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Abstract

Multi-agent systems under temporal logic tasks have great potential due to their ability to deal with complex tasks. The
control of these systems, however, poses many challenges and the majority of existing approaches result in large computational
burdens. We instead propose computationally-efficient and robust feedback control strategies for a class of systems that are,
in a sense, feedback equivalent to single integrator systems, but where the dynamics are partially unknown for the control
design. A bottom-up scenario is considered in which each agent is subject to a local task from a limited signal temporal logic
fragment. Notably, the satisfaction of a local task may also depend on the behavior of other agents. We provide local continuous-
time feedback control laws that, under some sufficient conditions, guarantee satisfaction of the local tasks. Otherwise, a
local detection & repair scheme is proposed in combination with the previously derived feedback control laws to deal with
infeasibilities, such as when local tasks are conflicting. The efficacy of the proposed method is demonstrated in simulations.

Key words: Multi-agent systems; formal methods-based control; signal temporal logic; robust control; autonomous systems;
hybrid systems.

1 Introduction

Control of multi-agent systems is a promising research
area where scholars have addressed multi-agent navi-
gation (Dimarogonas et al., 2006), consensus (Ren and
Beard, 2005), formation control (Tanner et al., 2003),
and connectivity maintenance problems (Zavlanos and
Pappas, 2008), see Mesbahi and Egerstedt (2010) for
an overview. More recently, ideas from model checking
(Baier and Katoen, 2008) have been used where the task,
which is imposed on the system, is a complex temporal
logic formula. Control of single-agent systems under
linear temporal logic (LTL) tasks has been considered
in Belta et al. (2007); Fainekos et al. (2009); Kress-
Gazit et al. (2009) while the multi-agent case has been
addressed in Filippidis et al. (2012); Guo and Dimarog-
onas (2013, 2017); Kloetzer and Belta (2010); Tumova
and Dimarogonas (2016). The aforementioned works
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rely on an abstraction of the workspace and the agent
dynamics. This abstraction process and the subsequent
plan synthesis are limited, especially for multi-agent
systems, due to their high computational complexity.
For single-agent systems, probabilistically optimal and
complete sampling-based methods have been proposed
in Vasile and Belta (2013) and Karaman and Frazzoli
(2012) to avoid these computational burdens by in-
crementally building and model-checking a transition
system. For the multi-agent setup, two paradigms exist:
one where all agents are subject to a global task (top-
down) and one where each agent is subject to a local
task (bottom-up). These local tasks can be obtained in
two ways. Either a global task is decomposed into local
ones as in Schillinger et al. (2016), which in some sense
is a mix of top-down and bottom-up, or each agent is
assigned a local task regardless of what other agents are
assigned. Especially in the latter case it may happen
that the satisfaction of a local task also depends on the
behavior of other agents. By behavior of an agent we
mean the corresponding agent trajectory. A challenge is
hence that local tasks may be in conflict, i.e., satisfia-
bility of each local task does not imply satisfiability of
the conjunction of all local tasks. The authors in Guo
and Dimarogonas (2013) find least violating solutions in
these conflicting situations. Opposed to the aforemen-
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tioned works using LTL, signal temporal logic (STL)
(Maler and Nickovic, 2004) is based on continuous-time
signals and suited to impose continuous-time tasks.
STL entails space robustness (Donzé and Maler, 2010),
a form of the robust semantics (Fainekos and Pappas,
2009), which states how robustly a signal satisfies a
task. These robust semantics are mainly used for control
under STL tasks, which is, however, a difficult prob-
lem due to the nonlinear, nonconvex, noncausal, and
nonsmooth semantics. Control of discrete-time single-
agent systems under STL tasks has been considered in
Raman et al. (2014) and Lindemann and Dimarogonas
(2019); Raman et al. (2014) obtain a computationally
expensive mixed integer linear program for which robust
extensions have been presented in Raman et al. (2015)
and Sadraddini and Belta (2015), while an extension
to multi-agent systems has been reported in Liu et al.
(2017). The authors in Pant et al. (2018) use smooth
approximations of the robust semantics within a non-
convex optimization problem for discrete-time systems,
while providing conservative continuous-time guaran-
tees for the corresponding continuous-time system.

We consider continuous-time multi-agent systems in a
bottom-up fashion. Each local task stems from a limited
STL fragment and may depend on the behavior of other
agents, while agents may also be dynamically coupled.
The agent dynamics are described by nonlinear control-
affine systems where the corresponding driftless system
is feedback equivalent to a single integrator system, but
where the drift term is unknown. The limited STL frag-
ment allows to encode concave temporal tasks such as
eventually within 5 sec reach a region and stay there for
the next 10 sec while staying close to other agents. Spec-
ifications such as eventually within 5 sec reach a region
while always avoiding another region induce a mix of con-
vex and concave temporal tasks and are not permitted
here. These assumptions are necessary to achieve finite
time stability results under arbitrarily short deadlines
and to obtain closed-form and continuous feedback con-
trol laws. We derive a robust continuous-time feedback
control law that, under some sufficient conditions, guar-
antees satisfaction of all local tasks. When these condi-
tions do not hold, we propose a local detection & repair
scheme, expressed as a hybrid control system (Goebel
et al., 2009), that detects critical events to repair them
in a three-stage procedure. We discretize neither the
environment nor the agent dynamics in space or time.
To the best of our knowledge, this is the first approach
not making use of discretizations in space or time and
directly providing continuous-time satisfaction guaran-
tees. Our main contribution is a robust, abstraction-free,
and computationally-efficient control strategy for cou-
pled multi-agent systems that finds least violating solu-
tions for conflicting local specifications. This paper is an
extension of Lindemann and Dimarogonas (2018).

Section 2 presents preliminaries and the problem defi-
nition. Section 3 states our proposed problem solution,

while simulations in Section 4 demonstrate the efficacy
of our method. Conclusions are given in Section 5.

2 Preliminaries

The set of integers, natural, non-negative, and positive
real numbers are Z, N, R≥0, and R>0, respectively. True
and false are > and ⊥ and 0n is the n-dimensional zero
vector. For the column vectors ζ1 and ζ2 and instead

of
[
ζT1 ζT2

]T
, we let

[
ζ1 ζ2

]
be a column vector, while

partial derivatives are assumed to be row vectors.

2.1 Signal Temporal Logic (STL)

Signal temporal logic (STL) (Maler and Nickovic, 2004)
consists of predicates µ that are obtained by evaluating a
continuously differentiable predicate function h : Rd →
R as µ := > if h(ζ′) ≥ 0 and µ := ⊥ if h(ζ′) < 0 for
ζ′ ∈ Rd. The STL syntax is then defined as

ϕ ::= > | µ | ¬ϕ | ϕ′ ∧ ϕ′′ | F[a,b]ϕ | G[a,b]ϕ,

where ϕ′ and ϕ′′ are STL formulas and where ¬, ∧, F[a,b],
and G[a,b] are the negation, conjunction, eventually and
always operators, respectively, with a, b ∈ R≥0. For a
continuous-time signal ζ : R≥0 → Rd, the satisfaction
relation (ζ, t) |= ϕ indicates if ζ satisfies ϕ at time t.
These STL semantics are formally defined in Maler and
Nickovic (2004). Robust semantics have been introduced
in Fainekos and Pappas (2009) as a robustness measure
for temporal logics. Space robustness (Donzé and Maler,
2010) are robust semantics for STL and defined as

ρ̄µ(ζ, t) := h(ζ(t))

ρ̄¬ϕ(ζ, t) := −ρ̄ϕ(ζ, t)

ρ̄ϕ
′∧ϕ′′(ζ, t) := min

(
ρ̄ϕ
′
(ζ, t), ρ̄ϕ

′′
(ζ, t)

)
ρ̄F[a,b]ϕ(ζ, t) := max

t1∈[t+a,t+b]
ρ̄ϕ(ζ, t1)

ρ̄G[a,b]ϕ(ζ, t) := min
t1∈[t+a,t+b]

ρ̄ϕ(ζ, t1).

The function ρ̄ϕ determines how robustly ζ satisfies ϕ
at time t and it holds that (ζ, t) |= ϕ if ρ̄ϕ(ζ, t) > 0. We
assume a fragment of the STL introduced above. Let

ψ ::= > | µ | ¬µ | ψ(1) ∧ ψ(2) (1a)

φ ::= F[a,b]ψ | G[a,b]ψ | F[
¯
a,

¯
b]G[ā,b̄]ψ (1b)

where ψ in (1b) and ψ(1), ψ(2) in (1a) are formulas of
class ψ given in (1a) and where a,

¯
a, ā,

¯
b ∈ R≥0 and

b, b̄ ∈ R≥0 ∪∞ with a ≤ b,
¯
a ≤

¯
b, and ā ≤ b̄. We refer to

ψ as non-temporal (boolean) formulas and to φ as tempo-
ral formulas. Let S be the set of all possible signals with
time domain R≥0. Note that ρ̄ψ(ζ, t) and ρ̄φ(ζ, t) map
from S×R≥0 to R. For non-temporal formulas ψ, we can
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equivalently use ρ̄ψ(ζ(t)) by a change of notation where
now ρ̄ψ : Rn → R. The notation of ρ̄ψ(ζ(t)) is used to
highlight that t is only contained in ρ̄ψ through the com-
position of ρ̄ψ with ζ. The non-smooth robust semantics
of ψ(1) ∧ ψ(2) are replaced by a smooth approximation,

denoted by ρφ(ζ, t). For the formulas in (1), we define

ρµ(ζ(t)) := h(ζ(t))

ρ¬µ(ζ(t)) := −ρµ(ζ(t))

ρψ(1)∧ψ(2)(ζ(t)) := −1

η
ln
( 2∑
j=1

exp
(
− ηρψ(j)(ζ(t))

))
ρF[a,b]ψ(ζ, t) := max

t1∈[t+a,t+b]
ρψ(ζ(t1))

ρG[a,b]ψ(ζ, t) := min
t1∈[t+a,t+b]

ρψ(ζ(t1))

ρF[
¯
a,

¯
b]G[ā,b̄]ψ(ζ, t) := max

t1∈[t+
¯
a,t+

¯
b]

min
t2∈[t1+ā,t1+b̄]

ρψ(ζ(t2))

where η > 0 is a design parameter that deter-
mines the accuracy by which ρψ(1)∧ψ(2)(ζ(t)) approx-
imates ρ̄ψ(1)∧ψ(2)(ζ(t)). In fact, it can be shown that
ρψ(1)∧ψ(2)(ζ(t)) = ρ̄ψ(1)∧ψ(2)(ζ(t)) as η →∞. Regardless
of η, it holds that ρψ(1)∧ψ(2)(ζ(t)) ≤ ρ̄ψ(1)∧ψ(2)(ζ(t)),
which is stated in the next lemma where the proof can
be derived from Boyd and Vandenberghe (2004, p.72).

Lemma 1 Consider a conjunction of q non-temporal
formulas ψ(j) as ψ := ∧qj=1ψ(j) where each ψ(j) does not
contain any further conjunctions itself. Then,

ρψ(ζ(t)) ≤ ρ̄ψ(ζ(t)) ≤ ρψ(ζ(t)) + ln(q)/η.

Remark 1 The fragment in (1) can be extended to in-
clude sequential formulas. For single-agent systems, this
extension is explained in Lindemann et al. (2017) by
employing a hybrid control strategy. For the multi-agent
setup, this extension can be done in the same way and
is omitted. Note that the fragment in (1) does not allow
to pose reach-avoid specifications, which require at least
discontinuous feedback control laws (Liberzon, 2003, Ch.
4), while we focus on continuous feedback control laws.

2.2 A Bottom-up Approach for Multi-Agent Systems

Consider M agents modeled by an undirected graph
G := (V, E) (Mesbahi and Egerstedt, 2010) where V :=
{v1, . . . , vM} while E ∈ V × V indicates communica-
tion links. At time t, let xi(t) ∈ Rni , ui(t) ∈ Rmi , and
wi(t) ∈ Wi ⊂ Rni be the state, input, and additive noise
of agent vi with Wi ⊂ Rni being a bounded set and

ẋi(t) = fi(xi(t)) + f c
i (x(t)) + gi(xi(t))ui(t) +wi(t)

(2)

where x(t) :=
[
x1(t) . . . xM (t)

]
∈ Rn with n := n1 +

. . . + nM . Also define xext
i (t) :=

[
xj1(t) . . . xjM−1

(t)
]

such that vj1 , . . . , vjM−1
∈ V \ {vi}. We also define the

behavior of agent vi to be agent vi’s trajectory, i.e., the
solution xi : R≥0 → Rni to (2). The functions fi and f c

i
are unknown apart from a regularity assumption.

Assumption 1 The functions fi : Rni → Rni , fci :
Rn → Rni , and gi : Rni → Rni×mi are locally Lipschitz

continuous, and gi(xi)gi(xi)
T

is positive definite for all
xi ∈ Rni ; wi : R≥0 → Rni is piecewise continuous.

Remark 2 We emphasize that fi and fci are unknown
so that (2) is not feedback equivalent to ẋi(t) = ui(t) +

wi(t). Note that gi(xi)gi(xi)
T

is positive definite if and
only if gi(xi) has full row rank. This assumption captures,
for instance, the dynamics of omnidirectional robots as
in Section 4; fci describes given dynamical couplings
between agents, e.g., a physical connection when two
or more agents collaboratively carry an object. Using

ui = gi(xi)
T

(gi(xi)gi(xi)
T

)−1fui (x) + vi, the dynamics
ẋi = fi(xi) + fci (x) + fui (x) + gi(xi)vi + wi resemble
(2) if fui (x) is locally Lipschitz continuous; fui (x) can be
used for other objectives such as collision avoidance, con-
sensus, formation control, or connectivity maintenance.

Each agent vi ∈ V is now subject to a local STL formula
φi of class φ given in (1b), i.e., φi is of the form

φi ::= F[ai,bi]ψi | G[ai,bi]ψi | F[
¯
ai,

¯
bi]G[āi,b̄i]ψi. (3)

where ψi is a non-temporal formula of the form (1a).
Satisfaction of φi depends on the behavior of vi and may
also depend on the behavior of agents in V \ {vi}. If the
satisfaction of φi depends on the behavior of vj ∈ V, we
say that φi depends on vj . Equivalently, we then say that
agent vj is participating in φi; φi consequently depends
on a set of agents denoted by Vi := {vj1 , . . . , vjPi} ⊆ V
where Pi indicates the total number of agents that par-
ticipate in φi. We call φi a non-collaborative formula if
Pi = 1. Otherwise, i.e., if Pi > 1, we call φi a collabora-
tive formula. Let pi := nj1 + . . .+ njPi and define

x̄i(t) :=
[
xj1(t) . . . xjPi (t)

]
∈ Rpi .

Assumption 2 Each formula ψi in (3) is: 1) s.t.
ρψi(x̄i) is concave and 2) well-posed in the sense that
ρψi(x̄i) > 0 implies ‖x̄i‖ ≤ C̄ <∞ for some C̄ ≥ 0.

Remark 3 Recall the syntax of class ψ formulas in (1a)
and consider ψi := ψ(1)∧ψ(2). Part 1) of Assumption 2 is

satisfied if ρψ(1)(x̄i) and ρψ(2)(x̄i) are concave. This as-
sumption is needed since the controller presented in this
paper uses the gradient of ρψi(x̄i). Local extrema may
hence lead the system to get stuck. Part 2) of Assump-
tion 2 will ensure bounded solutions and is not restrictive
since ψAss.2i := (‖x̄i‖ < C̄) can be combined with ψi for
a sufficiently large C̄ so that ψi ∧ ψAss.2i is well-posed.
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The signal x̄i : R≥0 → Rpi locally satisfies φi if (x̄i, 0) |=
φi and φi is locally satisfiable if ∃x̄i : R≥0 → Rpi such
that x̄i locally satisfies φi. The signal x : R≥0 → Rn
globally satisfies {φ1, . . . , φM} if x̄i, which is naturally
contained in x, locally satisfies φi for all agents vi ∈
V. The set of formulas {φ1, . . . , φM} is globally satis-
fiable if ∃x : R≥0 → Rn such that x globally satis-
fies {φ1, . . . , φM}. Consider also the undirected graph
Gd := (V, Ed) where there is an edge (vi, vj) ∈ Ed ⊆ V×V
if φi depends on vj ; Ξ ⊆ V is a maximal dependency
cluster if ∀vi, vj ∈ Ξ there is a path from vi to vj in Gd
and @vi ∈ Ξ, vk ∈ V \Ξ such that there is a path from vi
to vk. Here, a path is a sequence vi, vk1 , . . . , vkP , vj such
that (vi, vk1), . . . , (vkP , vj) ∈ Ed. A multi-agent system
under {φ1, . . . , φM} hence induces L ≤ M maximal de-
pendency clusters Ξ̄ := {Ξ1, . . . ,ΞL}.

Assumption 3 For each Ξl with l ∈ {1, . . . , L} it holds
that (vi, vj) ∈ E for each vi, vj ∈ Ξl.

In Section 3, each agent vi ∈ V is equipped with logical
variables so that vi is associated with a hybrid state
zi ∈ Zi ⊆ Rnz whereZi is a hybrid domain of dimension
nz. Hybrid systems with internal and external inputs
uint
i ∈ U int

i and uext
i ∈ Uext

i , respectively, have been
presented in Sanfelice (2016) where U int

i and Uext
i are

input domains. Let Hi := Zi × U int
i × Uext

i . The value
of the state zi after a jump, i.e., after an instantaneous
change in zi, is denoted by ẑi. A hybrid system is now
a tuple Hi := (Ci, Fi, Di, Gi) where Ci ⊆ Hi, Di ⊆ Hi,
Fi : Hi ⇒ Rnz , andGi : Hi ⇒ Rnz are the flow and jump
set and the set-valued flow and jump map, respectively.
The continuous and discrete dynamics are governed by{
żi ∈ Fi(zi,uint

i ,uext
i ) for (zi,u

int
i ,uext

i ) ∈ Ci
ẑi ∈ Gi(zi,uint

i ,uext
i ) for (zi,u

int
i ,uext

i ) ∈ Di.
(4)

Solutions to (4) are parametrized by (t, j); t repre-
sents continuous time indicating flow according to
Fi(zi,u

int
i ,uext

i ) while j is a counter of the jumps that
occur according to Gi(zi,u

int
i ,uext

i ) . A detailed review
can be found in Goebel et al. (2009, 2012).

2.3 Problem Statement

Let the supremum of ρ̄ψi(x̄i) and ρψi(x̄i) be

ρ̄opt
i := sup

x̄i∈Rpi
ρ̄ψi(x̄i) and ρopt

i := sup
x̄i∈Rpi

ρψi(x̄i)

where ρopt
i is in particular straighforward to compute

since ρψi(x̄i) is continuously differentiable and concave.

Assumption 4 ρopti is such that ρopti > 0.

Assumption 4 implies that ψi and hence φi are locally
satisfiable. Note that there always exists an η such that

ρopt
i > 0 if ρ̄opt

i > 0 since ρψi(x̄i) = ρ̄ψi(x̄i) as η → ∞.
We then find η by solving a convex feasibility problem by
selecting η > 0 such that ρψi(x̄i) > 0 for some x̄i ∈ Rpi .
If this feasibility problem, however, is not feasible, we
set η := 1. It then holds that ρopt

i ≤ 0 and φi is not

satisfiable if ρopt
i + ln(q) < 0 with q as in Lemma 1.

Let ρgap
i > 0 be a parameter indicating how much φi is

violated. If x̄i : R≥0 → Rpi is such that ri ≤ ρφi(x̄i, 0)

for ri with ρopt
i − ρgap

i ≤ ri < ρopt
i , we say that x̄i is a

least violating solution with a given gap of ρgap
i . The goal

is to derive ui(x̄i, t) such that ri ≤ ρφi(x̄i, 0) ≤ ρmax
i

where ri ∈ R is a robustness measure, while ρmax
i ∈ R

with ri < ρmax
i is a robustness delimiter.

Problem 1 Let η be selected for each ψi as instructed
above. Given the parameters ρgapi > 0 and δi > 0, derive
for each cluster Ξl ∈ Ξ̄ a control strategy as follows:
Case A) Under the assumption that φi = φj for each
vi, vj ∈ Ξl, design ui(x̄i, t) such that ri ≤ ρφi(x̄i, 0) ≤
ρmax
i for each vi ∈ Ξl and where ri is chosen such that

0 < ri < ρmax
i if ρopti > 0 and ri ≥ ρopti −ρ

gap
i if ρopti ≤ 0.

Case B) Otherwise, i.e., ∃vi, vj ∈ Ξl such that φi 6= φj,
assume nevertheless that each agent vi ∈ Ξl initially ap-
plies the derived control law ui(x̄i, t) for Case A. Design
a local online detection & repair scheme for each vi ∈ Ξl
such that ri ≤ ρφi(x̄i, 0) ≤ ρmax

i where either ri > 0 or
ri is maximized up to a precision of δi > 0.

By a maximization up to a precision of δi we mean that
ri is successively reduced by δi whenever it turns out
that ui(x̄i, t) can not achieve ri ≤ ρφi(x̄i, 0) ≤ ρmax

i .

3 Proposed Problem Solution

Following a funnel-based control strategy (Bechlioulis
and Rovithakis, 2014), we define a performance function

γi(t) := (γ0
i − γ∞i ) exp(−lit) + γ∞i

where γ0
i , γ
∞
i ∈ R>0 with γ0

i ≥ γ∞i and li ∈ R≥0. We
achieve ri ≤ ρφi(x̄i, 0) ≤ ρmax

i by prescribing a temporal
behavior to ρψi(x̄i(t)) through γi and ρmax

i as

−γi(t) + ρmax
i < ρψi(x̄i(t)) < ρmax

i . (5)

If γi and ρmax
i are chosen properly (as shown later) and

if (5) holds for all t ≥ 0, then ri ≤ ρφi(x̄i, 0) ≤ ρmax
i .

Let ei(x̄i) := ρψi(x̄i)− ρmax
i , ξi(x̄i, t) := ei(x̄i)

γi(t)
, and

εi(x̄i, t) := S
(
ξi(x̄i, t)

)
,

where S(ξi) := ln
(
− ξi+1

ξi

)
, then (5) is equivalent to

−γi(t) < ei(t) < 0 and hence to −1 < ξi(t) < 0 where
ei(t) := ei(x̄i(t), t) and ξi(t) := ξi(x̄i(t), t). Applying
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S(·) to −1 < ξi(t) < 0 gives −∞ < εi(t) < ∞ with
εi(t) := εi(x̄i(t), t). If εi(t) is bounded for all t ≥ 0, i.e.,
ξi(t) ∈ Ωξ := (−1, 0), then (5) holds for all t ≥ 0. The
connection between ρψi(x̄i(t)) and ρφi(x̄i, 0) is made by
γi and ρmax

i , which need to be designed as instructed in
Lindemann et al. (2017). If Assumption 4 holds, select

t∗i ∈


[ai, bi] if φi = F[ai,bi]ψi
{ai} if φi = G[ai,bi]ψi
[
¯
ai + āi,

¯
bi + āi] if φi = F[

¯
ai,

¯
bi]G[āi,b̄i]ψi,

(6)

ρmax
i ∈

(
max

(
0, ρψi

(
x̄i(0)

))
, ρopt
i

)
(7)

ri ∈ (0, ρmax
i ) (8)

γ0
i ∈

{(
ρmax
i − ρψi

(
x̄i(0)

)
,∞
)

if t∗i > 0(
ρmax
i − ρψi

(
x̄i(0)

)
, ρmax
i − ri

]
else

(9)

γ∞i ∈
(
0,min

(
γ0
i , ρ

max
i − ri

)]
(10)

li =

{
0 if − γ0

i + ρmax
i ≥ ri

− ln
( ri+γ∞i −ρmax

i

−(γ0
i
−γ∞

i
)

)
/t∗i else

(11)

where it needs to hold that ρψi
(
x̄i(0)

)
> ri if t∗i = 0. It

now holds that 0 < ri ≤ ρφi(x̄i, 0) ≤ ρmax
i if (5) holds

for all t ≥ 0. The intuition here is that by the choice of
γi it is ensured that ρψi

(
x̄i(t)

)
≥ ri for all t ≥ t∗i . By the

choice of t∗i it consequently holds that ρφi(x̄i, 0) ≥ ri.
For the case that Assumption 4 does not hold and to
guarantee a least violating solution with a given gap of
ρgap
i , ρmax

i and ri are instead of (7) and (8) chosen as

ρmax
i ∈

(
max

(
ρψi(x̄i(0)), ρopt

i − ρgap
i

)
, ρopt
i

)
(12)

ri ∈ [ρopt
i − ρgap

i , ρmax
i ) (13)

Remark 4 The choices of t∗i , ρmax
i , ri, and γi allow some

freedom. In practice and to avoid input saturations, how-
ever, it is advisable to avoid a steep performance function
γi. Furthemore, a broader funnel (5) is recommended as
t→∞, i.e., γ∞i and ρmax

i should be selected rather large.

3.1 Global and Local Task Satisfaction Guarantees

We first present global task satisfaction guarantees.

Theorem 1 Let Assumptions 1-4 hold. Assume for each
Ξl ∈ Ξ̄ that for all vi, vj ∈ Ξl: 1) φi = φj and 2) t∗i = t∗j ,
ρmax
i = ρmax

j , ri = rj, and γi = γj are chosen as in (6)-
(11). If each agent vi ∈ V applies

ui(x̄i, t) := −εi(x̄i, t)gi(xi)T
∂ρψi(x̄i)

∂xi
, (14)

then it holds that 0 < ri ≤ ρφi(x̄i, 0) ≤ ρmax
i for all

agents vi ∈ V, i.e., {φ1, . . . , φM} are globally satisfied.
All closed-loop signals are continuous and bounded.

PROOF. In Step A, we apply Sontag (2013, Thm. 54)
and show that for each vi ∈ V there exists a maximal
solution ξi(t) such that ξi(t) := ξi(x̄i(t), t) ∈ Ωξ :=
(−1, 0) for all t ∈ J := [0, τmax) ⊆ R≥0 where τmax > 0,
which is the same as requiring that (5) holds for all t ∈ J .
Step B consists of using Sontag (2013, Prop. C.3.6) to
show that τmax =∞. Note beforehand that

dεi
dt

=
∂εi
∂ξi

dξi
dt

=
−1

γiξi(1 + ξi)

(∂ρψi(x̄i)
∂x

ẋ− ξiγ̇i
)

(15)

since ∂εi
∂ξi

= −1
ξi(1+ξi)

and dξi
dt = 1

γi

(
dei
dt − ξiγ̇i

)
. It also

holds that dei
dt = ∂e(x̄i)

∂x ẋ with ∂ei(x̄i)
∂x = ∂ρψi (x̄i)

∂x .

Step A: First, define ξ :=
[
ξ1 . . . ξM

]
and y :=

[
x ξ
]
.

By inserting (14) into (2), we get ẋi = Hxi(x, ξi) with

Hxi(x, ξi) := fi(xi) + f c
i (x)

− ln
(
− ξi + 1

ξi

)
gi(xi)gi(xi)

T ∂ρ
ψi(x̄i)

∂xi
+wi.

Let Hx(x, ξ) :=
[
Hx1

(x, ξ1) . . . HxM (x, ξM )
]

so that

ẋ = Hx(x, ξ). We also obtain dξi
dt = Hξi(x, ξi, t) with

Hξi(x, ξi, t) :=
1

γi(t)

(∂ρψi(x̄i)
∂x

Hx(x, ξ)− ξiγ̇i(t)
)
.

Let now Hξ(x, ξ, t) :=
[
Hξ1(x, ξ1, t) . . . HξM (x, ξM , t)

]
so that ξ̇ = Hξ(x, ξ, t), which results in ẏ = H(y, t)
with H(y, t) :=

[
Hx(x, ξ) Hξ(x, ξ, t)

]
. Note that x(0)

is such that ξi(x̄i(0), 0) ∈ Ωξ := (−1, 0) holds for all
agents vi ∈ Ξl due to the choice of γ0

i . Next define
Ωi(t) :=

{
x̄i ∈ Rpi

∣∣ − 1 < ξi(x̄i, t) < 0
}

and note that
Ωi(t2) ⊆ Ωi(t1) for t1 < t2 since γi is non-increasing
in t. Note also that x̄i(0) ∈ Ωi(0) and that Ωi(t) is
bounded due to Assumption 2 and since γi is bounded.
Due to Aubin and Frankowska (2009, Prop. 1.4.4) the
inverse image of an open set under a continuous function
is open. By defining ξi,0(x̄i) := ξi(x̄i, 0), it holds that

ξi,0
−1(Ωξ) = Ωi(0) is open. Next, select vil ∈ Ξl for each

l ∈ {1, . . . , L} and define Ωx := Ωi1(0)× . . .×ΩiL(0) ⊂
Rn, Ωξ := Ωξ × . . . × Ωξ ⊂ RM , and Ωy := Ωx × Ωξ ⊂
Rn+M , which are open, non-empty, and bounded sets so
that y(0) =

[
x(0) ξ(0)

]
∈ Ωy. Let us check the exis-

tence conditions of solutions for the initial value problem
ẏ = H(y, t) with y(0) ∈ Ωy and H(y, t) : Ωy × R≥0 →
Rn+M : 1) H(y, t) is locally Lipschitz continuous on y

since fi(xi), f
c
i (x), gi(xi), εi = ln

(
− ξi+1

ξi

)
, and ∂ρψi (x̄i)

∂xi
are locally Lipschitz continuous on y for each t ∈ R≥0.
2) H(y, t) is continuous on t for each fixed y ∈ Ωy due
to continuity of γi and γ̇i. Due to Sontag (2013, Thm.
54) there exists a maximal solution y(t) ∈ Ωy for all
t ∈ J := [0, τmax) ⊆ R≥0 and τmax > 0 and hence
ξ(t) ∈ Ωξ and x(t) ∈ Ωx for all t ∈ J .
Step B: We show that τmax = ∞ by contradiction of
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Sontag (2013, Prop. C.3.6). Therefore, assume τmax <
∞. Note that ξi(x̄i, t) = ξj(x̄j , t), εi(x̄i, t) = εj(x̄j , t),
and ρψi(x̄i) = ρψj (x̄j) for all vi, vj ∈ Ξl since x̄i = x̄j
and since ρmax

i = ρmax
j and γi = γj . We first show that

εi(t) is bounded for all t ∈ R≥0 and then it consequently
follows that εj(t) is bounded for all vj ∈ Ξl \ {vi}. Since
the clusters are maximal we can then deduce the same re-
sult for the other clusters. Consider the Lyapunov func-
tion candidate V (εi) := 1

2ε
2
i . By using (15), it follows

V̇ (εi) = εi
dεi
dt

= εi

(
− 1

γiξi(1 + ξi)

(∂ρψi(x̄i)
∂x

ẋ− ξiγ̇i
))

≤ εiαi
∂ρψi(x̄i)

∂x
Hx(x, ξ) + |εi|αiki (16)

where αi(t) := − 1
γiξi(1+ξi)

and ki is a positive con-

stant such that 0 ≤ |ξiγ̇i| ≤ ki < ∞. This follows since
ξi(t) ∈ Ωξ for all t ∈ J and γ̇i is bounded by defini-
tion; αi(t) satisfies αi(t) ∈ [ 4

γ0
i

,∞) for all t ∈ J since
4
γ0
i

≤ − 1
γ0
i
ξi(1+ξi)

≤ − 1
γiξi(1+ξi)

≤ − 1
γ∞
i
ξi(1+ξi)

< ∞

for ξi ∈ Ωξ. We note that ∂ρψi (x̄i)
∂x Hx(x, ξ) =∑

vj∈Ξl

∂ρψj (x̄j)
∂xj

Hxj (x, ξj). Using (2) and (14), then

εi
∂ρψj (x̄j)

∂xj
Hxj (x, ξj) = εi

∂ρψj (x̄j)

∂xj

(
fj(xj) + f c

j (x)

−εjgj(xj)gj(xj)T
∂ρψj (x̄j)

∂xj
+wj

)
≤ |εi|Mj − |εi|2λjJj

where εi = εj as remarked previously; λj > 0 is the pos-

itive minimum eigenvalue of gj(xj)gj(xj)
T

according to

Assumption 1, and ‖∂ρ
ψj (x̄j)
∂xj

(
fj(xj) + f c

j (x) +wj

)
‖ ≤

Mj <∞ due to continuity of
∂ρψj (x̄j)
∂xj

, fj(xj), and f c
j (x)

and the fact that Ωx and Wi are bounded. The lower
bound Jj ∈ R≥0 arises naturally due to the norm oper-

ator as 0 ≤ Jj ≤ ‖∂ρ
ψj (x̄j)
∂xj

)‖2 <∞; (16) now implies

V̇ (εi) ≤ αi|εi|
(
M̂i − |εi|Ĵi

)
(17)

where M̂i :=
∑
vj∈Ξl

Mj + ki and Ĵi :=
∑
vj∈Ξl

λjJj .

Note that Ĵi > 0 since ∂ρψi (x̄i)
∂x̄i

= 0 if and only if

ρψi(x̄i) = ρopt
i , which is excluded since (5) holds for all

t ∈ J and ρmax
i < ρopt

i (recall that ρψj (x̄j) is concave).
In other words, at least one Jj in vj ∈ Ξl is greater than

zero. It holds that V̇ (εi) ≤ 0 if M̂i

Ĵi
≤ |εi|. Hence, |εi| will

be upper bounded as |εi(t)| ≤ max
(
|εi(0)|, M̂i

Ĵi

)
, which

implies that εi(t) is upper and lower bounded by some
constants εui and εli, respectively, so that εli ≤ εi(t) ≤ εui
for all t ∈ J . By defining ξli := − 1

exp(εl
i
+1)

and ξui :=

− 1
exp(εu

i
+1) , ξi(t) is bounded by −1 < ξli ≤ ξi(t) ≤ ξui <

0, which translates to ξi(t) ∈ Ω′ξi := [ξli, ξ
u
i ] ⊂ Ωξ for all

t ∈ J . Note that if ξi(t) evolves in a compact set, then

ρψi(x̄i(t)) will evolve in a compact set Ω̃′i := [ρli, ρ
u
i ] for

some constants ρli and ρui . Due to Aubin and Frankowska
(2009, Prop. 1.4.4) it again holds that

Ω′i := ρψi
−1

(Ω̃′i) = {x̄i ∈ Ωi(0)|ρli ≤ ρψi(x̄i) ≤ ρui }

is closed and also bounded since Ω′i ⊂ Ωi(0). Select vil ∈
Ξl for each l ∈ {1, . . . , L} so that x̄il(t) ∈ Ω′il ⊂ Ωil(0)
for all t ∈ J and all vil . Define the compact sets Ω′x :=
Ω′i1 × . . . × Ω′iL ⊂ Rn, Ω′ξ := Ω′ξ1 × . . . × Ω′ξM ⊂ RM ,

and Ω′y := Ω′x × Ω′ξ ⊂ Rn+M for which it holds that

y(t) ∈ Ω′y for all t ∈ J . It is also true that Ω′y ⊂ Ωy by
which it follows that there is no t ∈ J := [0, τmax) such
that y(t) /∈ Ω′y. By contradiction of Sontag (2013, Prop.
C.3.6) it holds that τmax =∞, i.e.,J = R≥0. This means
that (5) holds for all vi ∈ V and for all t ∈ R≥0. By the
choice of ρmax

i , ri, and γi as in (7)-(11), it then holds that
0 < ri ≤ ρφi(x̄i, 0) ≤ ρmax

i for each vi ∈ V. The control
lawui(x̄i, t) is continuous and bounded because ρψi(x̄i),
εi(x̄i, t), and gi(xi) are continuous. Furthermore, γi is
continuous with 0 < γ(t) < ∞. Due to the compact
domain Ω′x, these functions are also bounded. �

Remark 5 If L = M , i.e., |Vi| = 1 for each agent vi ∈
V, Theorem 1 trivially applies. If mi = ni and gi(xi) is
positive definite for all xi ∈ Rni , the control law (14)

can be replaced by ui(x̄i, t) := −εi(x̄i, t)∂ρ
ψi (x̄i)
∂xi

, i.e., no
knowledge of fi, f

c
i , and gi are needed.

For a cluster Ξl ∈ Ξ̄ that satisfies Case A in Problem 1,
we next guarantee local satisfaction of φi for each vi ∈ Ξl
while one or more clusters Ξk ∈ Ξ̄ \Ξl do not satisfy the
assumption of Case A. We first derive a more general re-
sult by disregarding clusters. Therefore, consider a for-
mula φ as in (1b) and the set of agents Vφ ⊂ V that par-
ticipate in φ. Satisfaction of φ will be guaranteed when
the trajectories of agents in V \ Vφ remain bounded.

Assumption 5 Given, for each vi ∈ Vφ, a sufficiently
regular control law ui, there exists, for each vk ∈ V\Vφ, a
sufficiently regular control lawu′k so that, for each vi ∈ V,
there is a solution xi : [0, τmax)→ Rni to (2) with τmax >
0 so that, for each vk ∈ V \ Vφ, xk(t) stays in a compact
set. By ’sufficiently regular’ we mean a controller so that
the conditions in Sontag (2013, Thm. 54) are satisfied.

Theorem 2 Let each agent vi ∈ V satisfy Assumption 1.
Consider φ as in (1b) and let each vi ∈ Vφ be subject to
φi := φ. Assume that for all vi, vj ∈ Vφ it holds that: 1)
(vi, vj) ∈ E and 2) t∗i = t∗j , ρmax

i = ρmax
j , ri = rj, and

γi = γj are chosen as in (6)-(11). Assume further that
each vi ∈ Vφ applies (14) and that Assumptions 2 and 4
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hold. If Assumption 5 holds and all agents vk ∈ V \ Vφ
apply u′k, then it holds that 0 < ri ≤ ρφ(x̄i, 0) ≤ ρmax

i .

PROOF. Define ξ :=
[
ξi1 . . . ξi|Vφ|

]
and y :=

[
x ξ
]

where vi1 , . . . , vi|Vφ| ∈ Vφ. Due to ui and u′k being suf-

ficiently regular and similarly as in the proof of Theo-
rem 1, there exists a maximal solution y(t) ∈ Ωy for
all t ∈ J := [0, τmax) with τmax > 0 and for an open,
non-empty, and bounded set Ωy ⊂ Rn+|Vφ|. Since xk(t)
evolves in a compact set for all t ∈ J , it can again be
shown that y ∈ Ω′y ⊂ Ωy for a compact set Ω′y so that

τmax =∞. It follows that 0 < ri ≤ ρφ(x̄i, 0) ≤ ρmax
i . �

If all vi ∈ Vφ apply (14) under the conditions in Theo-
rem 2, we say that the agents in Vφ use collaborative con-
trol to satisfy φ. Theorem 2 solves Case A of Problem 1
with ρopt

i > 0 even when Theorem 1 does not apply, i.e.,
some other clusters do not satisfy Case A. Note also that
Theorem 2 is more general than that as exemplified next.

Example 1 Consider V := {v1, v2, v3, v4}with the tasks
φ1 := φ2 := F[0,5](‖x1 − x2‖ ≤ 1), φ3 := F[0,5](‖x3 −
x2‖ ≤ 1∧‖x3−x4‖ ≤ 1), φ4 := F[0,5](‖x4‖ ≤ 1), hence

inducing only one maximal dependency cluster Ξ̄ := Ξ1

to which Case B of Problem 1 applies. If agents v1 and
v2 use collaborative control to satisfy φ1 = φ2, then The-
orem 2 guarantees satisfaction of φ1 = φ2.

Extensions of Theorems 1 and 2 to solve Case A when
ρopt
i ≤ 0 are stated in Corollary 1.

Corollary 1 Assume that all assumptions of Theorem 1
(Theorem 2) hold except for Assumption 4 and the choice
of ρmax

i and ri. If instead ρmax
i and ri are as in (12) and

(13), respectively, then it holds that ri ≤ ρφi(x̄i, 0) ≤
ρmax
i (ri ≤ ρφ(x̄i, 0) ≤ ρmax

i ).

3.2 An Online Detection & Repair Scheme

Assume now that Ξl ∈ Ξ̄ may not satisfy the assumption
of Case A in Problem 1 and Case B applies. We propose
that each agent vi ∈ Ξl initially applies (14) with prop-
erly chosen initial parameters t∗i , ρ

max
i , ri, and γi; (14)

consists of two components, one determining the con-
trol strength and one the control direction. The closer
ξi(x̄i, t) gets to Ωξ := {−1, 0}, the bigger will εi(x̄i, t)
and consequently ‖ui(x̄i, t)‖ become, i.e., ‖ui(x̄i, t)‖ →
∞ as ξi(x̄i, t) → Ωξ. The control direction is given by

−∂ρ
ψi (x̄i)
∂xi

. We reason that applying (14) is hence a good
initial choice. However, the resulting trajectory x̄i may
still lead to ξi(x̄i(t)) = {−1, 0}, which is equivalent to
a violation of (5), for some t ≥ 0 and result in critical
events. The next two examples exhibit such behavior.

Fig. 1. Overview of the three repair stages.

Example 2 Consider V := {v1, v2, v3, v4} with the
collaborative formula φ1 := G[0,15]

(
(‖x1 − x2‖ ≤

25) ∧ (‖x1 − x3‖ ≤ 25) ∧ (‖x1 − x4‖ ≤ 25)
)

and
the non-collaborative formulas φ2 := G[10,15](‖x2 −[
10 90

]
‖ ≤ 5), φ3 := G[10,15](‖x3 −

[
10 10

]
‖ ≤ 5), and

φ4 := G[10,15](‖x4 −
[
45 20

]
‖ ≤ 5). The set of formulas

{φ1, φ2, φ3, φ4} is not globally satisfiable, although each
formula is locally satisfiable. Under (14), agents v2, v3,
and v4 move to

[
10 90

]
,
[
10 10

]
, and

[
45 20

]
, respec-

tively. Agent v1 can hence not satisfy φ1 and will violate
(5) for some t ≥ 0. A solution is to decrease the robust-
ness online so that r1 < 0 to achieve r1 ≤ ρφ1(x̄1, 0) ≤ 0.

Even if the set {φ1, . . . , φM} is globally satisfiable, the
resulting trajectory may violate (5) for some t ≥ 0.

Example 3 Consider V := {v5, v6, v7} with the collab-
orative formula φ5 := F[5,10]

(
(‖x5−x6‖ ≤ 10)∧ (‖x5−

x7‖ ≤ 10) ∧ (‖x5 −
[
110 20

]
‖ ≤ 5)

)
and the non-

collaborative formulas φ6 := F[5,15](‖x6 −
[
50 20

]
‖ ≤ 5)

and φ7 := F[5,15](‖x7 −
[
110 80

]
‖ ≤ 5). Under (14),

v6 and v7 move to
[
50 20

]
and

[
110 80

]
by at latest 15

time units, respectively. However, v5 is forced to move to[
110 20

]
and be close to v6 and v7 by at latest 10 time

units. This may lead to critical events where v5 violates
(5) for some t ≥ 0. If v6 and v7 collaborate, satisfaction
of φ6 and φ7 can be postponed and φ5 can be locally sat-
isfied first, e.g., by using collaborative control for φ5.

We propose an online detection & repair scheme by us-
ing a local hybrid control system Hi := (Ci, Fi, Di, Gi)
for each vi ∈ Ξl. We first detect critical events, i.e., when
(5) is violated, by using Di. Then, a three-stage repair
procedure is initiated as illustrated in Fig. 1 where re-
pairs are according to Gi. In the first repair stage, de-
tected by D′i,1, the design parameters t∗i , ρ

max
i , ri, and

γi are modified locally without communication among
agents by the jump map G′i,1. If this is not successful,
collaboration among agents will be considered in the sec-
ond repair stage. Here, critical events of agent vi are
detected by D′i,2 and collaborative control is requested
from agents vj ∈ Vi \ {vi} by D′′j,2 to handle φi as in
Example 3. If this second repair stage is not applicable,
the third repair stage is detected by D′i,3 that succes-

sively decreases ri by δi > 0. First, define pri :=
[
ni ci

]
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where ni ∈ N indicates the number of repair attempts in
the first repair stage, while ci is used in the second re-
pair stage; ci ∈ {1, . . . ,M} indicates collaborative con-
trol for the formula φci . If ci = 0, then vi tries to lo-
cally satisfy φi by itself and if ci = −1, then vi is free,
i.e., not subject to a task. For convenience, we abbrevi-
ate pγi :=

[
γ0
i γ∞i li

]
and pf

i :=
[
t∗i ρmax

i ri pγi
]

where pf
i defines the funnel (5). For agent vi, define

zi :=
[
xi p

f
i p

r
i

]
∈ Zi where Zi := Rni × R6

≥0 × Z2.

The initial state is zi(0, 0) :=
[
xi(0) pf

i(0) 02

]
with

pf
i(0) :=

{[
t∗i ρ

max
i ri γ

0
i γ
∞
i li

]
if ρopt

i > 0[
t∗i ρ̃

max
i r̃i γ

0
i γ
∞
i li

]
if ρopt

i ≤ 0

where t∗i , ρ
max
i , ri, γ

0
i , γ∞i , li, ρ̃

max
i , and r̃i are chosen

according to (6)-(13), respectively, and where ρ̃max
i >

r̃i ≥ ρopt
i − δi so that ri is maximized up to a precision

of δi > 0. Additionally, pf
i(0) = pf

j(0) if Case A holds
for all agents vi, vj ∈ Ξl. The flow map is given by

Fi(zi,u
int
i ,uext

i ) :=
[
fi(xi) + f ci (x) + gi(xi)u

int
i +wi 08

]
where the control law is given by

uint
i :=


−εi
(
x̄i, t

)
gi(xi)

T ∂ρ
ψi(x̄i)

∂xi
if ci = 0 (18a)

−εci
(
x̄ci , t

)
gi(xi)

T ∂ρ
ψci (x̄ci)

∂xi
if ci > 0. (18b)

If ci > 0, then collaborative control for φci is used. Ex-
ternal inputs contained in uext

i are wi and xext
i . By as-

suming vi ∈ Ξl, we define cext
i :=

[
cj1 . . . cj|Ξl|−1

]
and

pf,ext
i :=

[
pf
j1

. . . pf
j|Ξl|−1

]
such that vj1 , . . . , vj|Ξl|−1

∈
Ξl \ {vi}. Note that cext

i and pf,ext
i contain states of all

agents in the same dependency cluster Ξl. Ultimately,

define the external input uext
i :=

[
wi x

ext
i cext

i pf,ext
i

]
.

Detection: To detect a critical event, the jump set

D′i := {(zi,uint
i ,uext

i ) ∈ Hi|ξi(t) ∈ {−1, 0}, ci = 0}

is used. Throughout this section, we assume that agent vi
detects the critical event, while the agents with subscript
j as vj ∈ Vi \ {vi} are possibly asked to collaborate. We
introduce the notation {ẑi ∈ Zi|ẑi = zi ; exception}
denoting the set of ẑi such that ẑi = zi after the jump
except for the elements exception in ẑi that change dur-
ing a jump and that are explicitly mentioned after the
semicolon. The set D′i is split into disjoint sets indicat-
ing repairs of the first, second, and third repair stage.
Repair Stage 1: The first repair stage is indicated by

D′i,1 :=D′i ∩ {(zi,uint
i ,uext

i ) ∈ Hi|ni < Ni}

t

ρmax
i

ri
r̂i

ρ̂max
i

ρopti

−γi(t) + ρmax
i

−γ̂i(t) + ρ̂max
i

ρψi
(
x̄i(t)

)
0 3 4 5 6 7

1

−1

•

Fig. 2. Funnel repair in the first stage for φi := F[4,6]ψi.

where Ni ∈ N is a design parameter that represents
the maximum number of repair attempts in the first
stage. A good choice of Ni may in practice depend on
the dynamics and tasks of the agents. If (zi,u

int
i ,uext

i ) ∈
D′i,1, we first relax the parameters t∗i , ρ

max
i , ri, and γi.

Example 4 Consider φi := F[4,6]ψi with ri := 0.4 (ini-
tial robustness), which is supposed to be achieved at t∗i :=
4.5. The initial funnel with ρmax

i and−γi+ρmax
i is shown

in Fig. 2. Without detection of a critical event, it would
hold that ρφi(x̄i, 0) ≥ ri since ρψi

(
x̄i(t

∗
i )
)
≥ ri. How-

ever, at tr := 2, where tr indicates the time where a criti-
cal event is detected, the trajectory ρψi

(
x̄i(t)

)
touches the

lower funnel boundary and repair action is needed. This
is done by setting t̂∗i := 6 (time relaxation), r̂i := 0.15
(robustness relaxation), ρ̂max

i := 1.1 (upper funnel relax-
ation), and adjusting γ̂i (lower funnel relaxation). The
funnel is hence relaxed to ρ̂max

i and −γ̂i + ρ̂max
i as in

Fig. 2. At the time tr, the lower funnel is relaxed to
−γ̂i(tr) + ρ̂max

i where we denote γri := γ̂i(tr). Due to re-
pair action, x̄i locally satisfies φi as shown in Fig. 2.

With Example 4 in mind, set

G′i,1 :=
{
ẑi ∈ Zi|ẑi = zi ; t̂∗i = Ti, ρ̂max

i = ρmax
i + ζu

i ,

r̂i ∈ Ri, p̂γi = pγ,new
i , n̂i = ni + 1

}
where, to achieve time relaxation, we define

Ti :=


{bi} if φi = F[ai,bi]ψi
{ai} if φi = G[ai,bi]ψi
{̄bi + āi} if φi = F[

¯
ai,

¯
bi]G[āi,b̄i]ψi.

The parameter ri is decreased to r̂i ∈ (0, ri) if ri > 0 and
set to r̂i := ri−δi otherwise (robustness relaxation), i.e.,

Ri :=
{
r̂i ∈ R|r̂i ∈

{
(0, ri) if ri > 0

ri − δi if ri ≤ 0

}
.

The variable ζu
i relaxes the upper funnel and needs to

be such that ρ̂max
i := ρmax

i + ζu
i < ρopt

i (upper funnel

relaxation) according to (7), i.e., let ζu
i ∈ (0, ρopt

i −ρmax
i ).

8



At tr, the detection time of a critical event, we set γri :=
γ̂i(tr) := ρ̂max

i − ρψi(x̄i(tr)) + ζ l
i with

ζ l
i ∈
{
R>0 if t̂∗i > tr
(0, ρψi(x̄i(tr))− r̂i] otherwise,

which resembles (9) (lower funnel relaxation). Let

pγ,new
i :=

[
γ0,new
i γ∞,new

i lnew
i

]
and select

γ∞,new
i ∈ (0,min(γri , ρ̂

max
i − r̂i)]

lnew
i :=


0 if − γri + ρ̂max

i ≥ r̂i
− ln
(
r̂i+γ

i,new
∞ −ρ̂max

i

−(γr
i
−γi,new∞ )

)
t̂∗
i
−tr

else

similarly to (10) and (11). Finally, set γ0,new
i := (γri −

γ∞,new
i ) exp(lnew

i tr) + γ∞,new
i . The choices of ρ̂max

i , r̂i,
and γ̂i follow the same intuition as in Remark 4.
Repair Stage 2: The jump set

D′i,{2,3} :=D′i ∩ {(zi,uint
i ,uext

i ) ∈ Hi|ni ≥ Ni}

detects repairs of the second or third stage. After Ni un-
successful repair attempts, the second stage is initiated
if some timing constraints (formalized in D′i,2) are satis-
fied. Collaborative control for φi by all agents in Vi will
then be initiated and guarantee that there are no further
critical events. The second stage is then detected as

D′i,2 := D′i,{2,3} ∩
{

(zi,u
int
i ,uext

i ) ∈ Hi|∀vj ∈ Vi \ {vi},
(cj = −1) or

(
cj = 0, bi < Tj

)}
.

To use collaborative control to deal with φi, the in D′i,2
formalized timing constraints need to hold, i.e., each
agent vj ∈ Vi\{vi} is either not subject to a task or there
is enough time to satisfy φj after φi has been collabora-
tively satisfied. In this respect, the control law switches
from (18a) to (18b) for agent vi. Therefore, set

G′i,2 :=
{
ẑi ∈ Zi|ẑi = zi ; ρ̂max

i = ρmax
i + ζu

i ,

r̂i ∈ Ri, p̂γi = pγ,new
i , ĉi = i

}
where ĉi := i indicates collaborative control for φci ,
while again relaxing the funnel parameters as in the first
repair stage. Now changing the perspective to the par-
ticipating agents vj ∈ Vi\{vi}, all agents vj need to par-
ticipate in collaborative control. Assume that vj ∈ Ξl,
then

D′′j,2 :=
{

(zj ,u
int
j ,uext

j ) ∈ Hj |cj ∈ {−1, 0},
∃vi ∈ Ξl \ {vj}, vj ∈ Vi, ci = i

}
,

is activated when agent vi asks agent vj for collaborative
control (detected by D′i,2). If (zi,u

int
i ,uext

i ) ∈ D′′j,2, the

control law for each vj ∈ Vi \ {vi} switches to (18b) by

G′′j,2 :=
{
ẑj ∈ Zj |ẑj = zj ; p̂f

j = pf
i, ĉj = ci

}
where ĉj = ci and p̂f

j = pf
i enforce that all conditions in

Theorem 2 or Corollary 1 hold after the jump.

Remark 6 The second repair stage is iniated solely
based on cj and Tj. Note that no future state predictions
can be made since fj(xj) and fcj (x) are unknown (fi(xi)
and fci (x) are in general unknown) and that agent vi
only has knowledge of cj and aj, bj, or

¯
bj + āj depending

on whether an always, eventually, or always-eventually
task is considered, so that ahead planning is not possible.

Repair Stage 3: If the timing constraints inD′i,2 do not
apply, repairs of the third stage are initiated by

D′i,3 :=D′i,{2,3} \ D
′
i,2.

Agent vi reacts in this case by reducing the robustness
ri by δi > 0 as illustrated in Example 2 and according to

G′i,3 :=
{
ẑi ∈ Zi|ẑi = zi ; ρ̂max

i = ρmax
i + ζu

i ,

r̂i = ri − δi, ρ̂max
i = ρopt

i + σ, p̂γi = pγ,new
i

}
where γr

i := ρ̂max
i −ρψi(x̄i)+δi is used to calculate pγ,new

i
and σ > 0 is a small constant that avoids Zeno behavior.
The Overall System: It needs to be detected when

ri ≤ ρφi(x̄i, 0) ≤ ρmax
i . Define νi :=

{
ci if ci > 0

i if ci = 0
and

Di,sat :=
{

(zi,u
int
i ,uext

i ) ∈ Hi|rνi ≤ ρψνi (x̄νi) ≤ ρmax
νi ,

ci ≥ 0, t ∈ T sat
i

}
\ (D′i ∪ D′′i,2),

with

T sat
i :=


[aνi , bνi ] if φνi = F[aνi ,bνi ]

ψνi
bνi if φνi = G[aνi ,bνi ]

ψνi
t∗νi + b̄νi if φνi = F[

¯
aνi ,¯

bνi ]
G[āνi ,b̄νi ]

ψνi

and where the set substraction of D′i ∪ D′′i,2 exludes the
case where D′i or D′′i,2 apply simultaneously with Di,sat.

If (zi,u
int
i ,uext

i ) ∈ Di,sat and in case of collaborative
control, the agents vj ∈ Vi \ {vi} are then either not
subject to a task or need to continue with φj . Hence, set

Gi,sat :=
{
ẑi ∈ Zi|ẑi = zi ; t̂∗i = Ti,[
ρ̂max
i , r̂i

]
=

{[
ρmax
i ri

]
if ρopt

i > 0[
ρ̃i

max r̃i
]

if ρopt
i ≤ 0

p̂γi = pγ,new
i , ĉi =

{
0 if ci > 0 and ci 6= i

−1 if ci = 0 or ci = i

}
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where ρmax
i , ri, ρ̃

max
i , and r̃i are according to (7),

(8), (12), and (13) but evaluated with x̄i(t) in-
stead of x̄i(0). Finally, Hi is given by Di := D′i ∪
D′′i,2 ∪ Di,sat, Ci := Zi \ Di, and Fi(zi,u

int
i ,uext

i )
as defined before. The corresponding jump map
Gi(zi,u

int
i ,uext

i ) is G′i,1(zi,u
int
i ,uext

i ) if (zi,u
int
i ,uext

i ) ∈
D′i,1, G′i,2(zi,u

int
i ,uext

i ) if (zi,u
int
i ,uext

i ) ∈ D′i,2, and

G′i,3(zi,u
int
i ,uext

i ) if (zi,u
int
i ,uext

i ) ∈ D′i,3 for the detec-

tion of critical events. Furthermore, Gi(zi,u
int
i ,uext

i )
is G′′i,2(zi,u

int
i ,uext

i ) if (zi,u
int
i ,uext

i ) ∈ D′′i,2 and

Gi,sat(zi,u
int
i ,uext

i ) if (zi,u
int
i ,uext

i ) ∈ Di,sat. It is cru-
cial that the behavior of Hi does not exhibit two or
more jump options at the same time, i.e., Hi should be
deterministic with respect to jumps permitted by Hi.
Note that D′i = D′i,1 ∪ D′i,2 ∪ D′i,3 and that D′i,1, D′i,2,
and D′i,3 are non-intersecting. Note also that the sets D′i
and Di,sat as well as D′′i,2 and Di,sat are non-intersecting.
However, D′i and D′′i,2 are intersecting. Therefore, if

(zi,u
int
i ,uext

i ) ∈ D′i ∩ D′′i,2, we only execute the jump
induced by D′′i,2 to account for the logic modeled by the
hybrid system. This can be achieved by modifying D′i
to D′i \ D′′i,2.

Theorem 3 Let each agent vi ∈ V be controlled byHi :=
(Ci, Fi, Di, Gi), while Assumptions 1-3 and 5 are satis-
fied. For vi ∈ Ξl it holds that ρφi(x̄i, 0) ≥ ri where ei-
ther ri := ri(0, 0) (initial robustness) if Case A applies
or ri is lower bounded and maximized up to a precision
of δi > 0 if Case B applies. Zeno behavior is excluded.

PROOF. Without critical events, it is guaranteed that
either φi is locally satisfied if ρopt

i > 0 or a least violat-

ing solution with a given gap of ρgap
i is found if ρopt

i ≤ 0
due to Theorem 2 and Corollary 1, respectively. In the
first repair stage, the parameters t∗i , ρ

max
i , ri, γ

0
i , γ∞i ,

and li are repaired in a way that still guarantees local
satisfaction of φi if ρopt

i > 0 or, otherwise, ri is reduced
by δi. Zeno behavior is excluded for this stage since only
a finite number of jumps, i.e., Ni jumps, are permitted.
For the second repair stage, collaborative control for φi
guarantees achieving the task φi with a robustness of ri
by Theorem 2 and Corollary 1. Afterwards, participating
agents vj ∈ Vi \{vi} have enough time to deal with their
own local task φj , which is guaranteed by the timing
constraints in D′i,2 that need to hold in order to initiate
collaborative control. The third repair stage successively
decreases ri by δi. Note that ri has to be lower bounded
due to Assumption 2, which states that for local satis-
faction of φi the state x̄i is bounded. Hence, all agents
aim to stay within a bounded set. Consequently, succes-
sively reducing ri will eventually lead to ρφi(x̄i, 0) ≥ ri,
i.e. maximizing ρφi(x̄i, 0) up to a precision of δi. This
again means that only a finite number of jumps is possi-
ble when the lower funnel is touched. Touching the up-
per funnel will also only lead to a finite number of jumps
since ρ̂max

i = ρopt
i + σ in G′i,3, exluding Zeno behavior.

4 Simulations

Consider M := 9 agents represented by three-
wheeled omni-directional mobile robots as in Liu
et al. (2008) with two states x1 and x2 indicating
the robot’s position and one state x3 indicating the
robot’s orientation with respect to the x1-axis. We
denote xi,k with k ∈ {1, 2, 3} as the k-th element
of agent vi’s state and define pi :=

[
xi,1 xi,2

]
. Let

xi :=
[
pi xi,3

]
∈ R3 so that x :=

[
x1 . . . xM

]
∈ R27.

As in Remark 2, we use induced dynamical couplings
fu
i (x) :=

[
fu
i,1(x) fu

i,2(x) 0
]

as a means of collision

avoidance with fu
i,k(x) :=

∑9
j=1,j 6=i κi

xi,k−xj,k
‖pi−pj‖+0.000001

for k ∈ {1, 2} and where κi := 10. By chosing
fu
i (x) as above, each agent vi needs knowledge of

the states of all agents, which can be prevented by
only including the states of agents in the proxim-
ity of agent vi. The dynamics are given by ẋi =

fu
i (x) +


cos(xi,3) − sin(xi,3) 0

sin(xi,3) cos(xi,3) 0

0 0 1

(BTi )−1

Rivi + wi,

where Ri := 0.02 is the wheel radius and Bi :=
0 cos(π/6) − cos(π/6)

−1 sin(π/6) sin(π/6)

Li Li Li

 describes geometrical con-

straints with Li := 0.2 (radius of the robot body).
The simulations have been performed in real-time on
a two-core 1,8 GHz CPU with 4 GB of RAM. Using
the forward Euler method with a sampling frequency
of 500 Hz, calculations of the local control laws took
on average 50 µs. The noise wi is drawn from a trun-
cated normal distribution with mean 0 and variance
100. The simulation example resembles Examples 2
and 3. We additionally add requirements on the robot’s
orientation. For the first cluster (as in Example 2),
here denoted by Ξ1, we let φ1 := G[0,15]

(
(‖p1 − p2‖ ≤

25) ∧ (‖p1 − p3‖ ≤ 25) ∧ (‖p1 − p4‖ ≤ 25)
)
,

φ2 := G[10,15]

(
(‖p2−

[
10 90

]
‖ ≤ 5)∧(|x2,3+45| ≤ 7.5)

)
,

φ3 := G[10,15]

(
(‖p3−

[
10 10

]
‖ ≤ 5)∧(|x3,3−45| ≤ 7.5)

)
,

and φ4 := G[10,15]

(
‖(p4−

[
45 20

]
‖ ≤ 5)∧ (|x4,3−135| ≤

7.5)
)
. We added the requirements that agents v2, v3,

and v4 should eventually be oriented with −45, 45,
and 135 degrees and remain with this orientation
from then on. For the second cluster (as in Exam-
ple 3), denoted by Ξ2, let φ5 := F[5,10]

(
(‖p5 − p6‖ ≤

10) ∧ (‖p5 − p7‖ ≤ 10) ∧ (‖p5 −
[
110 20

]
‖ ≤ 5)

)
,

φ6 := F[5,15]

(
(‖p6−

[
50 20

]
‖ ≤ 5)∧ (|x6,3− 45| ≤ 7.5)

)
,

and φ7 := F[5,15]

(
(‖p7−

[
110 80

]
‖ ≤ 5)∧ (|x7,3 +135| ≤

7.5)
)
. We here added the requirements that agents

v6 and v7 should eventually be oriented with 45 and
−135 degrees; Ξ1 and Ξ2 correspond to Case B in
Problem 1. For the third cluster, denoted by Ξ3, let
φ8 := φ9 := F[5,15]

(
(x8,1 − x9,1 ≤ 10) ∧ (x8,1 − x9,1 ≥

10
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Fig. 3. State trajectory for the clusters Ξ1, Ξ2, and Ξ3. Note
that the triangles indicate the orientation of each agent.

5) ∧ (x8,2 − x9,2 ≤ 10) ∧ (x8,2 − x9,2 ≥ 5)
)
, hence satis-

fying Case A in Problem 1. We remark that all agents
have been equipped with a formula ψAss.2

i as mentioned
in Remark 3. We select η := 1 for which it holds that
ρopt

1 = 23.9, ρopt
2 = ρopt

3 = ρopt
4 = 4.92, ρopt

5 = 4.97,

ρopt
6 = ρopt

7 = 4.92, and ρopt
8 = ρopt

9 = 1.11 so that
we initially choose ri := 0.5 for all i ∈ {1, . . . ,M} and
ρmax

1 := 20, ρmax
2 := ρmax

3 := ρmax
4 := ρmax

5 := ρmax
6 :=

ρmax
7 := 4.9 and ρmax

8 := ρmax
9 := 1.1. For the parame-

ters of the hybrid system, we set δi := 1.5 and Ni := 1.
The resulting trajectory is shown in Fig. 3. For Ξ1, it
can be seen that v1 does not satisfy φ1, but finds a least
violating solution by staying as close as possible to v2,
v3, and v4. The latter agents independently satisfy their
own formulas. For v1 and v2, the corresponding funnels
are shown in Fig. 4a and 4b. It can be seen that v1 first
tries to repair the parameters in the first repair stage
and then successively decreases the robust ri by δi in
the third repair stage. For v5, v6, and v7, it can be seen
that all agents satisfy their formulas. In particular, v5

uses collaborative control together with v6 and v7 in the
second repair stage after an unsuccessul repair attempt
in the first stage. This can be seen in Fig. 4d, while Fig.
4e and 4f show the behavior of the collaborating agents
v6 and v7. The third cluster Ξ3 with v8 and v9 satisfies
collaboratively their formulas according to Theorem 2.
The funnel for v8 can be seen in Fig. 4c. All tasks, except
of φ1, are satisfied with a robustness of ri := 0.5. Our
method is hence robust with respect to additive noise
and with respect to the formula, where the designer can
impose a robustness ri. Note also in Fig. 3 that collisions
are avoided. A comparison with the methods in Raman
et al. (2014) and Pant et al. (2018) was not possible due
to their high computational complexity rendering the
entailed optimization programs intractable. Note that
Raman et al. (2014) and Pant et al. (2018) focus on
single-agent systems so that a high-dimensional central-
ized multi-agent system with 27 states had to be used.

5 Conclusion

A framework for the control of multi-agent systems un-
der local signal temporal logic tasks has been presented.
The local tasks may depend on the behavior of other
agents and may hence be conflicting. In a first step, we
identified conditions under which a local feedback con-
trol law guarantees the satisfaction of the local tasks if
they are satisfiable. For not satisfiable tasks, a least vio-
lating solution can be found. If the identified conditions
do not hold, we proposed to combine the previously de-
veloped local feedback control law with an online detec-
tion & repair scheme. This detection & repair scheme
is expressed as a local hybrid control system. Critical
events are detected and repaired in a three-stage proce-
dure so that cases with locally conflicting formulas can
be resolved.
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V. Raman, A. Donzé, M. Maasoumy, R. M. Murray,
A. Sangiovanni-Vincentelli, and S. A. Seshia. Model
predictive control with signal temporal logic specifi-
cations. In Proceedings of the Conference on Decision
and Control (CDC), pages 81–87, Los Angeles, CA,
2014.
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