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Abstract— This letter deals with the problem of state
estimation for a class of systems involving linear dynamics
with multiple quadratic output measurements. We propose
a systematic approach to immerse the original system into
a linear time-varying (LTV) system of a higher dimension.
The methodology extends the original system by incor-
porating a minimum number of auxiliary states, ensuring
that the resulting extended system exhibits both linear dy-
namics and linear output. Consequently, any Kalman-type
observer can showcase global state estimation, provided
the system is uniformly observable.

Index Terms— Estimation; Observers for nonlinear sys-
tems; Kalman filtering; Time-varying systems.

I. INTRODUCTION

A. Motivation

STATE estimation is a central problem in control theory,
with widespread applications in various engineering fields.

It consists of designing a software-implemented dynamical
system, known as state observer, that allows the determination
of the system’s internal state from measurements of its inputs
and outputs. Several approaches have been proposed to address
this problem; please refer to [4], [6], [16], [28], and related
references therein.

In this paper, we consider systems with linear dynamics and
quadratic output measurements, i.e., systems of the form

ẋ =Ax+Bu, (1a)

yh =
1

2
x>Chx+ d>h x, h = 1, . . . , q, (1b)

where x ∈ Rn is the state, u ∈ Rp is the input, and
y1, · · · , yq ∈ R are scalar outputs. The system matrices
A ∈ Rn×n, B ∈ Rn×p, Ch ∈ Rn×n, and dh ∈ Rn×1 are
constant and, without any loss of generality, the matrices Ch

are assumed to be symmetric. Note that system (1) belongs
to a specific class of nonlinear systems, and its observability
properties are affected by the input u. In particular, for the
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trivial system ẋ = 0, y = x2, distinguishing between the initial
conditions x0 and −x0 becomes impossible solely based on
the provided output measurements.

Systems exhibiting linear dynamics and quadratic outputs
are prevalent in diverse control and estimation scenarios.
Control of systems with quadratic outputs has been dealt
with in [24] where the authors’ partial motivation stemmed
from mechanical systems, in which one wishes to regulate
specific energies, e.g., [29], [8]. Range measurements, of-
ten used in robot localization problems, can be written as
quadratic outputs. Range-based state estimation techniques
have been proposed, e.g., in [1], [3], [12], [20], [18], mainly
dealing with single and double integrator systems. In [14], if
quadratic functions approximate known terrain maps, terrain-
aided navigation can be achieved by designing an observer for
the vehicle’s dynamics (single- or double-integrator systems)
under quadratic output measurements.

B. Literature Review

For the design of an observer, one needs an appropriate
notion of observability, namely, the ability to deduce the initial
state vector by using the input and corresponding output infor-
mation across a given time period. Typically, when studying
the observability of a nonlinear system, it is commonly viewed
as a local problem. The local weak observability of such a
system can be determined using the standard observability rank
condition [19, Theorem 3.1]. However, this condition alone is
insufficient for designing an observer, as it heavily relies on
the system’s input. In such cases, the design process is limited
to specific classes of inputs, namely regular or persistently
exciting inputs. More information on these input classes can
be found in [6], [7], [9], [16], and related sources.

To design observers for nonlinear systems, a well-known
technique is the immersion approach, where the nonlinear
system is transformed into a state-affine system with a higher
dimension. This methodology has a long history of develop-
ment. In [15], a necessary and sufficient condition for immer-
sion based on the system’s observation space was presented.
Another approach, as discussed in [2] and [21], utilized the
solutions of a partial differential equation for the immersion
process. Additionally, in [5], an immersion-based technique
was introduced for a broad range of nonlinear systems (that
are rank-observable), employing a high-gain design strategy.

For systems with quadratic outputs, such as the one rep-
resented in (1), approaches outlined in [6], [11], [16], [17]
demonstrate the feasibility of transforming the system into a
canonical form by leveraging a local change of coordinates
for suitable inputs. It’s important to note, however, that these



methods yield local results. It should be noted that algebraic
conditions for the observability of such systems were also
proposed in [13], which, however, do not guarantee state
reconstruction.

C. Contributions

To estimate the state of system (1), a systematic approach
is presented that transforms the original system into a new
bilinear system of higher dimension of the form

ż = A(u)z + Bu, (2a)
y = Cz, (2b)

where z ∈ Rm+n for certain integer m ≥ 1, y := [y1 · · · yq]>,
with A(u), B, and C of appropriate dimensions. Notice that
(2a) is a bilinear system since the matrix function A(u)
depends explicitly on the input u and can be considered as
an LTV system once an input time-function u(t) is fixed.

We first show that the observation space is finite-
dimensional with a dimension equal to a constant m less
than or equal to n(n + 1)/2 (dimension of the space of
symmetric matrices). Then, we provide a simple algorithm
to extract this constant m and the corresponding basis for
the observation space. Then, by extending the original system
with m additional variables, the new dynamics of the resulting
system are in the form of (2), where we explicitly identify the
involved matrices. This work generalizes our results in [27]
where we considered systems with single output for which
the zero-response (output under zero input) is polynomial.
In contrast, the current work immerses the general multiple
output system into an LTV system with minimal auxiliary
states. There is no restriction on the number of outputs nor
on the time behavior of the output.

Compared to those above (local) nonlinear estimation tech-
niques, the proposed approach allows the design of an observer
to ensure global exponential convergence (to zero) of the state
estimation errors using simple linear systems tools, and linear
Kalman-type observers, see [6], [22], [26].

II. NOTATION

Throughout this paper, we adopt the following notation.
N and R denote, respectively, the sets of natural and real
numbers. For a given vector or matrix (·) ∈ Rn×m, (·)>
denotes its transpose. We denote by In the n × n identity
matrix. By 0 we denote each of the following: the scalar
zero, the zero vector, or the zero matrix. Depending on the
context, the dimensions of 0 will be clear unless otherwise
specified as 0n×m. Let Mn ⊂ Rn×n denote the space of real
n × n symmetric matrices. For a given map f , we denote
by f [n] the n-th iterate of f (functional power) such that
f [n] := f ◦f [n−1] and f [0] is the identity map. For any matrix
A ∈ Rn×n, we define the Lyapunov operator LA : Mn →Mn

by LA(X) := XA + A>X . From the previous definition,
we also have L

[k]
A (C) = LA ◦ L[k−1]

A (C), L
[0]
A (C) = C. A

permutation matrix is an n×n square matrix that has exactly
one entry equals 1 in each row and each column and 0s
elsewhere. Note that any permutation matrix P is orthogonal,

i.e., P−1 = P>. Given a linear map T : V → W between
two vector spaces V and W , we define the kernel of T by
ker(T ) = {v ∈ V : T (v) = 0 ∈W}.

For a given matrix A ∈ Rn×m, vec(A) denotes the vector-
ization of A which is the nm× 1 column vector obtained by
stacking the columns of the matrix A on top of one another.
For a symmetric matrix A ∈Mn, the half-vectorization of A,
denoted by vech(A), is the n(n + 1)/2 × 1 column vector
obtained by vectorizing only the lower triangular part of A.
The duplication matrix (see [23]) is the unique n2×n(n+1)/2
matrix, denoted by Dn, which, for any symmetric matrix
A ∈Mn, transforms vech(A) into vec(A), i.e.,

Dnvech(A) = vec(A). (3)

Note that Dn is full column rank and, hence, its Moore-
Penrose inverse is given by D+

n = (D>nDn)−1D>n . For
any two matrices A ∈ Rn×m and B ∈ Rp×q , we use
A⊗B ∈ Rnp×mq to denote the Kronecker product of A and B.
The following are some useful properties of the (associative)
Kronecker product [10]:

vec(ACB) = (B> ⊗A)vec(C), (4)
(A⊗B)(C ⊗D) = (AC)⊗ (BD). (5)

Moreover, for any vectors u ∈ Rm, v ∈ Rq, and for any matrix
A ∈ Rn×m, straightforward applications of (5) results in the
following identities:

(Au)⊗ v = (A⊗ Iq)(u⊗ v), (6)
v ⊗ (Au) = (Iq ⊗A)(v ⊗ u), (7)

u⊗ v = (Im ⊗ v)u = (u⊗ Iq)v. (8)

We also provide the following useful identity, whose proof
follows directly from [23, Theorem 9] and [23, Theorem 12]:

(DmD
+
m)>(u⊗ u) = u⊗ u. (9)

Finally, for any two square matrices A ∈ Rn×n and B ∈
Rm×m, we define their Kronecker sum by

A⊕B := A⊗ Im + In ⊗B. (10)

In the following useful lemma, we show that the composition
of the half-vectorization with the Lyapunov operator is a linear
map on Rn(n+1)/2.

Lemma 2.1: For any A ∈ Rn×n and X ∈Mn, one has

vech(LA(X)) = D+
n (A⊕A)>Dnvech(X). (11)

The proof of Lemma 2.1 can be found in the Appendix.

III. IMMERSION INTO AN LTV SYSTEM

A. Single-Output Systems
To motivate our general methodology, we first consider

single-output systems. First, note that any quadratic form,
along the trajectories of (1a), satisfies

1

2

d

dt
(x>Qx) =

1

2
x>LA(Q)x+ (QBu)>x, (12)

for some symmetric matrix Q ∈ Mn. Therefore, and for
general linear systems, the time derivative of any quadratic
form is a (time-varying) quadratic function. Also, (12) shows



that, for any quadratic form, successive Lie derivatives along
the vector field of a linear system are quadratic forms, all
characterized by a symmetric matrix L

[k]
A (Q) for some k ∈ N.

Note that, thanks to the space of symmetric matrices Mn

being finite-dimensional, the so-called finiteness criterion of
the observation space [15] is, therefore, satisfied. This vector
subspace of Mn can have a lower dimension compared to Mn.
This is shown in the following result.

Lemma 3.1: For any Q ∈ Mn, there exists m ≤ n(n +

1)/2 such that span{L[0]
A (Q),L

[1]
A (Q), . . . ,L

[m−1]
A (Q)} is

LA−invariant.
The proof of Lemma 3.1 can be found in the Appendix.

Now, consider system (1) with single output (i.e., q = 1,
index h is hence ignored subsequently). Clearly the output
map (1b) is representative (see [15, Definition 7]) since its
observation space is finite-dimensional by Lemma 3.1. By [15,
Theorem 1], system (1) with single output is representable as
a subsystem of an affine system. To construct such a system,
we define the following auxiliary state variables

ξk :=
1

2
x>L

[k]
A (C)x, k = 0, 1, · · · , (m− 1), (13)

with m ≤ n(n + 1)/2 being the smallest index satisfying
Lemma 3.1. Now, in view of (12), one has

ξ̇k =ξk+1 + (Bu)>L
[k]
A (C)x, k = 0, . . . , (m− 2). (14)

Moreover, in view of (12) and Lemma 3.1, there exist scalars
α1, · · · , αm−1 such that

ξ̇m−1 =

m−1∑
k=0

αkξk + (Bu)>L
[m−1]
A (C)x. (15)

Define now the extended state as follows

z :=
[
ξm−1 · · · ξ1 ξ0 x>

]> ∈ Rm+n. (16)

In view of (1) and (14), the dynamics of the new variable z ∈
Rm+n are given by the LTV system (2), where the matrices
A(u) ∈ R(m+n)×(m+n), B ∈ R(m+n)×p and C ∈ R1×(m+n)

are defined by

A(u) :=

αm−1 αm−2 . . . α1 α0 (Bu)>L
[m−1]
A (C)

1 0 . . . 0 0 (Bu)>L
[m−2]
A (C)

...
...

...
. . .

...
...

0 0 . . . 1 0 (Bu)>L
[0]
A (C)

0 0 · · · 0 0 A


,

(17)

B :=
[
0 0 · · · B>

]>
, (18)

C :=
[
0 0 · · · 0 1 d>

]
. (19)

The following theorem summarizes the results above.
Theorem 3.1: Consider system (1) along with matrices

A,B,C, d of appropriate dimensions. If the system involves
only a single output (q = 1), then there exists m ≤ n(n+1)/2
and coefficients α0, · · · , αm−1 satisfying Lemma 3.1 such that
system (1) can be immersed into the LTV system (2) with
matrices A(u), B, and C given by (17)-(19).

This result shows that the maximum number of additional
states needed to bring the single-output dynamical system (1)
to the LTV form cannot exceed n(n+1)/2. This latter property
is a consequence of the fact that the vector space Mn (space
of symmetric matrices) has dimension dim(Mn) = n(n +
1)/2. Therefore, any quadratic form on Rn can be expressed
as a linear combination of n(n+ 1)/2 (elementary) quadratic
forms. However, it is important to pick up the smallest m ≤
n(n+1)/2 satisfying Lemma 3.1 to avoid adding unnecessary
auxiliary states, which might introduce additional observability
restrictions. Having fewer auxiliary states in the obtained LTV
system leads to weaker observability conditions for the LTV
system. The following are some illustrative examples where
m usually takes smaller values compared to n(n+ 1)/2.

Example 1: Consider the double-integrator system ẍ = u ∈
Rn with y = 0.5‖x‖2. We have

L
[1]
A (C) =

[
0 In
In 0

]
, L

[2]
A (C) = LA(L

[1]
A (C)) =

[
0 0
0 2In

]
and finally, L[3]

A (C) = 0. Hence, m = 3 satisfies Lemma 3.1
and Theorem 3.1, ∀n ∈ N.

Example 2: Consider the system ẋ1 = x2, ẋ2 = x1 + 2x2 +
u ∈ R with y = 0.5x2

1 + 0.5x2
2. We have

L
[1]
A (C) =

[
0 2
2 4

]
, L

[2]
A (C) =

[
4 8
8 20

]
It is observed that L[2]

A (C) = 4(L
[0]
A (C)+L

[1]
A (C)) (recall that

L
[0]
A (C) = C = I2) and, hence, m = 2 satisfies Lemma 3.1.

In this case, the number of auxiliary states needed is m = 2,
which is strictly less than n(n+ 1)/2 = 3.

B. Multi-Output Systems

We now consider systems with multiple quadratic outputs
of the form (1). The development hereafter is based on the
observation that the outputs (1b) can be expressed as follows:

yh =
1

2
x>Chx+ d>h x

(4)
=

1

2
vec(Ch)>(x⊗ x) + d>h x

(3)
=

1

2
vech(Ch)>D>n (x⊗ x) + d>h x.

(20)

If we define the vector x[2] := D>n (x⊗ x), the output vector
y := [y1 · · · yq]> can be written as

y =
1

2

vech(C1)>

...
vech(Cq)>

x[2] +

d
>
1
...
d>q

x =: C̄x[2] +Dx. (21)

Before we proceed, some remarks are in order. The vector
x[2] contains n(n+1)/2 linearly independent 2−degree terms
of the form αxixj for 1 ≤ i ≤ j ≤ n. These terms are
proportional to xixj = x>Ei,jx where {Ei,j}1≤i≤j≤n, is the
canonical basis of the vector space Mn. The number of these
terms is n(n + 1)/2, equal to the dimension of the space of
symmetric matrices Mn. On the other hand, x[2] has linear
dynamics as shown below.



Lemma 3.2: Along the trajectories of (1), one has

d

dt
x[2] = Āx[2] + Ūx. (22)

with Ā := D>n (A⊕A)(D+
n )> and Ū := D>n (Bu⊕Bu).

At first, it is tempting to consider the extended state z> :=
[(x[2])> x>] which leads, as a consequence of Lemma 3.2,
to an LTV system of the form (2). The number of added
auxiliary states is n(n+ 1)/2. However, we propose hereafter
a procedure to extend the original system with a minimum
number of auxiliary states to bring it to the LTV form.

First, note that the vector space span{C1, · · · , Cq} has
usually a lower dimension compared to n(n + 1)/2. Let
dim span{C1, · · · , Cq} = rank(C̄) =: p0. Then, there exist
distinct symmetric matrices L1, · · · , Lp0

such that

span{C1, · · · , Cq} = span{L1, · · · , Lp0
}. (23)

It follows that the rows of C̄x[2] can be expressed as linear
combinations of the quadratic forms 1

2x
>L1x, · · · , 1

2x
>Lp0x.

In fact, let us define the full row rank matrix L̄0 ∈
Rp0×n(n+1)/2 as

L̄0 :=
1

2

[
vech(L1) · · · vech(Lp0

)
]>
. (24)

Note that this matrix can be readily obtained from the rank
factorization C̄ = FL̄0 for some full column rank matrix F ∈
Rq×p0 . Let us define the variable ξ0 ∈ Rp0 such that

ξ0 := L̄0x
[2] =

[
1
2x
>L1x · · · 1

2x
>Lp0

x
]>
. (25)

Note that the output vector is linear in ξ0 and x since y =
Fξ0 + Dx. As a result of Lemma 3.2, the derivative of ξ0
along the trajectories of (1) satisfies

ξ̇0 = L̄0Āx
[2] + L̄0Ūx. (26)

Similar to [24, Theorem 1], ξ̇0 will be linear in ξ0 and x if and
only if span{L1, · · · , Lp0} is LA−invariant or, equivalently,
ker(L̄0) is Ā−invariant. If this condition holds, the procedure
stops by defining the extended state z> := [ξ>0 x>] which
has linear dynamics. When this condition does not hold, we
proceed as follows to add additional auxiliary states. Let us
define p1 ∈ N such that

p1 := rank

[
L̄0

L̄0Ā

]
− p0. (27)

Note that ker(L̄0) is not Ā−invariant which implies that p1 6=
0. In this case, there exist a permutation matrix P0 ∈ Rp0×p0 ,
a matrix M

(0)
0 ∈ R(p0−p1)×p0 and a full row matrix L̄1 ∈

Rp1×n(n+1)/2 satisfying

P0L̄0Ā =

[
L̄1

M
(0)
0 P0L̄0

]
. (28)

Basically, L̄1 contains all rows of L̄0Ā that cannot be ex-
pressed as a linear combination of rows of L̄0. By defining
ξ1 := L̄1x

[2], it follows from (26) and (28) that

P0ξ̇0 =

[
0

M
(0)
0

]
P0ξ0 +

[
Ip1

0

]
ξ1 + P0L̄0Ūx. (29)

Algorithm 1 Computation of the matrices L̄k, Pk,M
(k)
i

Require: Output matrix C̄ and matrix Ā
1: Compute p0 := rank(C̄)
2: Rank factorize C̄ = FL̄0 with rank(L̄0) = p0

3: for k ∈ {1, 2, · · · } do
4: Calculate

pk := rank


L̄0

...
L̄k−1

L̄k−1Ā

−
k−1∑
i=0

pi (30)

5: Find a permutation matrix Pk−1 ∈ Rpk−1×pk−1 , ma-
trices M

(k−1)
i ∈ R(pk−1−pk)×pi and a full row matrix

L̄k ∈ Rpk×n(n+1)/2 satisfying1

Pk−1L̄k−1Ā =

[
L̄k∑k−1

i=0 M
(k−1)
i PiL̄i

]
(31)

6: if pk = 0 then
7: Define m = k
8: return the matrices L̄k−1, Pk−1,M

(k−1)
i−1 for all

1 ≤ i ≤ k ≤ m.
9: end if

10: end for

The rank computation (27) and the decomposition proce-
dure in (28) is then iteratively repeated to obtain matrices
L̄k, Pk,M

(k)
i and stops only when pk = 0. This is summarized

in Algorithm 1. Note that, with ξk := L̄kx
[2] and since the

rows of L̄k are linearly independent (by construction), the
execution of Algorithm 1 necessary stops before the number
of auxiliary states in ξ0, · · · , ξm−1 reaches n(n+1)/2. In fact,
the additional states introduced by Algorithm 1 is

m−1∑
k=0

pk = rank

 L̄0

...
L̄m−1

 ≤ n(n+ 1)/2. (32)

Our iterative procedure allows us to obtain, by construction,
the minimum number of auxiliary states necessary to bring
system (1) to the LTV form (2). It follows from Lemma 3.2
and (31) that

Pk ξ̇k = PkL̄kĀx
[2] + PkL̄kŪx

=

[
L̄k+1∑k

i=0M
(k)
i PiL̄i

]
x[2] + PkL̄kŪx

=

k∑
i=0

[
0

M
(k)
i

]
Piξi +

[
P>k+1

0

]
Pk+1ξk+1 + PkL̄kŪx,

(33)
where k = 0, · · · ,m− 1 with ξm ≡ 0. Now, if we define the

1If pk = pk−1 (resp. pk = 0), matrices Mk−1
i (resp. L̄k) are empty.



Fig. 1. Convergence of the position error ||p(t) − p̂(t)||, air velocity
error ||va(t)− v̂a(t)||, and the wind velocity error ||vw(t)− v̂w(t)||.

extended state vector

z :=


Pm−1ξm−1

...
P0ξ0
x

 :=


Pm−1L̄m−1x

[2]

...
P0L̄0x

[2]

x

 ∈ Rn+
∑m−1

k=0 pk ,

(34)
the resulting dynamics are given by the LTV system (2) with
matrices

A(u) =



M̄
(m−1)
m−1 · · · · · · M̄

(m−1)
0

P̄m−1 . . . · · · M̄
(m−2)
0

...
. . .

...
...

0 · · · P̄1 M
(0)
0

Pm−1L̄m−1Ū
Pm−2L̄m−2Ū

...
P0L̄0Ū

0 A


,

(35)

B =

[
0

B

]
, C =

[
0 · · · 0 FP>0 D

]
, (36)

where we defined

M̄
(k)
i :=

[
0pk+1×pi

M
(k)
i

]
, P̄k :=

[
P>k

0(pk−1−pk)×pk

]
. (37)

The following theorem summarizes the main result whose
proof follows directly from the above derivations.

Theorem 3.2: Consider system (1) along with matrices
A,B,Cq, dq of appropriate dimensions. Suppose the system
involves multiple outputs (q > 1). Let L̄k, Pk,M

(k)
i be the k-

th matrices obtained from Algorithm 1, for 0 ≤ i ≤ k ≤ m−1.
Then, system (1) can be embedded into the higher dimensional
LTV system (2) with matrices A(u), B, and C given by (35)-
(37).

Remark 3.1: The procedure for the single-output case of
Section III-A is a particular case of the above-proposed
procedure for the multiple-output case. In fact, for a single-
output system, we have C̄ = L̄0 = 1

2vech(C) and p0 = 1 (row
vector). When pk = 1 in (30), the matrices M (k−1)

i are empty,
Pk−1 = 1, and the iteration in (31) reduces to L̄k = L̄k−1Ā.
This iteration is equivalent to L

[k]
A (C) = LA

(
L

[k−1]
A (C)

)
with vech(L

[k]
A (C)) := L̄k (see equation (39) in the Appendix)

. The LTV system’s matrices in (35)-(37) match those in (17)-
(19).

Remark 3.2: The resulting extended system is a bilinear
system with a linear output of the form (2). For certain
input u(t), this system can be considered as an LTV system.

However, not every input u(t) renders the system observable.
The design of an observer to solve the state estimation problem
follows by considering persistently exciting inputs u(·) (inputs
that render the system uniformly observable), see [6], [25].
Under the uniform observability assumption, system (2) admits
the following Kalman-type observer:

˙̂z = A(u(t))ẑ + Bu(t) + P (t)C>Q(t)(y − Cẑ) (38)

such that P (t) is the solution to the following continuous
Riccati equation (CRE):

Ṗ (t) =A(u(t))P (t) + P (t)A(u(t))>

− P (t)C>Q(t)CP (t) + V (t)

where P (0) is positive definite and Q(t) and V (t) are con-
tinuously differentiable, uniformly bounded, and uniformly
positive-definite matrix functions. Note that in a stochastic
setting, the above estimator corresponds to the optimal Kalman
filter where matrices V (t) and Q(t)−1 are interpreted as
covariance matrices of additive noise on the system state and
output [22]. A variety of sufficient conditions for uniform
observability can also be found in [27] and [30].

Example 3: Consider the system ṗ = va + vw with v̇a = u
and v̇w = 0, where p, va, vw ∈ Rn are, respectively, the
position of a vehicle, the air velocity, and the wind velocity.
The outputs are the range y1 = 0.5‖p‖2 and airspeed y2 =
0.5‖va‖2. Algorithm 1 returns m = 3 with ξ2 = 2‖va +vw‖2,
ξ1 = 2p>(va + vw) and ξ0 = [‖p‖2 ‖va‖2]. One can
easily verify that these additional states allow to bring this
system to an LTV form for any n ∈ N. Fig. 1 shows the
convergence of the error between the real states p, va, vw
and the observed states p̂, v̂a, v̂w, with p(0) = (0, 0, 2)>,
va(0) = (0, 1, 0)>, vw(0) = (0, 0, 1)> and input u(t) =
(− cos(t);− sin(t); 0.5 cos(0.5t))>, by using a Kalman-type
observer (see [6]). UO analysis is left to the reader.

IV. CONCLUSION

We proposed an immersion-type technique that transforms
linear time-invariant systems with quadratic outputs to a new
linear time-varying system with linear output by adding a
minimum finite number of auxiliary states to the original
system. Both cases with single output and multiple outputs
are considered. The state of the resulting LTV system can
be globally estimated using Kalman-type observers provided
the observability conditions necessary for the convergence of
these observers are met. It is worth mentioning that the state
matrix of the new LTV system depends explicitly on the input;
therefore, this system’s observability is tightly related to the
richness of the input signal. For instance, uniform observability
of the resulting LTV system, given well-conditioned inputs
(bounded and continuously differentiable), ensures that Riccati
observers (refer to, for instance, [18]) globally exponentially
estimate the state of the system. An interesting future direction
is to consider linear-time varying systems with quadratic
outputs.



APPENDIX

A. Proof of Lemma 2.1
This identity is proved as follows:

vech(LA(X))

= D+
n vec(LA(X)) = D+

n vec(XA) +D+
n vec(A>X)

(4)
= D+

n (A> ⊗ In)vec(X) +D+
n (In ⊗A>)vec(X)

(10)
= D+

n (A⊕A)>vec(X) = D+
n (A⊕A)>Dnvech(X).

B. Proof of Lemma 3.1
Matrix Ā := D>n (A⊕A)>(D+

n )> satisfies:

vech(L
[m]
A (Q)) = Ām>vech(L

[0]
A (Q)), ∀m ∈ N, (39)

in view of Lemma 2.1. To prove the existence of m ≤ n(n+
1)/2 satisfying the result of the lemma, it is sufficient to show
that this result holds for m = n(n + 1)/2 =: n̄. According
to Cayley-Hamilton Theorem, the n(n + 1)/2 × n(n + 1)/2
square matrix Ā, defined above, satisfies Ān̄ =

∑n̄−1
k=0 αkĀ

k,
for some coefficients α0, α1, · · · , αn̄−1. Therefore, one has

vech(L
[n̄]
A (Q)) = (Ān̄)>vech(Q) =

n̄−1∑
k=0

αkĀ
k>vech(Q)

=

n̄−1∑
k=0

αkvech(L
[k]
A (Q)) = vech

(
n̄−1∑
k=0

αkL
[k]
A (Q)

)
.

The last equation shows that L
[n̄]
A ∈

span{L[0]
A (Q),L

[1]
A (Q), . . . ,L

[n̄−1]
A (Q)} and, hence,

span{L[0]
A (Q),L

[1]
A (Q), . . . ,L

[n̄−1]
A (Q)} is LA−invariant.

The proof is complete.

C. Proof of Lemma 3.2
In view of (1), one has

d

dt
x[2] =

d

dt

(
D>n (x⊗ x)

)
= D>n ((Ax+Bu)⊗ x+ x⊗ (Ax+Bu))

= D>n ((Ax)⊗ x+ x⊗ (Ax) + (Bu)⊗ x+ x⊗ (Bu))
(6)−(10)

= D>n ((A⊕A)(x⊗ x) + (Bu⊕Bu)x)
(9)
= D>n (A⊕A)(D+

n )>D>n (x⊗ x) +D>n (Bu⊕Bu)x

= ĀD>n (x⊗ x) + Ūx = Āx[2] + Ūx.
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