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Abstract— In this work a distributed model predictive
control scheme (dMPC) is proposed for a multi-agent team
that is subject to a set of time-constrained spatial tasks
encoded in Signal Temporal Logic (STL). Here, the agents
are subject to both individual and collaborative STL tasks.
In order to ensure the satisfaction of the collaborative tasks
while avoiding the computational burden of a centralized
problem, we propose a sequential dMPC scheme and show
the recursive feasibility property of the framework given
appropriately designed terminal ingredients. The resulting
MPC problems are solved in discrete-time yet continuous-
time satisfaction of the STL tasks is ensured with appropri-
ate tightening of the constraint sets.

Index Terms— Model Predictive Control, Multi-agent sys-
tems, Signal Temporal Logic, Sampled-data control

I. INTRODUCTION

S IGNAL Temporal Logic (STL) [1] is a formal specifi-
cation language capable of expressing complex tasks that

need to be performed within strict deadlines. Contrary to other
logics, STL is evaluated over continuous time signals and is
equipped with a metric [2] that determines how well the STL
task is satisfied. Control under STL specifications for single-
agent systems has been considered in [3]–[10]. In [3]–[6] the
STL tasks are encoded as constraints to an integer program
that aims at maximizing the space or time robustness of the
formula. These approaches address the design of discrete-
time plans and thus cannot ensure the satisfaction of the
STL task in continuous time. Continuous time constraint
satisfaction has been studied in [7] where the satisfaction
of the STL constraints in continuous time is ensured by
enforcing the minimum value of a control barrier function
over each sampling interval to be non-negative. In [8]–[10] the
satisfaction of the STL formula is ensured using control barrier
function based feedback controllers for nonlinear, continuous-
time, input-affine systems.

In the context of multi-agent control distributed or decen-
tralized approaches have been studied in [11]–[14]. In [11] a
hierarchical MPC scheme is proposed for a multi-agent team
subject to local motion and safety STL tasks and global com-
munication tasks expressed in spatial-temporal logic (SpaTeL).
A two step approach is proposed in [12] for the satisfaction
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of local motion, local safety and global cooperative STL
tasks, where agents re-compute their plans in a hierarchical,
iterative manner using information from other agents to ensure
satisfaction or minimal violation of the global tasks. In [13]
a parallel distributed scheme is presented for single-integrator
systems subject to reachability and safety tasks that is guar-
anteed to be recursively feasible with appropriately designed
terminal sets. In all the aforementioned works continuous time
satisfaction of the STL formulas is not guaranteed while all
of them are tailored to reach-avoid problems. General STL
tasks are tackled in [14], where decentralized continuous-time
feedback controllers are designed using time-varying control
barrier functions (CBFs). This approach is shown to be more
computationally efficient alleviating integer encoding of the
STL constraints. Yet designing CBF functions for systems
subject to input constraints is still non-trivial. The problem
of control under STL specifications with limited actuation
has been considered in our previous work [15], where a
continuous-time, centralized MPC scheme was proposed for
linear systems subject to state, STL and input constraints. In
the proposed problem the planning horizon of the problem can
be chosen arbitrarily small and independent of the horizon of
the STL formula given initial feasibility thanks to appropri-
ately designed terminal sets.

Considering the favorable properties of the previous prob-
lem formulation in [15], in this work we propose a sequential
distributed sampled-data MPC scheme for a multi-agent team
with limited actuation capabilities that is subject to individual
and cooperative STL tasks. In the proposed scheme each agent
plans its own actions given information from other agents in
the team in a hierarchical manner and sends its plan along
with state information of higher in the hierarchy agents to its
immediate neighbors. The designed plans are then executed
synchronously when the last agent has planned its action.
The sampled-data scheme ensures the satisfaction of the STL
formula in continuous time by only evaluating a finite number
of constraints thanks to an appropriate tightening of the
initial constraint sets. The proposed framework is then shown
to be recursively feasible thanks to appropriately designed
local terminal constraints while the resulting control laws are
piecewise constant and thus can be easily implemented by
modern digital controllers.

II. PRELIMINARIES AND PROBLEM FORMULATION

True and false are denoted by ⊤,⊥ respectively. Scalars and
vectors are denoted by non-bold and bold letters respectively.



Given a finite set V ⊂ N,
∏

k∈V Xk denotes the Cartesian
product of the sets Xk, k ∈ V. diag(A1, . . . , An) denotes
the block matrix with main diagonal elements the matrices
A1, . . . , An. Given a convex set C ∈ Rm×n we define the set to
set mapping as C−1(Y ) := {z ∈ Rn : Cz ∈ Y,∀C ∈ C}. For
a mapping f : Rm → Rn and set C ⊆ Rm let f(C) := {f(x) :
x ∈ C}. A directed graph G is defined as a pair G = (V, E),
where V := {1, . . . , R} ⊂ N is a finite set of nodes and
E ⊆ V × V is the set of directed edges of G. The set of
neighbors of the r-th node, i.e., the set of nodes with incoming
edges to r, is defined as Nr := {r′ ∈ V : (r′, r) ∈ E}.

A. Signal Temporal Logic (STL)

Signal Temporal Logic (STL) determines whether a pred-
icate µ is true or false. The validity of each predicate µ
is evaluated based on a continuously differentiable function
h : Rn → R as follows: µ = ⊤, if h(ζ) ≥ 0, or µ = ⊥,
otherwise. The basic STL formulas are given by the grammar:
ϕ := ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | G[a,b]ϕ | F[a,b]ϕ | ϕ1 U[a,b] ϕ2
where ϕ1, ϕ2 are STL formulas and G[a,b], F[a,b], U[a,b] is the
always, eventually and until operator defined over the interval
[a, b] with 0 ≤ a ≤ b <∞. Let ζ |= ϕ denote the satisfaction
of the formula ϕ by a signal ζ : R≥0 → Rn. The formula ϕ
is satisfiable if ∃ ζ : R≥0 → Rn such that ζ |= ϕ. The STL
semantics and robust semantics for a signal ζ : R≥0 → Rn

are recursively determined. The exact definitions can be found
in [1], [2] but omitted here due to space limitations. Note that
ζ |= ϕ, if ρϕ(ζ, 0) > 0.

B. Encoding STL tasks with continuous variables

For every task of the form φi = T[ai,bi](hi(ζ(t)) ≥ 0),
where T = {G,F} the authors in [10] define the continuous
function bi : Rn × R≥0 → R as bi(ζ(t), t) = −γi(t) +
hi(ζ(t)), where hi : Rn → R is the predicate function
corresponding to the task and γi : R≥0 → R is a temporal
function which ensures the satisfaction of φi at time t∗i with
a minimum robustness ρ̄, where ρ̄ > 0 is a designer’s choice.
Here, t∗i = ai if T = G and t∗i ∈ [ai, bi] otherwise.
Here, we consider a piecewise linear function defined as:
γi(t) =

γi,∞−γi,0

t∗i
t+γi,0, if t < t∗i or γi(t) = γi,∞ otherwise,

where γi,0, γi,∞ are parameters to be tuned to ensure that
hi(ζ(0)) ≥ γi,0 and γi,∞ > max(ρ̄, γi,0). For more details
on the design of γi(t) the reader may refer to [14]. Finally,
for each STL formula φi we define the set Σi as follows:
Σi = {ai, bi : ai ̸= 0}, if T = G or Σi = {t∗i : t∗i ̸= 0},
otherwise. In the latter case t∗i ̸= 0 ensures that only eventually
tasks not trivially satisfied at t = 0 are considered. This set
will be later used to define the time-varying constraint sets of
the MPC scheme.

C. Multi-Agent Dynamics

Consider a team of R agents. Each agent r ∈ V :=
{1, . . . , R} is modelled as a linear system whose dynamics
are given as follows:

ẋr = Arxr +Brur, (1)

where Ar ∈ Rnr×nr , Br ∈ Rnr×mrand xr ∈ Rnr , ur ∈ Rmr

is the state and input of agent r. Here, each agent is subject
to state and input constraints of the form xr ∈ Xr and ur ∈
Ur, where Xr,Ur are compact, polyhedral sets. For simplicity
we will assume them to be box sets, i.e., sets of the form
Xr =

∏nr

k=1[x
r
min,k, x

r
max,k] and Ur =

∏mr

k=1[u
r
min,k, u

r
max,k]

but note that the proposed approach can be extended to general
compact sets of the form {yr : Cy

r yr ≤ cyr }, where y ∈
{x,u}.

D. Problem Formulation
In this work the agents are assumed to be subject of a global

STL task ϕ described by the following fragment:

ψ := ⊤ | µ | ¬µ | ψ1 ∧ ψ2 (2a)
φ := G[a,b]ψ | F[a,b]ψ | ψ1 U[a,b] ψ2 (2b)
ϕ := φ1 ∧ . . . ∧ φq̄ (2c)

where ψ1, ψ2 are STL formulas of the form (2a), φ1, . . . , φq̄

are STL formulas of the form (2b) and a ≤ b < ∞. In the
following we will assume that ϕ is defined as a conjunction
of always and eventually STL tasks as the satisfaction of
the formulas G[a,t′]ψ1 ∧ F[t′,t′]ψ2,

∧
l(F[t′,t′]ψl) implies the

satisfaction of ψ1 U[a,b] ψ2, and F[a,b](
∧

l ψl), respectively,
when t′ ∈ [a, b]. In particular we consider the following global
STL task:

ϕ =
∧
r∈V

∧
i∈Ir

φ̄i ∧
∧
i∈I

φi, (3)

where
∧

i∈Ir
φ̄i, r ∈ V are individual tasks assigned to

agent r and
∧

i∈I φi are collaborative tasks, where Ir :=
{1, . . . , sr}, r ∈ V and I := {1, . . . , s}. Examples of
collaborative tasks are moving in a formation, connectivity
maintenance or collision avoidance while examples of indi-
vidual tasks are reaching a desired region or avoiding a static
obstacle. For every i ∈ I, let Vi ⊆ V be the set of indices of
the agents involved in the satisfaction of φi.

Based on the above we can define the problem considered
in this work as follows:

Problem 1. Consider a team of agents V whose states evolve
over time according to (1). The agents are subject to a global
STL task ϕ defined by (3). Based on the above, design the
control input ur(t) ∈ Ur for each agent r ∈ V over the time
interval [0, T ) for a known T > 0 using only local information
such that: 1) ρϕ(x, 0) ≥ ρ̄, where ρ̄ is a design parameter and
2) xr(t) ∈ Xr for every r ∈ V and t ∈ [0, T ].

III. CENTRALIZED MPC
We begin by introducing the centralized MPC problem for

the multi-agent team under the STL constraints introduced in
(3). We denote the stacked vector of the states of the agents in
Vi and V by xVi ∈

∏
r∈Vi

Xr ⊂ Rni , and x ∈
∏

r∈V Xr ⊂ Rn

respectively, where ni =
∑

r∈Vi
nr and n =

∑
r∈V nr.

For every individual STL task φ̄i, i ∈ Ir, r ∈ V and every
collaborative task φi, i ∈ I define the functions bi : Rnr ×
R≥0 → R and bi : Rni × R≥0 → R as in Section II-B as
follows:

bi(xr(t), t) = −γi(t) + hi(xr(t)), i ∈ Ir (4a)



bi(x
Vi(t), t) = −γi(t) + hi(x

Vi(t)), i ∈ I, (4b)

where γi : R≥0 → R, γi : R≥0 → R are appropriately
designed temporal functions ensuring the satisfaction of the
corresponding task with robustness ρ̄ > 0 and hi : Rnr → R,
hi : Rni → R, is the predicate function corresponding to φ̄i

and φi, respectively. Here, we make the following assumption:

Assumption 1. The predicate functions hi : Rnr → R, i ∈
Ir, r ∈ V and hi : Rni → R, i ∈ I are linear.

Assumption 1 is introduced to ensure that the constraint
set of the proposed MPC is polyhedral. Similar assumptions
have been made for planning under STL specifications e.g., in
[3], [4]. Such functions can be used to innerapproximate the
superlevel set of more complex, nonlinear predicate functions
offering computational benefits in the implementation of the
MPC in real time at the cost of a certain conservatism in
expressing the spatial tasks.

Definition 1. A task φi = T[ai,bi](hi(x
Vi) ≥ 0), i ∈ I (or

φ̄i = T[ai,bi](hi(xr) ≥ 0), i ∈ Ir, r ∈ V) is called active at
time t iff t ∈ [0, bi]\Σi, when T = G or t ∈ [0, t∗i ]\Σi, when
T = F .

Roughly speaking, Definition 1 determines the tasks that
have not been satisfied yet at t. We denote the set of active
cooperative tasks at time t by A(t) and the active individual
tasks of agent r at t by Ar(t). Let N > 0 denote the
optimization horizon of the problem and assume that the
agents’ states are available at time instants τj , j ∈ J :=
{0, 1, . . . ,M} where τ0 = 0,M ≤ +∞. Here, we pose the
following assumption on τj :

Assumption 2. Consider the monotonically increasing se-
quence {τj}Mj=0 with τ0 = 0, τM1+1 = max(Σ\ΣG) and
M > M1 + 1, where ΣG :=

⋃
i∈I{ai : φ′

i = G[ai,bi]µ
′
i},

I = I ∪
⋃

r∈V Ir. Then, for every σ ∈ Σ, where Σ :=⋃
i∈I Σi, there exists j ∈ J = {1, . . . ,M} such that σ = τj .

In addition, for every j ∈ J1 := {0, . . . ,M1} ⊂ J there
exists j′ ∈ J such that τj′ = τj +N.

Assumption 2 ensures that it is always possible to obtain the
state of the agents at the time instants at which a constraint
expressing the satisfaction of a given STL task is deactivated.
In addition, since the sampling instants are not necessarily
periodic it ensures that τj +N is a sampling instant as well.
Let p : J1 → J be a function that assigns each j ∈ J1 to
some j′ ∈ J such that τp(j) = τj + N, where j′ = p(j).
For example, if periodic sampling is considered and N = kδ,
where k ∈ N and δ > 0 is the sampling period, then p(j) =
j+k. At each time instant τj , j ∈ J1 we consider the following
continuous-time optimization problem:

inf
ur,r∈V

∑
r∈V

∫ τp(j)

τj

Lr(ur(t),xr(t))dt (5)

ẋr(t) = Arxr(t) +Brur(t), xr(τj) = xj
r (5a)

bi(xr(t), t) ≥ 0, i ∈ Ar(t) (5b)

bi(x
Vi(t), t) ≥ 0, i ∈ A(t) (5c)

xr(τp(j)) ∈ Xf
r (τp(j)), (5d)

xr(t) ∈ Xr, ur(t) ∈ Ur, (5e)

for every r ∈ V and t ∈ Tj := [τj , τj + N), where the
admissible inputs ur(t), r ∈ V are assumed to be piece-
wise continuous, Lr : Rnr × Rmr → R is a continuously
differentiable function with respect to the state and input
of agent r, xj

r ∈ Rnr is the measured state of agent r
at τj , and Xf

r (t) ⊆ Xr, r ∈ V is a polyhedral terminal
set defined with respect to the states of the r-th agent only
satisfying certain properties discussed in detail in Section IV.
Let Xr(t) = {xr ∈ Xr : (5b) is satisfied at t}, r ∈ V
and X (t) = {x ∈

∏
r∈V Xr : (5c) is satisfied at t}. If

Ar(t) = ∅ or A(t) = ∅ at some t, then we write Xr(t) = Xr

and X (t) =
∏

r∈V Xr, respectively. Observe that due to
Assumption 1 the sets X (t) and Xr(t), r ∈ V, are polyhedral.
Nevertheless, despite the linear nature of the system dynamics
and constraints the continuous-time MPC problem (5) is often
hard to be solved in practice as it requires the satisfaction of
an infinite number of constraints in every time interval Tj .

Next, we will design a discrete-time MPC problem that
requires the evaluation of the state constraints over a finite
number of points while continuous-time constraint satisfaction
will be ensured by appropriate tightening of the constraints.

Let ur(t) :=
∑

j∈J oj(t)u
j
r, be a piecewise constant

control input, where oj(t) = 1, if t ∈ T j , or oj(t) = 0,
otherwise, T j := [τj , τj+1) and uj

r ∈ Rmr is the constant
control input within T j . Let further xr(t; τ0,x

0
r,ur), x

j
r :=

xr(τj ; τ0,x
0
r,ur) denote the continuous-time solution of (1)

when ur(t) is applied to the system at time t and τj , j ∈ J ,
respectively. The stacked vector of the solutions of all agents
at time t and τj is denoted by x(t; τ0,x

0,u) and xj :=
x(τj ; τ0,x

0,u), respectively. For each r ∈ V the solution of
(1) at time t ∈ T j is given by:

xr(t; τj ,x
j
r,ur) = ∆r(t− τj)xj

r + Γr(t− τj)uj
r, (6)

where ∆r(t) := exp (Art) and Γr(t) :=
∫ t

0
exp (Ars)Brds.

Then, the local constraint xr(t) ∈ Xr(t) and the coupled
constraints x(t) ∈ X (t) can be expressed for t ∈ T j as:

∆r(t− τj)xj
r + Γr(t− τj)uj

r ∈ Xr(t), (7a)

∆(t− τj)xj + Γ(t− τj)uj ∈ X (t), (7b)

where ∆(t) := diag(∆1(t), . . . ,∆R(t)) and Γ(t) :=
diag(Γ1(t), . . . ,ΓR(t)). We start with our first observation
depicted in the following lemma:

Lemma 1. Define Φr(t) =
[
∆r(t) Γr(t)

]
, r ∈ V, Φ(t) =[

∆(t) Γ(t)
]

and dj = τj+1 − τj for j ∈ J and let
Assumptions 1-2 hold. Then, the following are true:

(xj
r,u

j
r) ∈ Z

j

r ⇒ xr(t; τj ,x
j
r,ur) ∈ Xr(t), ∀t ∈ T j (8a)

(xj ,uj) ∈ Zj ⇒ x(t; τj ,x
j ,u) ∈ X (t), ∀t ∈ T j (8b)

where Zj

r :=
⋂

w∈[0,dj)
(Φr(w))

−1(X̄r(τj+1)), r ∈ V, Z
j
:=⋂

w∈[0,dj)
(Φ(w))−1(X̄ (τj+1)), X̄r(τj+1) := limt→τ−

j+1
Xr(t)

and X̄ (τj+1) := limt→τ−
j+1
X (t).

Proof. Observe that constraints (5b)-(5c) and (5d) potentially
become only a subset of the initial constraint set corresponding



to the STL formulas defined in (3). Those constraints are
gradually deactivated according to Definition 1 at time instants
σ ∈ Σ = {σ1 ≤ . . . ≤ σp ≤ σp+1 ≤ . . .}. By design of
(4), and due to the monotonicity of γi(t), i ∈ Ir, r ∈ V and
γi(t), i ∈ I (discussed in Section II-B), the constraint sets
have the following property: Xr(t2) ⊆ Xr(t1) for every r ∈ V
and X (t2) ⊆ X (t1), where σp ≤ t1 ≤ t2 < σp+1. Observe
that due to Assumption 2, the deactivation times σ ∈ Σ are
also sampling instants. We distinguish among two cases: i)
τj+1 /∈

⋃
i∈Ir

Σi and ii) τj+1 ∈
⋃

i∈Ir
Σi. For case (i) note

that X̄r(τj+1) = Xr(τj+1) due to the continuity of γi(t) and
since the constraints determining Xr(τj+1 − ϵ),Xr(τj+1) are
the same for a sufficiently small ϵ > 0. In addition, for case
(ii) it holds that X̄r(τj+1) ⊆ Xr(τj+1) as there exists at least
one constraint that is removed from Xr(τj+1) at τj+1 while
for the rest it holds that limt→τ−

j+1
γi(t) = γi(τj+1) due to

the continuity of γi(t). Nevertheless, in both cases, due to
the property of the constraint sets mentioned above it follows
that X̄r(τj+1) ⊆ Xt(t), for every t ∈ T j . Therefore, imposing
the stricter condition xr(t; τj ,x

j
r,ur) ∈ X̄r(τj+1), for every

t ∈ T j we can conclude that xr(t; τj ,x
j
r,ur) ∈ Xr(t), t ∈ T j .

By (6) the constraint xr(t; τj ,x
j
r,ur) ∈ X̄r(τj+1),∀t ∈ T j is

equivalent to ∆r(t− τj)xj
r + Γr(t− τj)uj

r ∈ X̄r(τj+1),∀t ∈
T j which by definition of the pre-image and the fact that
Φr(t) =

[
∆r(t) Γr(t)

]
implies that (xj

r,u
j
r) ∈ (Φr(t −

τj))
−1(X̄r(τj+1)),∀t ∈ T j . The latter set of constraints is

equivalent to (xj
r,u

j
r) ∈

⋂
t∈T j

(Φr(t − τj))
−1(X̄r(τj+1))

which results in (8a) after setting w = t − τj . Similar
arguments can be made for (8b). ■

To further simplify the constraints we will consider poly-
topic overapproximations of Φr(w) over the intervals [0, dj).

Definition 2 ([16]). Let f : R→ Rn. A polytope C is called
a polytopic overapproximation of f over the interval [0, d) if
f([0, d)) ⊆ C.

Lemma 2. For every j ∈ J , let Sjr , r ∈ V and Sj be
any polytopic overapproximation of Φr and Φ over [0, dj)
respectively. Define the sets Zj

r = (Sjr )−1(X̄r(τj+1)), r ∈ V
and Zj = (Sj)−1(X̄ (τj+1)). Then, the following hold for all
w ∈ [0, dj):

(xj
r,u

j
r) ∈ Zj

r ⇒ ∆r(w)x
j
r + Γr(w)u

j
r ∈ X̄r(τj+1), r ∈ V

(xj ,uj) ∈ Zj ⇒ ∆(w)xj + Γ(w)uj ∈ X̄ (τj+1).

Proof. The proof follows similar arguments to [16, Lem. 1].
■

Polytopic overapproximations for functions of the form
∆r(t),Γr(t) (or ∆(t),Γ(t)) have been studied extensively e.g.,
in [17]. The interested reader may refer to [16], [17] and
references therein for more details.

Remark 1. Here, we consider aperiodic sampling in order
to account for cases when the deactivation points in Σ do
not have a common divisor. If a common divisor exists and
periodic sampling is considered, then the the number of
polytopic overapproximations per agent is reduced to one.

Based on the above we may define the sampled-data MPC
for the centralized system as follows:

inf
uk

r ,r∈V,k∈T ′
j

∑
r∈V

∑
k∈T ′

j

Lr(u
k
r ,x

k
r ) (9)

xk+1
r = Ak

rx
k
r +Bk

ru
k
r , x

j
r = xj

r, r ∈ V (9a)

(xk
r ,u

k
r ) ∈ Zk

r , r ∈ V (9b)

(xk,uk) ∈ Zk, (9c)

xp(j)
r ∈ Xf

r (τp(j)), r ∈ V (9d)

uk
r ∈ Ur, r ∈ V (9e)

for every k ∈ T ′
j := {j, . . . , p(j) − 1}, where Zk

r , r ∈ V,Zk

are the sets defined in Lemma 2, Ak
r := ∆r(dk) and Bk

r :=
Γr(dk), for every k ∈ T ′

j .

Proposition 1. Let Assumptions 1-2 hold. If for a fixed
j ∈ J1 and a given initial condition xj = xj the feasible
set UN (xj) := {uk, k ∈ T ′

j : (9a)-(9e) are satisfied} is
non-empty, then for a feasible control sequence (uk, k ∈
T ′
j) ∈ UN (xj), where uk =

[
ukT
1 . . . ukT

R

]T
, the fol-

lowing hold: 1) xr(t; τj ,x
j
r,ur(t)) ∈ Xr(t), r ∈ V and 2)

x(t; τj ,x
j ,u(t)) ∈ X (t) for every t ∈ Tj , where ur(t) := uk

r ,
for every t ∈ T k, k ∈ T ′

j , and xj ,u(t) are the stacked vectors
of xj

r,ur(t), r ∈ V respectively.

Proof. The proof follows from Lemmas 1-2 after noting that
Zk

r ⊆ Z
k

r , r ∈ V, and Zk ⊆ Zk
, for every k ∈ T ′

j . ■

IV. DISTRIBUTED SAMPLED-DATA MPC

In previous sections we focused on a centralized MPC
problem formulation which is known for not scaling well with
the number of the agents R. To that end, in this section we will
design a sequential dMPC framework in which each agent is
responsible for designing its own plan using state information
from the other agents in the team. To facilitate the analysis
later we pose the following assumption:

Assumption 3. There exist control laws κr : Rnr × R≥0 →
Ur, r ∈ V such that the following hold for every k ∈
{0, . . . , p(M1)} :

κr(xr, t) = ur, t ∈ T k,xr ∈ Xf
r (τk), r ∈ V

(xr,κr(xr, τk)) ∈ Zk
r , xr ∈ Xf

r (τk), r ∈ V
(x,κ(x, τk)) ∈ Zk, x ∈ Xf (τk),

Ak
rxr +Bk

rur ∈ Xf
r (τk+1), r ∈ V

where Xf (τk) :=
∏

r∈V Xf
r (τk), κ(x, t) is the stacked vector

of κr(xr, t), r ∈ V and ur ∈ Ur is a constant, known vector.

In the proposed dMPC framework the MPC problem corre-
sponding to the r-th agent at time τj , j ∈ J1\{0} is defined
as follows:

inf
uk

r ,k∈T ′
j

∑
k∈T ′

j

Lr(u
k
r ,x

k
r ) (10)

xk+1
r = Ak

rx
k
r +Bk

ru
k
r , xj

r = xj
r, (10a)



(xk
r ,u

k
r ) ∈ Zk

r , (10b)

(x̃k, ũk) ∈ Zk, (10c)

xp(j)
r ∈ Xf

r (τp(j)), (10d)

uk
r ∈ Ur, (10e)

where the constraints are evaluated for every k ∈ T ′
j . Here,

x̃k, ũk, k ∈ T ′
j are defined for each agent r according to its

order in the hierarchy as follows:

x̃k =
[
xk,∗T
1 . . . xk,∗T

r−1 xkT
r xk,−T

r+1 . . . xk,−T
R

]T
,

ũk =
[
uk,∗T
1 . . . uk,∗T

r−1 ukT
r uk,−T

r+1 . . . uk,−T
R

]T
,

(11)

where xk,∗
r ,uk,∗

r denote the optimal state and control input
of (10) at time step k computed at τj and xk,−

r ,uk,−
r the k-

th optimal state and control input computed at τj−1, j ≥ 1.
Note that for every j ∈ J1\{0} and every k ∈ J ∩ [p(j −
1), p(j)− 1], i.e., for all sampling instants τk, k ∈ J between
τj−1 + N and τj + N, the control input uk,−

r is chosen as
uk,−
r = κr(x

k,−
r , τk), where κr(xr, t), r ∈ V is the terminal

control input of Assumption 3. If p(j) = p(j − 1) + 1, i.e.,
when τj−1 + N and τj + N are consecutive time instants
within {τk : k ∈ J }, then x

p(j),−
r is chosen as the solution

of the system defined in (10a) under the terminal control
κr(x

p(j−1),−
r , τp(j−1)). On the other hand, if due to the

aperiodic sampling there exist τk such that τj−1 +N < τk <
τj +N, then for every k ∈ J ∩ [p(j − 1) + 1, p(j) − 1], xk

r

is chosen as the solution of (10a) under the terminal control
κr(x

k−1,−
r , τk−1).

Here, we assume that agents are capable of communicating
with a small subset of their peers. Let G = (V, E) be a static,
directed communication graph with (r′, r) ∈ E iff r′ is capable
of sending information to agent r. We make the following
assumption on G :

Assumption 4. The graph G = (V, E) is a static, cyclic graph
with E := {(r, r + 1) : r ∈ V\{R}} ∪ {(R, 1)}.

Assumption 4 restricts the choice of the communication
graph to one with a small number edges ensuring that agents
receive the necessary information to solve (10). Other choices
of graphs can also be made as long as each agent r receives
state information for all other agents involved in the same STL
tasks.

Motivated by [18], we propose solving the dMPC problems
according to Algorithm 1. For r ∈ V, let Vr := {r′ ∈
V : r′ > r} and Vr := V\(Vr ∪ {r}) be the downstream
and upstream agents of the r-th agent, respectively. Note that
for r = 1, V1 = ∅ holds. At τ0 = 0 we propose solving
the centralized MPC problem (9). At future sampling instants
τj , j ∈ J1\{0} the r-th agent receives from agent r′ ∈ Nr the
necessary information to create (x̃k, ũk), k ∈ T ′

j and solves
(10). Here, due to Assumption 4 the set Nr, r ∈ V is defined
as Nr := {r − 1}, if r ∈ V\{1} or Nr := {R}, otherwise.
When everyone computes its optimal solution, all agents apply
synchronously their first control input over T j until the next
state measurements become available and the procedure is
repeated.

Algorithm 1: dMPC scheme

Input: Initial states x0
r, r ∈ V

for j ∈ J1 do
if j = 0 then

Solve the centralized MPC problem (9);
else

r = 1;
while r < R+ 1 do

For every k ∈ T ′
j , receive

(xk,−
r ,uk,−

r ), r ∈ Vr and
(xk,∗

r ,uk,∗
r ), r ∈ Vr from agent r′ ∈ Nr;

Create x̃k, ũk, k ∈ T ′
j based on (11);

Solve the local MPC problem (10);
r ← r + 1;

end
end
Each r ∈ V applies ur(t) = uj∗

r , for every t ∈ T j ;
end

Theorem 1. Let Assumptions 1-4 hold. If (9) is feasible at
τ0 = 0, then the dMPC scheme of Algorithm 1 is recursively
feasible. In addition, ρϕ(x, 0) ≥ ρ̄.

Proof. ρϕ(x, 0) ≥ ρ̄ is ensured by design of Zk
r , r ∈

V and Zk, k ∈ {0, . . . , p(M1)} (Lemma 2) provided
that the proposed dMPC scheme is recursively feasi-
ble. The recursive feasibility property of the dMPC
scheme will be shown by induction. Consider the fol-
lowing candidate control sequence for agent r: ur =[
u1,−T
r . . . u

p(0)−1,−T
r û

p(0)
r . . . û

p(1)−1
r

]T
, where

ûk
r = κT

r (x
k,−
r , τk), k ∈ J ∩ [p(0), p(1) − 1]. At τ1 agent 1

receives the state and control information of the downstream
agents. After setting (xk

1 ,u
k
1) = (xk,−

1 ,uk,−
1 ) it defines x̃k, ũk

for every k ∈ {1, . . . , p(1) − 1}. For k ∈ {1, . . . , p(0) − 1}
note that (10a)-(10c) and (10e) are satisfied with the pro-
posed control sequence u1 by feasibility of (9) at τ0. By
Assumption 3, (10a)-(10c) and (10e) are satisfied for k ∈
J ∩ [p(0), p(1)−1] and x

p(1)
1 ∈ Xf

1 (τp(1)). Hence, u1 ensures
feasibility of (10) when r = 1. Following similar arguments
for r > 1 define x̃k, ũk for every k ∈ {1, . . . , p(1) − 1}
using the information sent by agent r − 1 and after setting
(xk

r ,u
k
r ) = (xk,−

r ,uk,−
r ). Then, note that (10a)-(10c) and

(10e) are satisfied for k ∈ {1, . . . , p(0)− 1} due to feasibility
of (9) and (10) for r−1. In addition, (10a)-(10c) and (10e) are
satisfied for k ∈ J ∩ [p(0), p(1) − 1] and x

p(1)
r ∈ Xf

r (τp(1))
by Assumption 3. Hence, ur is feasible. Finally, note that
feasibility at τj+1, j ∈ J1\{0} given feasibility at τj can be
shown similarly since the information agent 1 receives from
the R-th agent at τj+1 includes the optimal solutions of all
agents at τj , i.e., it is analogous to the information r = 1
received at τ0. ■

V. SIMULATION EXAMPLE

The proposed dMPC scheme is applied to a vehicle coor-
dination scenario considering R = 3 vehicles modelled as
double integrators, i.e., q̈r = ur, where qr, q̇r,ur ∈ R2
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Fig. 1: Control inputs and evolution of the predicate functions
with the proposed dMPC scheme.

is the position, velocity and acceleration of the r-th agent
respectively and thus xr =

[
qT
r q̇T

r

]T
. The team is subject

to the task ϕ =
∧5

i=1 φi, where φ1 = G[5,20]
∧4

l=1 µl, φ2 =
G[0,20](µ5∧µ6), φ3 = G[0,10](µ7∧µ8), φ4 = F[18,20]µ9, φ5 =
G[15,20](µ10∧µ11), where each predicate µl, l ∈ {1, . . . , 11} is
evaluated by the corresponding predicate function hl(x) given
by: h1(x2,x3) = q12−q13−ds, h2(x3) = q23−y1+ϵ, h3(x3) =
−q23 + y1 + ϵ, h4(x2,x3) = q̇12 − q̇13 − dv, h5(x1,x2) =
q11−q12−ds, h6(x1,x2) = q̇11− q̇12−dv , h7(x1) = q21−y1+ϵ,
h8(x1) = −q21+y1+ϵ, h9(x1) = −q11+xgoal+d

′
s, h10(x1) =

q21 − y2 + ϵ, h11(x1) = −q21 + y2 + ϵ, where qr =
[
q1r q2r

]T
and q̇r =

[
q̇1r q̇2r

]T
. The sampling period is chosen to be

0.1 time steps, N = 2.9 and Lr(x
k
r ,u

k
r ) = ∥uk

r∥22. Here,
ϵ = 0.06, y1 = 2, y2 = 6, ds = 3, dv = 0.5, d′s = 2 and
xgoal = 60. We set Xr = [0, 100]× [0, 8]× [0, 10]× [−10, 10],
for every r ∈ V\{2}, X2 = [0, 100]× [0, 8]× [0, 10]×{0}, and
Ur = [−10, 10]2, r ∈ V and enforce the satisfaction of ϕ with
a minimum robustness ρ̄ = 0.05 choosing t∗i = bi for every
eventually formula φi, i ∈ I. The polytopic overapproxima-
tions over [0, 0.1) are computed using the real Jordan form
of Ar as in [17]. The initial states of the agents are given as
follows: x1(0) =

[
8 2 2 0

]T
, x2(0) =

[
5 2 1 0

]T
and x3(0) =

[
0 6 0.45 0

]T
. In Figure 1 the control

inputs and evolution of the predicate functions over the horizon
of the formula are given with hl(x) ≥ 0.05, l ∈ {1, . . . , 11}
over the desired time intervals. Despite the small number
of agents a significant decrease on the computational time
as well as similar performance to to the centralized MPC
problem (cMPC) has been observed. In particular the average
computational time of the proposed dMPC for agents 1, 2, 3 is
0.12, 0.05 and 0.09 s, respectively, as opposed to 0.72s of the
cMPC while the maximum absolute difference of the predicate
function values over i ∈ I and t ∈ [0, 20] when evaluated
using the solutions of the dMPC and cMPC is 1.6 · 10−3. All
computations were performed on an Intel Core i7-8665U with
16GB RAM using quadprog in MATLAB.

VI. CONCLUSIONS

In this work a sampled-data distributed MPC problem is
presented for linear systems subject to coupled STL tasks.
The local MPC problems are solved sequentially and the

recursive feasibility property of the framework is guaranteed.
The resulting controllers are piecewise constant and the closed
loop trajectories ensure the satisfaction of the STL task in
continuous time. Future work will focus on the design of a
parallel MPC scheme for more complex nonlinear systems.
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