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Abstract—In this paper, we study the coordinated tracking
problem of multiple heterogeneous Lagrange systems with a
dynamic leader. Only nominal parameters of Lagrange dynamics
are assumed to be available. Under the local interaction con-
straints, i.e., the followers only have access to their neighbors’
information and the leader being a neighbor of only a subset of
the followers, continuous coordinated tracking algorithms with
adaptive coupling gains are proposed. Except for the benefit of the
chattering-free control achieved, the proposed algorithm also has
the attribute that it does not require the neighbors’ generalized
coordinate derivatives. Global asymptotic coordinated tracking
is guaranteed and the tracking errors between the followers and
the leader are shown to converge to zero. Examples are given to
validate the effectiveness of the proposed algorithms.

Index Terms—Coordinated tracking, Multiple heterogeneous
Lagrange systems, Continuous control algorithms

I. INTRODUCTION

Coordination of multi-agent systems has been extensively
studied for the past two decades due to its broad range of
applications. One fundamental problem is coordinated tracking
with a time-varying global objective [1], [3]. The goal is to
control a group of followers to track a time-varying global
objective function (often denoted a leader) by using only
local information interactions [23]. The coordinated track-
ing problem was introduced and studied in [12], where the
followers were modeled as single integrators and the input
delays were considered. With the emphasis on the delay
effect analysis, ref. [21] studied the stability conditions for
the leader-follower tracking problem for both single integrator
networks and double integrator networks. Recently, the authors
of [4] proposed algorithms using variable structure approaches.
Both the case of multiple single integrators and that of multiple
double integrators were considered and the tracking errors
were shown to be zero using the proposed discontinuous
control algorithms.

In this paper, instead of modeling the follower dynamics as
single or double integrators, we study the coordinated tracking
problem of multiple heterogeneous Lagrange systems with a
dynamic leader. Here, a Lagrange system is used to represent
a mechanical system, such as autonomous vehicles, robotic
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manipulators, and walking robots [27]. Therefore, the study
on the coordination control of multiple Lagrange systems may
provide some basic ideas for the applications on the formation
control of multiple mobile robots and the coordinated object
grabbing of multiple robot manipulators. Existing works on
the coordination control of multiple Lagrange systems include
[11], [25], [6], [13], [8], [17], [5], [14], [22], [7], [20] with
different emphasis. For example, time-varying delays, limited
communication rates and non-vanishing bounded disturbances
were considered in [11], coordinated tracking with finite-time
convergence was studied in [13], and a class of nonlinear
function was introduced in [8] to alleviate the chattering issues
raised by the discontinuous coordinated tracking algorithm.
The influence of communication delays was studied in [14],
[22], a flocking behavior was guaranteed in [7], and the
containment control with group dispersion and group cohesion
behaviors was reconstructed in [20]. In addition, the applica-
tions of coordination algorithms of multiple Lagrange systems
on the shape and formation control were given in [10], and the
application to task-space synchronization of multiple robotic
manipulators was given in [15].

In this paper, by focusing on the leader-follower coordinated
tracking problem of multiple Lagrange systems, we improve
the existing works in three aspects. First, the proposed zero-
error coordinated tracking algorithm is distributed, continuous,
and guaranteeing zero-error tracking. Note that discontinuous
control algorithms were proposed in [13], [17], [20] to ensure
zero-error coordinated tracking, the leader is assumed to be
available to all the followers in [22], and the tracking errors
were shown to be bounded instead of approaching zero in [5]
although the proposed algorithms are continuous. Second, in
contrast to [17], [18], where the eigenvalues of the interaction
Laplacian matrix and the upper bound of states of the bounded
time-varying leader are assumed to be available to all the
followers, the proposed algorithm in the current paper is purely
distributed in the sense that both the control input and coupling
gain depend only on local information. Third, the neighbors’
generalized coordinate derivative information is not required
to be available in the proposed algorithm. Thus, such an
approach may provide a solution to the case when the agents
are not equipped with the sensors capable of obtaining relative
generalized coordinate derivative information (e.g., relative
velocity measurements). Moveover, since we do not need the
neighbors’ generalized coordinate derivative information, the
communication capacities may be reduced. This is particularly
important when the number of agents is large and the com-
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Fig. 1. Information flow associated with the leader and the six followers

munication structure is complex.
The outline of the paper is as follows. In Section II, we

formulate the problem of coordinated tracking of multiple
Lagrange systems and give some basic notations and defini-
tions. The main results are presented in Section III. Numerical
studies are carried out in Section IV to validate the theoretical
results and a brief concluding remark is given in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Suppose that there are n follower agents in the group, la-
beled by ν1, ν2, . . . , νn. The system dynamics of the followers
are described by the Lagrange equations

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, 2, . . . , n, (1)

where qi ∈ Rp is the vector of generalized coordinates,
Mi(qi) ∈ Rp×p is the p × p inertia (symmetric) matrix,
Ci(qi, q̇i)q̇i is the Coriolis and centrifugal terms, gi(qi) is the
vector of gravitational force, and τi ∈ Rp is the control force.
The dynamics of a Lagrange system satisfies the following
properties [27]:

1. 0 < kMIp ≤ Mi(qi) ≤ kMIp, ∥Ci(x, y)∥ ≤ kC∥y∥ for
all vectors x, y ∈ Rp, and ∥gi(qi)∥ ≤ kg, where kM , kM , kC ,
and kg are positive constants.

2. Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric.
3. The left-hand side of the dynamics can be parameterized,

i.e., Mi(qi)y+Ci(qi, q̇i)x+gi(qi) = Yi(qi, q̇i, x, y)θi, ∀x, y ∈
Rp, where Yi ∈ Rp×pθ is a regression matrix with a constant
parameter vector θi ∈ Rpθ .

From Property 3, we know that the nominal dynamics
(available dynamics) satisfy

M̂i(qi)q̈i + Ĉi(qi, q̇i)q̇i + ĝi(qi) = Yi(qi, q̇i, q̇i, q̈i)θ̂i,

where M̂i(qi), Ĉi(qi, q̇i), ĝi(qi), and θ̂i are nominal dynamics
terms.

In addition to the n followers, we denote the global infor-
mation as a leader agent in the group, labeled as agent ν0
with the desired time-varying generalized coordinate q0 ∈ Rp
and the desired time-varying generalized coordinate derivative
q̇0 ∈ Rp. The objective of this paper is to design continuous
coordinated tracking algorithms for follower dynamics (1)
such that qi(t) → q0(t) and q̇i(t) → q̇0(t) as t → ∞ by
using only local interactions, i.e., the leader’s states q0 and q̇0
are only available to a subset of the followers and the followers
only have access to their local neighbors’ information.

Considering that there are six followers (n = 6) in the
group, Fig. 1 gives an example of information flow among
the leader and six followers. Note that the leader’s states are
only available to followers ν3 and ν6 and the followers only
have access to their neighbors’ information.

B. Basic Definitions in Graph Theory

We use graphs to represent the communication topology
among agents. A directed graph Gn consists of a pair (Vn, En),
where Vn = {ν1, ν2, . . . , νn} is a finite, nonempty set of
nodes and En ⊆ Vn × Vn is a set of ordered pairs of
nodes. An edge (νi, νj) denotes that node νj has access
to the information from node νi. An undirected graph is
defined such that (νj , νi) ∈ En implies (νi, νj) ∈ En. A
directed path in a directed graph or an undirected path in
an undirected graph is a sequence of edges of the form
(νi, νj), (νj , νk), . . . . The neighbors of node νi are defined
as the set Ni := {νj |(νj , νi) ∈ En}.

For a follower graph Gn, its adjacency matrix An = [aij ] ∈
Rn×n is defined such that aij is positive if (νj , νi) ∈ En
and aij = 0 otherwise. Here we assume that aii = 0, ∀i =
1, 2, . . . , n and aij = aji, ∀i, j = 1, 2, . . . , n. The Laplacian
matrix Ln = [lij ] ∈ Rn×n associated with An is defined
as lii =

∑
j ̸=i aij and lij = −aij , where i ̸= j. For the

leader-follower graph Gn+1 := (Vn+1, En+1), the adjacency
matrix An+1 = [aij ] ∈ R(n+1)×(n+1) is defined such that
ai0 is positive if (ν0, νi) ∈ En+1 and ai0 = 0 otherwise,
∀i = 1, 2, . . . , n.

Assumption 1. The global information q0 and q̇0 are available
to at least one follower, i.e, ai0 > 0 for at least one i, i =
1, 2, . . . , n. In addition, the follower graph Gn is undirected and
connected.

Note that Figure 1 is an example that satisfies Assumption
1. Letting M = Ln + diag(a10, a20, . . . , an0) (Ln is the
Laplacian matrix associated with Gn), we recall the following
result.

Lemma 1. [12] Under Assumption 1, M is positive definite
(symmetric).

C. Filippov Solution and Nonsmooth Analysis

Consider the vector differential equation

ẋ = f(x, t), (2)

where f : Rp × R → Rp is measurable and essentially
locally bounded. A vector function x(t) is called a solu-
tion of (2) on [t0, t1] if x(t) is absolutely continuous on
[t0, t1] and for almost all t ∈ [t0, t1], ẋ ∈ K[f ](x, t).
Here K[f ](x, t) =

∩
δ>0

∩
µN=0 cof(B(x, δ) \N, t),

∩
µN=0

denotes the intersection over all sets N of Lebesgue measure
zero, co(X) is the convex closure of X , and B(x, δ) denotes
the open ball of radius δ centered at x.

For a locally Lipschitz function V : Rp × R → R, the
generalized gradient of V at (x, t) is defined by ∂V (x, t) =
co{lim∇V (x, t)|(xi, ti) → (x, t), (xi, ti) ̸∈ ΩV }, where ΩV
is the set of measure zero where the gradient of V is not
defined. The generalized time derivative of V with respect to

(2) is defined as ˙̃V :=
∩
ζ∈∂V ζ

T

(
K[f ](x, t)

1

)
. In addition,

f(x, t) : Rp × R → R is called regular if for all ψ, the usual
one-sided directional derivative f ′(x;ψ) exists, and f ′(x;ψ) =
fo(x;ψ), where fo(x;ψ) = limy→x,t↓0 sup

f(y+tψ)−f(y)
t

[24], [26].
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Lemma 2. [9] Let (2) be essentially locally bounded and
0 ∈ K[f ](x, t) in a region Rp × [0,∞). Furthermore, suppose
that f(0, t) is uniformly bounded for all t ≥ 0. Let V :
Rp×[0,∞) → R be locally Lipschitz in t, and regular such that
∀t ≥ 0,W1(x) ≤ V (t, x) ≤W2(x),

˙̃V (x, t) ≤ −W (x),where
W1(x) and W2(x) are continuous positive definite functions
and W (x) is a continuous positive semidefinite function. Here
˙̃V (x, t) ≤ −W (x) means that ψ ≤ −W , ∀ψ ∈ ˙̃V . Then all Fil-

ippov solutions of (2) are bounded and satisfy W (x(t)) → 0,
as t→ ∞.

D. Other Notation

Given a vector x = [x1, x1, . . . , xn]
T, we define

sgn(x) = [sgn(x1), sgn(x2), . . . , sgn(xn)]
T, and |x| =

[|x1|, |x2|, . . . , |xn|]T. In addition, diag(x) denotes the diag-
onal matrix of a vector x, ∥x∥1 =

∑n
i=1 |xi| denotes 1-norm

of a vector x, λmin(P ) and λmax(P ) denote respectively the
minimum and maximum eigenvalues of the matrix P , and
P > 0 and P ≥ 0 mean that P is positive definite and positive
semidefinite, respectively.

III. MAIN RESULT

The objective here is to drive the states of the followers to
converge to those of the global objective. Note that the global
objective is available to only a portion of the followers and
we use nominal parameters of Lagrange dynamics. We also
assume that the neighbors’ generalized coordinate derivative
information is not available. The following continuous control
algorithm is proposed for each follower,

τi = Yi(qi, q̇i,q̇ri, ˙̂vi)θ̂i − αi(t)si, i = 1, 2, . . . , n, (3)

where Yi is defined in Sections II-A and α̇i = αis
T
i si, with

αi > 0, i = 1, 2, . . . n, being an arbitrary positive constant.
The sliding surface and the adaptive control term are designed
by

si = q̇i − q̇ri, (4)

˙̂
θi = −κiY T

i (qi, q̇i,q̇ri, ˙̂vi)si. (5)

where κi > 0, i = 1, 2, . . . n, is an arbitrary positive constant,
and, motivated by [17], [18], the virtual reference trajectory
q̇ri and the leader’s generalized coordinate derivative estimator
v̂i are proposed, respectively, as

q̇ri = v̂i −

 n∑
j=1

aij(qi − qj) + ai0(qi − q0)

 , (6)

˙̂vi(t) =− 2v̂i(t)−
∫ t

0

k2i(τ) n∑
j=0

aij(v̂i(τ)− v̂j(τ))

+βi(τ)sgn

 n∑
j=0

aij(v̂i(τ)− v̂j(τ))

 dτ, (7)

where v̂0(t) = q̇0(t), aij , i, j = 1, 2, . . . n, is the (i, j)th entry
of An associated with Gn defined in Section II-B, ai0 > 0

if the follower i has access to the global information ν0 and
ai0 = 0 otherwise,

k2i(t) =
1

2
k2i

 n∑
j=0

aij(v̂i(t)− v̂j(t))

T n∑
j=0

aij(v̂i(t)− v̂j(t))


+ k2i

∫ t

0

 n∑
j=0

aij(v̂i(τ)− v̂j(τ))

T

×

 n∑
j=0

aij(v̂i(τ)− v̂j(τ))

 dτ, (8)

and

βi(t) = βi

∥∥∥∥∥∥
n∑
j=0

aij(v̂i(t)− v̂j(t))

∥∥∥∥∥∥
1

+ βi

∫ t

0

∥∥∥∥∥∥
n∑
j=0

aij(v̂i(τ)− v̂j(τ))

∥∥∥∥∥∥
1

dτ, (9)

with k2i > 0 and βi > 0, i = 1, 2, . . . n, being arbitrary
positive constants.

Before moving on, we need the following assumption and
lemmas.

Assumption 2. q̇0 is bounded up to its third derivative.

Note that the assumption on that q̇0, q̈0 are bounded
is a necessary assumption to ensure zero-error tracking of
generalized coordinates and generalized coordinate derivatives
for the adaptive case. The assumption on

...
q 0,

....
q 0 being

bounded is necessary to ensure the convergence for the leader’s
generalized coordinate derivative estimator. Also note that in
contrast to [13], [17], [18], [20], the upper bound on any
derivative of q0 is not assumed to be available in the design
of the controllers. Generally speaking, Assumption 2 is a mild
assumption.

Lemma 3. [2] Let S be a symmetric matrix partitioned as S =[
S11 S12

ST
12 S22

]
, where S22 is square and nonsingular. Then S >

0 if and only if S22 > 0 and S11 − S12S
−1
22 S

T
12 > 0.

Lemma 4. [28] Define ξ(t) ∈ R as ξ = (µ+µ̇)T(−βsgn(µ)+
Nd), where µ(t) ∈ Rp, β is a positive constant, andNd(t) ∈ Rp
is a bounded disturbance. Then we have that

∫ t
0
ξ(τ)dτ ≤ B, if

β > supt{∥Nd(t)∥∞ + ∥Ṅd(t)∥∞}, where B = β∥µ(0)∥1 −
µT(0)Nd(0) > 0.

Theorem 1. Let Assumptions 1 and 2 hold. Under the local
continuous coordinated tracking algorithm (3)-(9), the states
of the followers governed by the Lagrange dynamics (1)
globally asymptotically converge to those of the leader, i.e.,
limt→∞(qi(t) − q0(t)) = 0 and limt→∞(q̇i(t) − q̇0(t)) = 0,
∀i = 1, 2, . . . , n.

Proof: It follows from Property 3 of Lagrange dynamics
in Section II-A that Mi(qi)q̈ri + Ci(qi, q̇i)q̇ri + gi(qi) =
Yi(qi, q̇i, q̇ri, ˙̂vi)θi−Mi(qi)

∑n
j=0 aij(q̇i−q̇j). We then further
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have that Mi(qi)ṡi + Ci(qi, q̇i)si = Yi(qi, q̇i, q̇ri, ˙̂vi)△θi +
Mi(qi)

∑n
j=0 aij(q̇i − q̇j)− αisi, where △θi = θ̂i − θi.

It also follows from (7) that

v̈i =− 2v̇i − k2i

 n∑
j=1

aij(vi − vj) + ai0vi


− βisgn

 n∑
j=1

aij(vi − vj) + ai0vi

+Ndi,

where vi = v̂i− q̇0, Ndi = −2q̈0−
...
q 0, for all i = 1, 2, . . . , n.

We then have that for i = 1, 2, . . . , n,

v̈i(t) =− 2v̇i(t)− k2i(t)

 n∑
j=1

mijvj(t)


− βi(t)sgn

 n∑
j=1

mijvj(t)

+Ndi(t), (10)

where mij denotes the (i, j)th entry of M defined after
Assumption 1. Note that the right-hand side of (10) is dis-
continuous. Because the signum function sgn is measurable
and essentially locally bounded, we can rewrite (10) in terms
of differential inclusions as

v̈i ∈a.e.K

−2v̇i − k2i

 n∑
j=1

mijvj


−βisgn

 n∑
j=1

mijvj

+Ndi

 , (11)

where a.e., stands for “almost everywhere” and K is defined
in Section II-C. Define ηi = vi + v̇i. It also follows from (8)
and (9) that for i = 1, 2, . . . , n,

k̇2i = k2i

 n∑
j=1

mijvj

T n∑
j=1

mijηj

 , (12)

and from the fact that the signum function sgn is measurable
and locally essentially bounded

β̇i ∈a.e.K

βi
 n∑
j=1

mijηj

T

sgn

 n∑
j=1

mijvj


 . (13)

We then construct a Lyapunov function candidate as,

V = V0 +
1

2

n∑
i=1

sTi Mi(qi)si +
n∑
i=1

1

2κi
(△θi)T△θi +

1

2
qTq

+
1

2
ηT(M⊗ Ip)η +

1

2
kvT(M2 ⊗ Ip)v +

n∑
i=1

1

2k2i

× (k2i − k)2 +

n∑
i=1

1

2βi
(βi − β)2 +

n∑
i=1

1

2αi
(αi − α)2,

where

V0 =

n∑
i=1

Bi −
n∑
i=1

∫ t

0

 n∑
j=1

mijηj(τ)

T

×

−βsgn
 n∑
j=0

aij(v̂i(τ)− v̂j(τ))

+Ndi(τ)

 dτ,

η = [ηT1 , η
T
2 , . . . , η

T
n ], v = [vT1 , v

T
2 , . . . , v

T
n ], qi = qi −

q0, q = [qT1 , q
T
2 , . . . , q

T
n ]

T, Bi = β∥
∑n
j=1mijvj(0)∥1 −(∑n

j=1mijvj(0)
)T

Ndi(0). In addition, we select β and k as

two positive constants satisfying that β > supt{2∥q̈0(t)∥∞ +
3∥

...
q 0(t)∥∞ + ∥

....
q 0(t)∥∞} and k > b + 1

4λmin(M) and
b > 1

4λ3
min(M)

. Also, α is a constant to be determined
later. It follows from Lemma 4 that V0 > 0 when β >
supt{2∥q̈0(t)∥∞ + 3∥

...
q 0(t)∥∞ + ∥

....
q 0(t)∥∞}. It follows that

the generalized time derivative of V (see the definition of ˙̃V
in Section II-C) can be evaluated as

˙̃V =
∩

ξ∈∂∥µ∥1

− ((M⊗ Ip)η)
T (−βξ +Nd

)
+K

[
n∑
i=1

sTi

(
Yi(qi, q̇i, q̇ri, ˙̂vi)△θi − αisi +Mi(qi)

×
n∑
j=0

aij(q̇i − q̇j)

)
−

n∑
i=1

(△θi)TY T
i (qi, q̇i, q̇ri, ˙̂vi)si

+
n∑
i=1

 n∑
j=1

mijηj

T−k2i n∑
j=1

mijvj− v̇i − vi

+vi +Ndi −βisgn

 n∑
j=1

mijvj


+kvT(M2 ⊗ Ip)(η − v) +

n∑
i=1

(k2i − k)

 n∑
j=1

mijvj

T

×

 n∑
j=1

mijηj

+
n∑
i=1

(βi − β)

 n∑
j=1

mijηj

T

×sgn

 n∑
j=1

mijvj

+
n∑
i=1

(αi − α)sTi si + qTq̇


=

∩
ξ∈∂∥µ∥1

− ((M⊗ Ip)η)
T (−βξ +Nd

)
+ ((M⊗ Ip)η)

T (−β∂∥µ∥1 +Nd
)

+

n∑
i=1

sTi

−αisi +Mi(qi)

n∑
j=0

aij(q̇i − q̇j)


− ηT(M⊗ Ip)η + ηT(M⊗ Ip)v − kvT(M2 ⊗ Ip)

× v +

n∑
i=1

(αi − α)sTi si + qT(s− (M⊗ Ip)q + v),
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where Nd = [NT
d1, N

T
d2, . . . , N

T
dn]

T, µ = (M⊗ Ip)v, ∂|µk| =
{−1}, µk ∈ R−

{1}, µk ∈ R+

[−1, 1], µk = 0,

and µk is kth entry of µ. In addition, we

have used (11), (12), (13), Property 2 of Lagrange dynamics in
Section II-A and the fact that K [f ] = {f} if f is continuous
[24].

If ˙̃V ̸= ∅, suppose that ϕ ∈ ˙̃V . By following a similar
analysis as the one given in the example in Section II of [26]
and noting that

∩
ξ2∈[−1,1][ξ2 − 1, ξ2 + 1] = 0, we know that

ϕ =
n∑
i=1

sTi

−αisi +Mi(qi)
n∑
j=0

aij(q̇i − q̇j)


− ηT(M⊗ Ip)η + ηT(M⊗ Ip)v − kvT(M2 ⊗ Ip)

× v +
n∑
i=1

(αi − α)sTi si + qT(s− (M⊗ Ip)q + v).

It is clear to see that ˙̃V is a singleton. We then have that

˙̃V ≤− α
n∑
i=1

sTi si + sTM(q)(M⊗ Ip)s

− sTM(q)(M2 ⊗ Ip)q + sTM(q)(M⊗ Ip)v

− qT(M⊗ Ip)q + qTs+ qTv − bvT(M2 ⊗ Ip)v

− (k − b)vT(M2 ⊗ Ip)v − ηT(M⊗ Ip)η

+ ηT(M⊗ Ip)v,

where M(q) = diag(M1(q1),M2(q2), . . . ,Mn(qn)), b >
1

4λ3
min(M)

is a constant and we have used the fact that∑n
j=0 aij(q̇i − q̇j) =

∑n
j=1mij(q̇j − q̇0) =

∑n
j=1mij(q̇j −

v̂j+vj) =
∑n
j=1mij(sj−

∑n
j=1mijqj+vj). It then follows

that

˙̃V ≤−
[
ηT vT

] [ M⊗ Ip −M⊗Ip
2

−M⊗Ip
2 (k − b)M2 ⊗ Ip

][
η
v

]

−
[
sT qT vT

]
Ω

 s
q
v


,−W (η, q, v, s),

where Ω =

Ω11 Ω12 Ω13

ΩT
12 M⊗ Ip − 1

2Ipn
ΩT

13 − 1
2Ipn bM2 ⊗ Ip

 ,
Ω11 = αIpn − 1

2 (M(q)(M⊗ Ip) + (M⊗ Ip)M(q)),
Ω12 =

M(q)(M2⊗Ip)
2 − Ipn

2 and Ω13 = −M(q)(M⊗Ip)
2 . Note

that b > 1
4λ3

min(M)
guarantees that

[
M⊗ Ip − 1

2Ipn
− 1

2Ipn bM2 ⊗ Ip

]
is

positive definite. Then it follows that Ω is positive definite
from Lemma 3 when α is chosen large enough satisfying
α > kMλ +

(1+kMλ
2
)2bλ2+kMλ(1+kMλ

2
)+(kMλ)2λ

4bλ3−1
, where

λ and λ denote, respectively, λmax(M) and λmin(M).
Therefore, W (η, q, v, s) ≥ 0 when k > b + 1

4λmin(M) . It

follows that
∫ t
0
W (η(τ), q(τ), v(τ), s(τ))dτ is bounded.

Thus, we know that V is bounded and therefore si, △θi,
∀i = 1, 2, . . . , n, v, v̇, η, and q are bounded. It then

follows that q̇ri, ∀i = 1, 2, . . . , n are bounded from (6)
and the facts that vi, ∀i = 1, 2, . . . , n, q̇0, q are bounded
and M is positive definite. This in turn shows that q̇i,
∀i = 1, 2, . . . , n, are bounded from (4). This further
implies that q̈ri, ∀i = 1, 2, . . . , n, are bounded since v̇i,
∀i = 1, 2, . . . , n, and q̈0 are bounded. Also, based on the first
property of Lagrange dynamics given in Section II-A and
the relationship of Mi(qi)q̈ri + Ci(qi, q̇i)q̇ri + gi(qi) =
Yi(qi, q̇i, q̇ri, ˙̂vi)θi − Mi(qi)

∑n
j=0 aij(q̇i − q̇j),

∀i = 1, 2, . . . , n, we know that Yi(qi, q̇i, q̇ri, ˙̂vi) is
bounded, ∀i = 1, 2, . . . , n. It therefore shows that ṡi,
∀i = 1, 2, . . . , n, are bounded. Also, we know that η̇i,
∀i = 1, 2, . . . , n, are bounded based on the fact that

...
q 0 is

bounded and (11). We then know that si(t), ηi(t), qi(t),
and vi(t), ∀i = 1, 2, . . . , n are uniformly continuous in
t. This shows that W (η(t), q(t), v(t), s(t)) is uniformly
continuous in t. Therefore, it follows from Lemma 2 that
W (η(t), q(t), v(t), s(t)) → 0, as t → ∞. This shows that
η(t) → 0, v(t) → 0, q(t) → 0 and s(t) → 0, as t → ∞. It
follows from (4) and (6) that q̇i = −

∑n
j=1mijqj + si + vi.

We can then easily have that limt→∞(qi(t)− q0(t)) = 0 and
limt→∞(q̇i(t)− q̇0(t)) = 0, ∀qi(0) ∈ Rp, ∀i = 1, 2, . . . , n.

Remark 1. The proposed algorithm possesses the following
attributes. First, it is distributed, i.e., the leader’s information
is available to only a portion of the followers and the followers
only have local interactions. This is a rather mild communica-
tion topology assumption compared to those in existing works,
such as [6], [22], where the leader’s information is assumed to
be available to all the followers. Second, the proposed algorithm
is continuous and the tracking errors are shown to converge to
zero even when the leader’s generalized coordinate derivative
is time-varying. This improves the ultimate boundedness results
reported in [5] and avoids the chattering phenomenon in the dis-
continuous designs of [13], [17], [20]. Third, by introducing an
adaptive gain scheduling technique, the coupling gain no longer
relies on a certain bound relevant to the global information and
the exact value of the upper bound of states of the time-varying
leader is not required to be available. Therefore, in contrast
to [17], [18], the proposed algorithm is purely distributed in
the sense that both the control input and the coupling gains
depend only on the local information interactions and is feasible
as long as that the leader’s generalized coordinate derivative
is bounded up to its third derivative. Fourth, the neighbors’
generalized coordinate derivative information is not required to
be available. This reduces the communication as the relative
velocity measurements do not need to be exchanged between
neighbors.

Remark 2. Coordination algorithms without using neighbors’
generalized coordinate derivative information were proposed
in [16] for static leader-follower regulation and leaderless
synchronization of multiple Lagrange systems. One necessary
assumption of [16] is that the target generalized coordinate
derivative is constant. In contrast, the proposed algorithm (3)-
(9) in this paper can be applied to the case when the leader’s
generalized coordinate derivative is time-varying.
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IV. SIMULATION RESULTS

In this section, numerical simulation results are given to
validate the effectiveness of the theoretical results obtained in
this paper. We assume that there exist six followers (n = 6)
in the group. The system dynamics of the followers are given
by the Lagrange dynamics of the two-link manipulators [17],
[27],[

M11,i M12,i

M21,i M22,i

] [
q̈ix
q̈iy

]
+

[
C11,i C12,i

C21,i C22,i

] [
q̇ix
q̇iy

]
+

[
g1,i
g2,i

]
=

[
τix
τiy

]
, i = 1, 2, . . . , 6,

where M11,i = θ1i + 2θ2i cos qiy , M12,i = M21,i = θ3i +
θ2i cos qiy , M22,i = θ3i, C11,i = −θ2i sin qiy q̇iy, C12,i =
−θ2i sin qiy(q̇ix + q̇iy), C21,i = θ2i sin qiy q̇ix, C22,i = 0,
g1,i = θ4ig cos qix+ θ5ig cos(qix+ qiy), g2,i = θ5ig cos(qix+
qiy) and g = 9.8. Also, θ1i = m1il

2
c1,i + m2i(l

2
1i + l2c2,i) +

J1i + J2i, θ2i = m2il1ilc2,i, θ3i = m2il
2
c2,i + J2i, θ4i =

m1ilc1,i +m2il1i, θ5i = m2il2i. We choose m1i = 1 + 0.3i,
m2i = 1.5 + 0.3i, lli = 0.2 + 0.06i, l2i = 0.3 + 0.06i, lc1,i =
0.1 + 0.03i, lc2,i = 0.15 + 0.03i, J1i =

m1il
2
li

12 , J2i =
m2il

2
2i

12 ,
i = 1, 2, . . . , 6. According to property 3 of Lagrange dynamics
given in Section II-A, the dynamics of the followers can be
parameterized as Yi(qi, q̇i, q̇ri, q̈ri) = [ypq]i ∈ R2×5 [27].

The initial states of the followers are given by qix(0) = 0.6i,
qiy(0) = 0.4i−1, q̇ix(0) = 0.05i−0.2, q̇iy(0) = −0.05i+0.2,
i = 1, 2, . . . , 6. The leader-follower communication topology
is given in Fig. 1. The adjacency matrix An of the generalized
coordinate derivatives associated with Gn is chosen to be

An =


0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0

 ,
and a10 = 0, a20 = 0, a30 = 1, a40 = 0, a50 = 0, a60 = 1.
The initial estimations for θ1i, θ2i, θ3i, θ4i, and θ5i for each
follower i = 1, 2, . . . , 6, are given by θ̂1i(0) = 0, θ̂2i(0) = 0,
θ̂3i(0) = 0, θ̂4i(0) = 0, and θ̂5i(0) = 0.

For the case of coordinated tracking without using neigh-
bors’ generalized coordinate derivative information (algorithm
(3)-(9)), the trajectories of the leader are given by q0x(t) =
cos( π15 t) and q0y(t) = sin( π15 t). The constant control pa-
rameters are chosen by κi = 2, αi = 1, k2i = 0.001, and
βi = 0.1, ∀i = 1, 2, . . . , 6. The initial states of k2i and βi
for each follower i = 1, 2, . . . , 6 are given by k2i(0) = 0
and βi(0) = 0. The initial states of v̂i for each follower
i = 1, 2, . . . , 6 are given by v̂i(0) = ˙̂vi(0) = [0, 0]T and
the initial states of αi for each follower i = 1, 2, . . . , 6 are
given by αi(0) = 0. The control parameters are chosen by
αi = 1, ∀i = 1, 2, . . . , 6. Under the feedback algorithm (3)-
(9), the generalized coordinates, the generalized coordinate
derivatives, and the control torques of the followers and the
leader are shown in Figs. 2(a) and 2(b). We see that the
coordinated tracking is achieved for a group of heterogeneous
Lagrange systems without using neighbors’ generalized coor-
dinate derivative information.
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(a) The trajectories of the states and the control torques of the followers and the leader
in x-coordinate
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(b) The trajectories of states and the control torques of the followers and the leader in
y-coordinate

Fig. 2. The states and the control torques of system (1) under algorithm
(3)-(9)

V. CONCLUDING REMARKS

In this paper, we study the leader-follower coordinated
tracking problem for multiple heterogeneous Lagrange sys-
tems. The continuous coordinated tracking algorithms with
uncertain parameter adaptive control and the leader’s general-
ized coordinate derivative estimator are proposed. Except for
benefit of the chattering-free control, the proposed algorithm
also has the attribute that does not require the neighbors’ gen-
eralized coordinate derivatives. Global asymptotic coordinated
tracking is guaranteed and the tracking errors between the
followers and the leader are shown to converge to zero. Simu-
lations are given to validate the effectiveness of the proposed
continuous coordinated tracking algorithms. Further directions
include the study of directed communication topology and an
arbitrary varying leader for the leader-follower coordinated
tracking problems of multiple Lagrange systems.
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