scribed performance for unknown pure feedback sys-
tems. Automatica, 50(4):1217-1226, 2014.

C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli,
E. Klavins, and G. J. Pappas. Symbolic planning and
control of robot motion [grand challenges of robotics].
IEEF Robotics & Automation Magazine, 14(1):61-70,
2007.

S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, New York, NY, 1 edition,
2004. ISBN 9780521833783.

D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos,
and M. M. Zavlanos. A feedback stabilization and
collision avoidance scheme for multiple independent
non-point agents. Automatica, 42(2):229-243, 2006.

A. Donzé and O. Maler. Robust satisfaction of tempo-
ral logic over real-valued signals. In Proceedings of
the Conference on Formal Modeling and Analysis of
Timed Systems, pages 92-106, Klosterneuburg, Aus-
tria, September 2010.

G. E. Fainekos and G. J. Pappas. Robustness of temporal
logic specifications for continuous-time signals. The-
oretical Computer Science, 410(42):4262-4291, 2009.

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J.
Pappas. Temporal logic motion planning for dynamic
robots. Automatica, 45(2):343-352, 2009.

I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopou-
los. Decentralized multi-agent control from local LTL
specifications. In Proceedings of the Conference on
Decision and Control (CDC), pages 6235-6240, Mauli,
HI, December 2012. IEEE.



20
o] [ g

—pemn)]| |

—p"s(as(t)

0
First jump induced by Df

-20

—40

10

=20

5 / Remaining jumps induced by D} 5
! 30
o / o0 ol
-5 ) gol {20+ A2 LV
—10f 50] F —s(t) + o
N —100f
—15 ? 60|
—nlt) + o
20 g s IR I 70, I —
123 45 6.7 8 9101112131415 012345678 9101112131415°0 1 2 3 4 5 6.7 8 9 10111213 14 15
Time (s) Time (s Time (s

(a) Funnel repairs for agent v1. First and (b) No funnel repairs for agent v2. The (c) No funnel repairs for agent vs.The for-

third repair stage are activated.

formula ¢- is satisfied without repairs.

mula ¢g is satisfied

without repairs.

10

max

max max
i 5,

max

B — 5 (aal1) o o o OB i F;
Gatistetion of g Saflsfa(:non of p5—__ PV (z4(1) 0 Safflsfa(:tlon of p—— PV (24 (t))_—
-5 —10jp5(@s(t)) — 10" (2 t)§

—20

._,h‘ﬁ.'.d jump induced by Dy g,

D) + 5

() + 5

—20 =30 —30
—25 —40 First jump induced by Dy, 40 First jump induced by D7

—30 Second jump induced by D% 5 - i 7 n T
35 50| ¢ —Y6(t) + pg° i=76(t) + P5° 5014 —y7(t) + Py s_.-'~’y7(t) + phie
—40} ¢ First jump induced by D} ¢ Second jump induced by Dy ar " Second jump induced by D7 s}/

i) —60 : —60 :
3T 70 7

6 7 8 0101112131415 012 3 45
Time (s

6 7 8 0101112131415 0 1

23456

Time (s

7 8 0 101112131415
Time (s

(d) Funnel repairs for agent vs, who re- () Agent wves starts collaborating with (f) Agent vr starts collaborating with

quests collaborative help from vs and vy. agent vs at around 2.3 seconds.

agent vs at around

Fig. 4. Funnel repairs for the agents v1, v2, vs, vs, ve, and v7.

R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dy-
namical systems. IEEE Control Systems, 29(2):28-93,
2009.

R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid Dy-
namical Systems: modeling, stability, and robustness.
Princeton University Press, 2012.

M. Guo and D. V. Dimarogonas. Reconfiguration in mo-
tion planning of single-and multi-agent systems under
infeasible local LTL specifications. In Proceeding of
the Conference on Decision and Control (CDC), pages
2758-2763, Firenze, Italy, December 2013.

M. Guo and D. V. Dimarogonas. Task and motion co-
ordination for heterogeneous multiagent systems with
loosely coupled local tasks. IEEE Transactions on
Automation Science and Engineering, 14(2):797-808,
2017.

S. Karaman and E. Frazzoli. Sampling-based algorithms
for optimal motion planning with deterministic u-
calculus specifications. In Proceedings of the Amer-
ican Control Conference, pages 735-742, Montreal,
Canada, June 2012.

M. Kloetzer and C. Belta. Automatic deployment of dis-
tributed teams of robots from temporal logic motion
specifications. IEEE Transactions on Robotics, 26(1):
48-61, 2010.

12

H. Kress-Gazit, G. E. Fainekos,

2.3 seconds.

and G. J. Pappas.

Temporal-logic-based reactive mission and motion

planning. IEEE Transactions
1370-1381, Dec 2009.

on Robotics, 25(6):

D. Liberzon. Switching in systems and control. Springer
Science & Business Media, New York, NY, 1st edition,

2003.

L. Lindemann and D. V. Dimarogonas. Decentralized
robust control of coupled multi-agent systems under
local signal temporal logic tasks. In Proceedings of
the American Control Conference (ACC), pages 1567—

1573, Milwaukee, WI, June 2018.

L. Lindemann and D. V. Dimarogonas. Robust control
for signal temporal logic specifications using discrete
average space robustness. Automatica, 101:377-387,

2019.

L. Lindemann, C. K. Verginis, and D. V. Dimarogo-

nas.

Prescribed performance control for signal tem-

poral logic specifications. In Proceedings of the Con-

ference on Decision and Control
Australia, December 2017.
Y. Liu, J. J. Zhu, R. L. Williams,

(CDC), Melbourne,

and J. Wu. Omni-

directional mobile robot controller based on trajectory
linearization. Robotics and Autonomous Systems, 56

(5):461-479, 2008.



Z. Liu, J. Dai, B. Wu, and H. Lin. Communication-
aware motion planning for multi-agent systems from
signal temporal logic specifications. In Proceedings of
the American Control Conference (ACC), pages 2516—
2521, Seattle, WA, May 2017.

O. Maler and D. Nickovic. Monitoring temporal proper-
ties of continuous signals. In Proceedings of the Inter-
national Conference on FORMATS-FTRTFT, pages
152-166, Grenoble, France, 2004.

M. Mesbahi and M. Egerstedt. Graph theoretic methods
in multiagent networks. Princeton University Press, 1
edition, 2010.

Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam.
Fly-by-logic: control of multi-drone fleets with tem-
poral logic objectives. In Proceedings of the Interna-
tional Conference on Cyber-Physical Systems, pages
186-197, Porto, Portugal, April 2018.

V. Raman, A. Donzé, M. Maasoumy, R. M. Murray,
A. Sangiovanni-Vincentelli, and S. A. Seshia. Model
predictive control with signal temporal logic specifi-
cations. In Proceedings of the Conference on Decision
and Control (CDC), pages 81-87, Los Angeles, CA,
2014.

V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and
S. A. Seshia. Reactive synthesis from signal temporal
logic specifications. In Proceedings of the 18th Inter-
national Conference on Hybrid Systems: Computation
and Control, pages 239248, Seattle, WA, April 2015.

W. Ren and R. W. Beard. Consensus seeking in multia-
gent systems under dynamically changing interaction
topologies. IEEFE Transactions on automatic control,
50(5):655-661, 2005.

S. Sadraddini and C. Belta. Robust temporal logic model
predictive control. In Proceedings of the 53rd Con-
ference on Communication, Control, and Computing,
pages 772—779, Monticello, IL, Sept 2015.

R. G. Sanfelice. Robust asymptotic stabilization of hy-
brid systems using control lyapunov functions. In Pro-
ceedings of the Conference on Hybrid Systems: Com-
putation and Control, pages 235244, Vienna, Austria,
April 2016.

P. Schillinger, M. Biirger, and D. V. Dimarogonas.
Decomposition of finite LTL specifications for effi-
cient multi-agent planning. In Proceedings of the In-
ternational Symposium on Distributed Autonomous
Robotic Systems, pages 253267, London, UK, Novem-
ber 2016.

E. D. Sontag. Mathematical control theory: determin-
istic finite dimensional systems. Springer Science &
Business Media, Berlin, Germany, 2 edition, 2013.

H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Stable
flocking of mobile agents, part i: Fixed topology. In
Proccedings of the Conference on Decision and Control
(CDC), pages 2010-2015, Maui, HI, December 2003.

J. Tumova and D. V. Dimarogonas. Multi-agent plan-
ning under local LTL specifications and event-based
synchronization. Automatica, 70:239-248, 2016.

C. 1. Vasile and C. Belta. Sampling-based temporal logic
path planning. In Proceedings of the International

13

Conference on Intelligent Robots and Systems (IROS),
pages 4817-4822, Tokyo, Japan, November 2013.

M. M. Zavlanos and G. J. Pappas. Distributed connec-
tivity control of mobile networks. IEEE Transactions
on Robotics, 24(6):1416-1428, 2008.



