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Abstract—In this paper, the problems of event-triggered and
self-triggered control of nonlinear systems are addressed. In
particular, by exploiting certain stability assumptions for the
continuous-time system as well as the Lipschitz properties of
the system’s dynamics, strategies are presented that guarantee
the stability of the sampled closed-loop system. By enforcing an
updating threshold strategy, at each event instant, the controller
is updated to preserve the system’s stability properties, while the
triggering mechanism is also updated which may reduce future
controller updates.

Index Terms—Stability of nonlinear systems, Networked con-
trol systems

I. INTRODUCTION

THE problem of event-based stabilization of nonlinear
systems

ẋ = f(x, u), x ∈ Rn, u ∈ Rm,
f(0, 0) = 0

(1)

has been extensively studied in the recent literature, see for
instance [4], [7], [8], [13], [15], [16], [18], [19], [22], [27] and
references therein. Compared to traditional sample-and-hold
frameworks where the controller is updated periodically, [12],
[17], event-triggered techniques use a mechanism to monitor
the real-time state of the system and generate the sampling
times only when necessary resulting in aperiodic controller
updates. Such a mechanism was presented in [22], to establish
asymptotic stability of the closed-loop system and show the
existence of a lower bound between two consecutive sampling
times. The event-based strategies require the constant monitor-
ing of a certain mechanism. In order to reduce the computation
time and resources, self-triggered control methodologies were
proposed where the next controller update time is generated
based on the last measurement of the system’s state, see for
instance [1], [2], [13], [25], [26].

Several of the aforementioned works require certain input-
to-state stability (ISS) assumptions. For linear systems, ISS is
inherent from the stabilizability of the system. However, for
nonlinear systems, this property holds globally only for some
special cases, see [5], [6]. In this paper, the problems of self-
triggered and event-triggered control are addressed, when the
stabilizing feedback does not necessarily render the closed-
loop system (1) globally ISS with respect to measurement
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errors. Our approach is based on global asymptotic stability
assumptions which are weaker than ISS, [21], and the (locally)
Lipschitz dynamics which provide a certain degree of local ro-
bustness, [20], [21]. In particular, in Section II, a self-triggered
control strategy is presented for globally asymptotically sta-
bilizable systems (1) that drives the state of the system from
one level set to a sequence of inner level sets. Compared to
[24], the updating threshold strategy allows to bound the state
of the system in an arbitrarily small neighborhood and may
reduce the number of controller updates. In Section III, under
exponential stability assumptions, event-based conditions are
presented through which, when an event occurs, the controller
is updated to preserve the stability properties of the system
while the triggering condition is also updated which may
reduce future controller updates. While the proposed meth-
ods provide semi-global results, several comments are also
included for the extension to the global case. A preliminary
version of the results of Section III was reported in [23] for
affine in the control systems without the updating threshold
strategy. Finally, in Section IV, examples and simulations are
included to illustrate the proposed techniques.

It is important to point out that event-based techniques that
do not require global ISS assumptions can be found in [15]
which is applicable only to affine in the control systems and
in [19] which does not provide a lower bound on the inter-
event period. Also, L2-gain stability assumptions were used
in [4] and [18, Theorem 3] for system (1) with additional
growth conditions on the sampling induced error to guaran-
tee a minimum inter-event time. Finding the corresponding
functions to satisfy these conditions may be hard for general
nonlinear systems. Self-triggered rules were also presented
in [2] and [25] which required additional assumptions and
were applicable only to locally stabilizable systems. Further
comparisons with the relative literature are also included after
our results in Sections II and III.

Notations. A function α : R≥0 → R≥0 is of class K∞,
if it is continuous, strictly increasing with α(0) = 0 and
lims→∞ α(s) =∞. By |x| we denote the Euclidean norm of a
vector x ∈ Rn. A function f : Rn → Rn is Lipschitz on com-
pact sets if for every compact S ⊂ Rn there exists a constant
LS > 0 such that |f(x)−f(y)| ≤ LS |x−y|, for every x, y ∈ S
with LS := inf{L > 0 : |f(x)− f(y)| ≤ L|x− y|, x, y ∈ S}.

II. SELF-TRIGGERED CONTROL

In this section we design a self-triggered mechanism of the
form tk+1 = tk + Σ(x(tk)), Σ : Rn → [δ,∞), δ > 0, that



guarantees that the state of the sampled system

ẋ(t) = f(x(t), u(t)),
u(t) = h(x(tk)), t ∈ [tk, tk+1),

(2)

converges to an apriori selected small neighborhood of the
equilibrium. We assume that f : Rn×Rm → Rn, f(0, 0) = 0
in (1) is locally Lipschitz (or equivalently, Lipschitz on
compact sets) and that the feedback law u = h(x) yields
global asymptotic stability (GAS), [11], for the continuous-
time closed-loop system (1). In particular, we assume:
A1. There exist a map h : Rn → Rm being Lipschitz on

compact sets with h(0) = 0, a smooth, positive definite
and proper Lyapunov function V : Rn → R≥0, and
functions α1, α2, α ∈ K∞ such that α1(|x|) ≤ V (x) ≤
α2(|x|) and ∇V (x)f(x, h(x)) ≤ −α(|x|), x ∈ Rn.

Proposition 2.1: Assume that A1 holds. Let x0 ∈ Rn and
consider the set V1 := {x ∈ Rn : V (x) ≤ V (x0)}. Then, for
any given sequence of open sets Sj , j = 1, 2, . . . ,m, m ∈ N,
with V1 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sm 3 0, there exist a sequence
of compact sets Vj with Vj ⊃ Sj , j = 2, . . . ,m and constants
βj > 0, τj > 0, such that the mechanism

tk+1 = tk +
1

Lf,j
ln

(
1 +

τj
βjLf,h,jLh,j |x(tk)|

)
(3)

will drive the state of (2) from Sj to Sj+1, for all j =
1, . . . ,m − 1 in finite time, where Lf,h,j = Lf,jLh,j > 0
are the Lipschitz constants of f , h over the compact sets Vj .

Proof: Let a1 := V (x0) and consider a sequence of
constants cj > 0, j = 1, 2, . . . ,m, m ∈ N such that
a1 > c1 > c2 > · · · > cm. Next, define the sets

V1 := {x ∈ Rn : V (x) ≤ a1}, (4)
Sj := {x ∈ Rn : V (x) < cj}, j = 1, . . . ,m. (5)

Notice now that the sets V1 and V1 \ S1 are compact. Thus,
we can define

`1 := min
x∈V1\S1

α(|x|), (6a)

β1 := max
x∈V1

|∇V (x)|. (6b)

Next, the derivative V̇ of V along (2) can be written as

V̇ (x) =∇V (x)f(x, h(x))

+∇V (x)(f(x, h(xk))− f(x, h(x))), (7)

where xk = x(tk). Since f and h are Lipschitz on compact
sets we have that, |f(x, h(x)) − f(x, h(xk))| ≤ Lf,1|h(x) −
h(xk)| ≤ L1|x − xk|, where L1 := Lf,h,1 = Lf,1Lh,1 is the
Lipschitz constant of f , h on the compact set V1. By taking
into account A1, (6), and (7) we have that

V̇ (x) ≤− `1 + β1L1|x− xk|, x ∈ V1 \ S1. (8)

Consider now the integral representation of the solution of
(2) over the interval [tk, tmax), x(tk) = xk ∈ V1 \ S1,
where tmax ∈ (tk,∞] is the maximal existence time of
the solution, x(t) = xk +

∫ t
tk
f(x(s), h(xk))ds. Then, by

adding and subtracting terms we have that |x(t) − xk| ≤∫ t
tk
|f(xk, h(xk))|ds+

∫ t
tk
|f(x(s), h(xk))− f(xk, h(xk))|ds,

and since f , h are Lipschitz on V1 and vanish at zero we
finally obtain |x(t)− xk| ≤ L1|xk|(t− tk) + Lf,1

∫ t
tk
|x(t)−

xk|ds. From the previous inequality and the Grönwall-
Bellman Lemma, [11], we obtain that |x(t) − xk| ≤
Lh,1|xk|(eLf,1(t−tk) − 1), t ∈ [tk, tmax). Due to (8), the
previous inequality implies that

V̇ (x(t)) ≤ −`1 + β1Lf,h,1Lh,1|xk|
(
eLf,1(t−tk) − 1

)
(9)

for t ∈ [tk, tmax), Next, consider the time tk+1 as given
by (3) with j = 1. We claim that tk+1 < tmax. Indeed,
assume that tk+1 ≥ tmax and tmax < ∞ which implies
lim supt→t−max

|x(t)| = +∞. Then, it follows from (3) and
(9) that for 0 < τ1 < `1, V̇ (x(t)) ≤ −(`1 − τ1) < 0,
∀t ∈ [tk, tmax). The latter implies that x(t) ∈ V1 for all
t ∈ [tk, tmax) which is a contradiction. Thus, by defining tk+1

as in (3), where 0 < τ1 < `1, we get that

V̇ (x(t)) ≤ −(`1 − τ1) < 0, x(t) ∈ V1 \ S1, (10)

which due to (4), (5), j = 1, and the fact that a1 > c1, implies
that the trajectory of the system will enter S1 within the time
interval [0, a1−c1`1−τ1 ]. Let now tkj−1

be the first event for which
x(tkj−1) ∈ Sj , j = 2, . . . ,m, i.e.,

kj−1 := min{k ∈ Z≥0 : x(tk) ∈ Sj}. (11a)

Then, either |x(tkj−1)| = 0 or |x(tkj−1)| 6= 0. If the former
holds, then due to uniqueness of solutions, the state of the
system is already at the equilibrium since f(0, 0) = 0 and
from (3) no further updates are required. If |x(tkj−1

)| 6= 0,
then by recursively defining

aj :=V (x(tkj−1)), (11b)
Vj :={x ∈ Rn : V (x) ≤ aj}, (11c)
`j := min

x∈Vj\Sj

α(|x|), (11d)

βj := max
x∈Vj

|∇V (x)|, (11e)

for j = 2, . . . ,m and Sj as in (5), and by applying
similar arguments as before, we obtain V̇ (x(t)) ≤ −`j +
βjLj |xk|(eLf,j(t−tk) − 1), where Lj := Lf,h,jLh,j and Lf,j
are the Lipschitz constants on each compact set (11c), j =
2, . . . ,m. From (3) and the previous inequality we finally
obtain that V̇ (x(t)) ≤ −(`j − τj) < 0, x(t) ∈ Vj \ Sj , for
0 < τj < `j , j = 2, . . . ,m. The latter implies that state of
the system will transit from the set Sj to the set Sj+1 and
finally will be confined in the set Sm. The determination of
the constants τj > 0 in (3) will be discussed next.

The sets Sj in (5) are a priori selected. By appropriately
selecting the constants cj , j = 1, . . . ,m, the state of the
system starting at Sj will advance to Sj+1, j = 1, . . . ,m− 1
in finite time and eventually will be confined in the set Sm.
For larger values of m ∈ N, the state of the system can be
confined in an arbitrarily small neighborhood of zero. Each
time the state enters a set Sj the sampler (3) is redefined
according to (11) which may lead to a reduction of controller
updates due to the recalculation of the constants Lf,h,j , aj , `j
and βj in (11c), and (11d), over the compact sets Vj . More
specifically the update on mechanism (3) is determined by
(11a), which inspects whether, at the time of an event, the



state of the system x(tk) belongs to the corresponding set
Sj , j = 1, . . .m − 1. Finally, note that (3) implies that the
inter-event times are lower bounded and grow larger as x(·)
approaches the set Sj .

Online and Offline implementation of Proposition 2.1:
In the proof of Proposition 2.1, we heuristically selected
constants τj > 0 with τj < `j in order for (10) to hold. Next,
we provide a detailed procedure for the online and offline
determination of those constants.
• Online determination: The time, where the constants Lf,h,j ,
aj , `j , and βj are recomputed, is determined by (11a), which
inspects whether, at the time of an event, the state of the system
x(tk) belongs to the corresponding set Sj , j = 1, . . .m − 1.
Additionally, in order to calculate online the constants τj ,
j = 2, . . . ,m in (3), we can modify the proof of Proposition
2.1, by also defining the sets Tj := {x ∈ Rn : V (x) <
cj − εj}, j = 2, . . . ,m, where εj > 0 are sufficiently
small constants that can be a priori selected and satisfy
cj − εj > cj+1 > 0, Tj ⊂ Sj . Then, since α ∈ K∞, if
we define τj := minx∈Vj\Tj α(|x|), it follows that τj < `j ,
j = 2, . . . ,m, where `j are defined in (11d).
• Offline determination: Finally, we modify the proof of
Proposition 2.1, to determine offline all constants in (3).
More specifically, the proof follows the same arguments, by
replacing (11c) with V̂j := cl(Sj−1) := {x ∈ Rn : V (x) ≤
cj−1}, j = 2, . . . ,m. Then, the constants `j , βj , Lf,j , and Lh,j
can be calculated in each set V̂j . Finally, the constants τj in (3)
can be computed as follows. Since V is positive definite and
proper, there exist α1, α2 ∈ K∞ such that α1(|x|) ≤ V (x) ≤
α2(|x|), x ∈ Rn. Thus, for x ∈ V̂j \ Sj , we have from the
definition of V̂j and (5), that cj ≤ α2(|x|) which implies that
|x| ≥ α−12 (cj). Then, since α ∈ K∞, (11d) implies that `j =
minx∈V̂j\Sj

α(|x|) ≥ α(α−12 (cj)), for each j = 1, . . . ,m.
Therefore, from (5), we can a priori select τj < α(α−12 (cj))
so that `j − τj > 0. Finally, based on the above discussion,
and by taking into account that |xk| ≤ α−11 (cj−1) we obtain
the following uniform lower bound on the inter-event period:
tk+1 − tk ≥ minj=1,..,m{ 1

Lf,j
ln(1 +

τj

βjLf,h,jLh,jα
−1
1 (cj−1)

)}.
Thus, we can select the constants cj and τj appropriately and
regulate the performance and the lower bound of (3). Note
that the later may also provide a lower bound for periodic
sampling as in [9] for the case of affine in the control system.

In Proposition 2.1 we exploited the Lipschitz properties of
the system’s dynamics and the GAS assumption to derive
a mechanism that yields semi-global practical stability with
an arbitrarily small target set containing zero. It should be
pointed out that while GAS is weaker than ISS, GAS together
with the continuity of the feedback law provides some local
robustness property, [20], [21]. The proposed mechanism is
simple to implement and does not require involved methodolo-
gies such as homogenization techniques and approximation of
isochronous manifolds as in [1]. On the contrary, our approach
only requires the approximation of the Lipschitz constants
which can be performed by Lj := maxx∈Vj |∇f(x, h(x))| for
systems with continuously differentiable dynamics. While this
approximation can be conservative, the updating mechanism
(3) may reduce the number of controller updates and also

drive the state of the system in any small neighborhood of
the equilibrium. Finally, (3) only requires |x(tk)| to generate
the next sampling time, whereas the mechanism in [2] could
be applied only to locally asymptotically stable systems and
required sufficiently smooth dynamics and the solution of a
second degree inequality at each sampling instant.

Next, we extend Proposition 2.1 to the case of actuator
delays, namely, when the input applied to the system satisfies

u(t) =

{
h(x(tk−1)), t ∈ [tk, tk + ∆k)
h(x(tk)), t ∈ [tk + ∆k, tk+1),

(12)

where ∆k ∈ [0,∆) and ∆ is the maximum allowable delay.
Proposition 2.2: Under A1 the self-triggered condition

tk+1 = tk +
1

Lf,j
ln

( τj
Lf,h,jβj

+ Lh,j |xk|
2Lf,h,jγj∆ + Lh,j |xk|

)
, (13a)

∆ =
L2
h,1τ1

Lf,h,1(Lf,h,1 + 2(1 + ε)Lf,h,1)β1γ1 + Lf,1τ1
(13b)

where Lf,j , Lh,j , Lf,h,j = Lf,jLh,j are the Lipschitz con-
stants of f , h over Vj defined in (11c), γj := α−11 (cj−1), cj
defined in (5), c0 = a1, ε > 0, and τj < `j are defined in
(6a), (11d), guarantees that the state of system (2)-(12) will be
eventually confined to any neighborhood Sm of zero for any
delay ∆k ∈ [0,∆). Moreover, the maximum delay ∆ satisfies
∆ ∈ [0, tk+1 − tk), for all k ∈ Z≥0. The mechanism (13a) is
updated based on the rule (11a).

The proof of Proposition 2.2 follows from [24] and the
proof of Proposition 2.1 and is omitted. Notice that for
∆ = 0 in (13a), we obtain mechanism (3) and that the
maximum allowable delay ∆ above depends on the sets V1
and S1 defined in (4) and (5). Compared to [24], the updating
threshold strategy allows to confine the state of the system
in an arbitrarily small neighborhood and assume larger values
for the maximum allowable delay ∆ since we can increase its
value by selecting larger values of c1 which affect τ1.

It should be noted that GAS is not in general preserved
under sampling and typically only semi-global results are
established, see for instance [3], [9], [12], [17], [20]. To obtain
global results more restrictive assumptions are required. More
specifically, assume that A1 holds and in addition both f and h
are globally Lipschitz. Then, by standard Converse Lyapunov
Theorems there exist α3 ∈ K∞ such that V also satisfies
|∇V (x)| ≤ α3(|x|), for all x ∈ Rn. By exploiting the previous
inequality it is possible to obtain a self-triggered condition that
yields ultimate boundedness as in [25]. Next, we present an
alternative approach which is based on non-strict Lyapunov
functions with globally bounded gradients and their transfor-
mation into strict Lyapunov functions, see [14]. Note that such
functions may result by re-scaling Lyapunov functions, for
example V (x) = ln(1 + U(x)), where U(x) = xTPx, P
positive definite and symmetric matrix. We assume
A2. There exist a globally Lipschitz feedback law u = h(x)

and a continuously differentiable, positive definite and
proper Lyapunov function V : Rn → R≥0 such that the
origin of ẋ = f(x, h(x)) is GAS and (i) |∇V (x)| ≤ 1,
(ii) ∇V (x)f(x, h(x)) ≤ 0 for all x ∈ Rn.



Note that under assumption A2, it is possible to construct a
new strict Lyapunov function with globally bounded gradient,
see [14, Proposition 2.5].

Proposition 2.3: Assume that for system (1), f : Rn×Rm →
Rn is globally Lipschitz and that A2 holds. Then, for any
x0 ∈ Rn and any predefined neighborhood S of zero, there
exists τ > 0 such that the self-triggered condition tk+1 =
tk + 1

Lf
ln(1 + τ

Lf,hLh|xk| ) will drive the state of the system
to the set S.

Proof: Due to assumption A2 and the globally Lipschitz
dynamics of (1), it follows from [14, Proposition 2.5] that we
can design a new Lyapunov function V such that |∇V (x)| ≤ 1
for all x ∈ Rn and ∇V (x)f(x, h(x)) < 0, x 6= 0. Then, let
S := {x ∈ Rn : V (x) < c} for some c > 0 and define ` :=
infx∈Rn\S |V (x)f(x, h(x))|. For 0 < τ < `, it follows from
(7), the triggering condition above and with similar arguments
as in Proposition 2.1 that ˙V (x(t)) < −(` − τ), for x(t) ∈
Rn \ S.

III. EVENT-TRIGGERED CONTROL

The self-triggered strategy (3) generates the next sampling
instant tk+1 by using only the measurements tk and |x(tk)|
and establishes semi-global practical stability of system (2).
In this section we address the problem of event-triggered
control where the sampling instants are determined online by a
mechanism that uses continuous measurements of the system’s
state. A typical assumption in event-triggered control, see [22],
is that a feedback law u = h(x) has been designed that renders
the closed-loop system ẋ = f(x, h(x + e)) ISS with respect
to sampling errors e ∈ Rn, i.e. there exist C1 positive definite
and proper function V : Rn → R≥0 and α, γ ∈ K∞ such that
∇V (x)f(x, h(x+e)) ≤ −α(|x|)+γ(|e|) for all x ∈ Rn. Then,
a triggering rule of the form γ(|e|) ≤ σα(|x|), σ ∈ (0, 1),
[22], establishes asymptotic stability while a lower bound on
the inter-sampling period is ensured if α−1(·) is Lipschitz on
compact sets. It should be pointed out however, that the pre-
vious assumptions are rather restrictive and the design of such
feedback laws is a non-trivial task, see [6]. The previous ISS
hypothesis was replaced in [15], [18], and [19] by the weaker
GAS assumption A1, [21]. In particular, in [19], a mechanism
based on the derivative of the Lyapunov function was proposed
which while establishes global asymptotic stability, it does not
provide a lower bound on the inter-sampling period. Such
a lower bound can in general be guaranteed under practical
stability results as is the case in [3], [20], [18, Section IV.C],
[13], and in Propositions 2.1, 2.3 of the previous Section. See
also [10] for exceptions and related discussions.

In this section we show that under global exponential sta-
bility (GES) assumptions, [11], we can design state-dependent
and time-dependent triggering mechanisms that establish semi-
global exponential stability of 0 ∈ Rn, namely, exponential
stability in any compact set, [11], and provide a lower bound
on the inter-event period. We present first a state-dependent
mechanism with which, when an event occurs, the controller
is updated to ensure that V̇ < 0 while the triggering condition
is also updated based on the system’s state and may reduce
future transmissions. We assume that:

A3. There exist a map h : Rn → Rm being Lipschitz on
compact sets with h(0) = 0, a smooth Lyapunov func-
tion V : Rn → R≥0, and constants b1, b2, b3 > 0, such
that b1|x|2 ≤ V (x) ≤ b2|x|2 and ∇V (x)f(x, h(x)) ≤
−b3|x|2, x ∈ Rn.

Proposition 3.1: For system (1) assume that A3 holds and
in addition ∇V (0) = 0. Then, the state-dependent rule

|x(tk)− x(t)| ≤ σk|x(t)|, σk = βb3
b4,kLk

, β ∈ (0, 1), (14a)

with Lk := Lf,h,k = Lf,kLh,k and b4,k Lipschitz constants of
f , h and V over each compact set

Ωk :={x ∈ Rn : V (x) ≤ V (xk)}, k ∈ Z≥0, (14b)

where xk = x(tk), guarantees the semi-global exponential
stability of 0 ∈ Rn. In addition, there exists a sequence of
constants ηk with tk+1 − tk ≥ ηk > 0 for all k ∈ Z≥0, where
tk+1 is the time generated by rule (14a).

Proof: Let t0 = 0, xk = x(tk) ∈ Rn and consider
the sets (14b). It follows from (7) and A3 that the time-
derivative V̇ of V along the system (2), satisfies V̇ ≤
−b3|x|2 + |∇V (x)||f(x, h(xk)) − f(x, h(x))|. Since V is
smooth and ∇V (0) = 0, we have that on the compact set
Ωk, |∇V (x)| ≤ b4,k|x|, for some b4,k > 0. Since, f and h
are Lipschitz on the compact set Ωk, the previous inequalities
imply that

V̇ (x(t)) ≤ −b3|x(t)|2 + b4,kLk|x(t)||x(tk)− x(t)|. (15)

If we enforce the triggering condition (14a) we get from
(15), V̇ (x(t)) ≤ −b3(1−β)|x(t)|2, which implies exponential
stability. Notice that since the triggering rule (14a), guarantees
that V̇ < 0, the state x(t) will remain in the set Ωk, k ∈ Z≥0
for all t ∈ [tk, tk+1), where tk+1 is the next event time instant
generated by (14a). Finally, a lower bound on the inter-event
period can be obtained by following the same arguments as
in [22] and by the inclusion Ωk ⊃ Ωk+1, k ∈ Z≥0. In
particular, a lower bound on the inter-event period is given
by ηk = σk/(Lk(1 + σk)) > 0.

Mechanism (14a) is based on the Lyapunov function given
in A3 and the Lipschitz properties of the system. More
specifically, after every event, a new level set Ωk is defined
based on the system’s state x(tk), (14b), a new Lipschitz
constant is determined on the same set and the value of
σk is updated. As the state approaches the equilibrium it
follows from (14a) that 0 < σk ≤ σk+1 since the inclusion
Ωk ⊃ Ωk+1 implies that Lk ≥ Lk+1, k ∈ Z≥0 and
consequently ηk = σk

Lk(1+σk)
≤ ηk+1.

Finally, by assuming that f and h are globally Lipschitz,
then Proposition 3.1 holds globally and provides a global ver-
sion of [22, Theorem III.1] for the case of a GES equilibrium.
Those assumptions however, are rather restrictive and exclude
a variety of systems, see for instance Examples 2 in Section
IV, which has only locally Lipschitz dynamics, is GES and
is not globally ISS with respect to sampling errors. Actuator
delays can also be considered by modifying the above proof
and by following similar arguments to [22].

Remark 3.1: Proposition 3.1 can be extended by also consid-
ering a second mechanism which will allow to avoid the online



computation of the constants Lk in (14a). In particular, con-
sider a finite sequence of constants V (x0) = c1 > c2 > . . . >
cm > 0 and let Ω̂j := {x ∈ Rn : V (x) ≤ cj}, j = 1, . . . ,m.
Also, define the sequence {σj}mj=1, σj = (b3β)/(b4Lj), where
Lj is the Lipschitz constant on each set Ω̂j . Then, the constants
σj in (14a), are recursively updated according to the additional
rule V (x(tk)) ≤ cj . Namely, when an event occurs for which
x(tk) ∈ Ω̂j we switch to a new constant σj , which corresponds
to the set Ω̂j for each j = 2, . . . ,m. Note that in this additional
rule, V is evaluated only when an event occurs.

It should be pointed out that under GAS (see assumption
A1), and by taking into account (4), (6a), and (7), it is
possible to define the mechanism |x(t)−x(tk)| ≤ σ

βL1
α(|x|),

σ ∈ (0, 1) which guarantees V̇ < 0 between sampling
instants. However, a lower bound on the inter-event period
is not guaranteed, as is the case in [19]. Such a bound can be
obtained by excluding a neighborhood of the equilibrium as
in [18] or by defining |x(t) − x(tk)| ≤ σ

βL1
max{α(|x|), ε},

ε > 0 as in [13]. Both approaches establish practical stability
by continuously monitoring the state of the system which
is not the case of the self-triggered approach of Section II.
Next, inspired by [7], [16], [27] we present a time-dependent
mechanism with updating threshold.

Proposition 3.2: For system (1) assume that A3 holds and
in addition ∇V (0) = 0. Then, the time-dependent threshold

|x(tk)− x(t)| ≤ cke−akt, (16a)

with ck = C min{η, b3
γb4,kLk

}, γ > 1, η ∈ (0, 1], C ∈ (0, 1]

and ak = δ
2b2

(b3− ckb4,kLk/C), δ ∈ (0, 1], where Lk are the
Lipschitz constants of f and h over the sets

Wk := {x ∈ Rn : V (x) ≤ b2(|xk|+ C)2} (16b)

for each k ∈ Z≥0, guarantees the semi-global exponential
stability of 0 ∈ Rn with tk+1 − tk ≥ η > 0 for all k ∈ Z≥0.

Proof: Let x0 ∈ Rn and C ∈ (0, 1], Notice that (16a)
implies that |x(t)| ≤ cke−akt + |x(tk)|, ∀t ∈ [tk, tk+1). With
similar arguments as in (15), we obtain due to (16a) that

V̇ (x(t)) ≤ −b3|x(t)|2 + ckb4,kLk|x(t)|e−akt, (17)

where Lk := Lf,h,k = Lf,kLh,k > 0 is the Lipschitz
constant of f , h on the compact set Wk. By selecting
ck = C min{η, b3

γb4,kLk
}, γ > 1, η ∈ (0, 1], (17) can be written

V̇ (x(t)) ≤− (b3 − ckb4,kLk/C)|x(t)|2, |x(t)| ≥ Ce−akt,
(18)

with (b3−ckb4,kLk/C) > 0. In addition, for t ∈ [tk, tk+1) we
have that either |x(t)| ≥ Ce−akt or |x(t)| < Ce−akt. Assume
first that |x(t)| ≥ Ce−akt does not hold for all t ∈ [tk, tk+1).
Then, there exists a time T ∈ [tk, tk+1) such that |x(T )| <
Ce−akT . Due to continuity of x(·), there exists a time t̂ <
T such that |x(t̂)| = Ce−ak t̂ and |x(t)| < Ce−akt for t ∈
[t̂, T ]. Then, for t ∈ [tk, t̂], it follows from (18) that |x(t)| ≤√
b2/b1|x0|e−µkt, where µk = (1/(2b2))(b3 − ckb4,kLk/C).

Also, for t ∈ [t̂, T ] we have that |x(t)| ≤ Ce−akt. Then, since
b2
b1
≥ 1, C ∈ (0, 1] and by restricting 0 < ak ≤ µk, we have

that |x(t)| ≤
√
b2/b1 max{1, |x0|}e−akt, t ∈ [tk, tk+1). On

the other hand, assume that |x(t)| < Ce−akt, does not hold for

all t ∈ [tk, tk+1). Then, there exists a time T ∈ (tk, tk+1) such
that |x(T )| ≥ Ce−akT , and with similar arguments as in the
first case and by taking into account (18), we get that |x(t)| ≤√
b2/b1|x0|e−µkt, t ∈ [T, tk+1). By further restricting 0 <

ak ≤ µk = 1
2b2

(b3 − ckb4,kLk/C), we have that in all cases
above |x(t)| ≤

√
b2/b1 max{1, |x0|}e−akt, t ∈ [tk, tk+1).

Next, we show that, with ck = C min{η, b3/γb4,kLk}, γ > 1
and 0 < ak ≤ µk = (1/(2b2))(b3 − ckb4,kLk/C), we can
avoid infinitely fast sampling. First, define er(t) := x(tk) −
x(t). By taking into account that f and h are Lipschitz on
compact sets, we have d

dt |er(t)| ≤ |ėr(t)| ≤ 2Lk|x(tk)| +
Lk|er(t)|. Solving this differential inequality with |er(tk)| = 0
we get |er(t)| ≤ 2|x(tk)|(eLk(t−tk) − 1). According to (16a),
the next event occurs when |er(tk+1)| = cke

−aktk+1 . Hence,
from the previous inequality we have that the inter-event times
satisfy tk+1−tk ≥ 1

Lk
ln(1+ cke

−aktk+1

2|x(tk)| ). Finally, as in [23], it
can be shown that the right hand side of the previous inequality
is lower bounded by a constant η = η(|x0|, c0, a0) > 0.

The constant ck = C min{η, b3
γb4,kLk

}, γ > 1, η ∈ (0, 1]
will be updated after each time t = tk+1 that satisfies the
equality in (16a), until it attains its maximum value given by
ηC. The constant ak = δ

2b2
(b3 − ckb4,kLk/C), δ ∈ (0, 1],

affect the rate of convergence of the system. The constants
C, η, γ, and δ provide a higher degree of regulating the
performance and the number of updates compared to [7], [16],
and [27], which also required additional assumptions.

IV. ILLUSTRATIVE EXAMPLES

Example 1. First, we illustrate Proposition 2.1 on a system
that was considered in [1]. Specifically, consider the system
ẋ1 = −x31 + x1x

2
2, ẋ2 = x1x

2
2 − x21x2 + u and the feedback

law u = −x32−x1x22. Then assumption A1 holds with V (x) =
1/2(x21 + x22) and α(|x|) = 1/2|x|4. Let x0 = (0.1, 0.4) and
consider the sets Sj , in (5) with c1 = 0.075, c2 = 0.065,
c3 = 0.055, c4 = 0.04, c5 = 0.03, c6 = 0.02, c7 = 0.013,
c8 = 0.0095, c9 = 0.0065, and c10 = 0.0045. Then, according
to (4)-(6), we obtain a1 = 0.085, β1 = 0.41, `1 = 0.0113,
Lf = 0.51, and Lh = 0.58. Finally, using (11) recursively
with the sampler (3) we obtain the state evolution as shown in
Fig. 1 (left). On the time interval [0, 90] we have experienced
a number of 239 updates (blue). In Fig. 1 (right) are the
inter-event periods. The jumps occur every time we switch
to a new set Sj . For the same values of cj above, we have
applied the mechanism (13a)-(13b) with ∆ = 0.032, ε = 0.1
and experienced 328 controller updates (yellow). In [24],
without the updating threshold policy (when m = 1 in (5))
we have experienced 7250 updates with c = 0.015 whereas
the maximum allowable delay ∆ was 26 times smaller, i.e.,
∆ = 0.0012. The updating threshold strategy allows larger
values of maximum allowable delay, drives the system to a
smaller neighborhood of zero Sj and reduces the number of
events. For Sj defined by (5) with c1 = 0.075, c2 = 0.065,
c3 = 0.045, c4 = 0.015, c5 = 0.005, we have experienced
1150 updates (green).
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Fig. 2. State evolution and inter-event period for different initial conditions.
By updating the triggering mechanism we experience less controller updates.

Example 2. ([6]) Consider the following system

ẋ = (I2×2 + 2Θ(π2 )xxT )Θ(xTx)

×
((−1 0

0 xT x

)
Θ(−xTx)x+ ( 0

1 )u
) (19)

where x = (x1, x2)T , I2×2 is the 2 × 2 identity matrix, and
Θ(s) is the standard 2 × 2 rotation matrix as in [6]. With
the transformation y = Θ(−xTx)x, system (19) becomes
ẏ1 = −y1, ẏ2 = (y21 + y22)y2 + u. Then, a feedback that
exponentially stabilizes this system is u = Λ(Θ(−xTx)x),
where Λ(y) := −(1 +y21 +y22)y2. However, this feedback law
does not render the system ISS with respect to measurement
errors, see [6]. Additionally, the Lyapunov function V (x) =
1/2(x21 + x22) satisfies assumption A3 with b3 = 1. In Fig. 2
are shown the evolution of the states and the inter-event period
on the time interval [0, 10]. For (x1(0), x2(0)) = (1,−1.5)
we obtain Lh,0 = 197, b4 = 1, β = 0.9, σ0 = 0.0045 for
the mechanism (14a). Without the updating threshold strategy,
we have experienced a number of 2634 events (blue). With
the updating threshold strategy, we have instead experienced
224 events (yellow). By applying the methodology of Remark
3.1 with c2 = 1, c3 = 0.6, c4 = 0.3, and c5 = 0.1 we have
experienced 367 events (brown). Finally, with the mechanism
(16a)-(16b) we have experienced 255 events for C = 0.4,
δ = 0.8, γ = 1.1, and η = 0.1 (black).

V. CONCLUSION

In this work, the problems of event-triggered and self-
triggered control of nonlinear systems were addressed. For
asymptotically stabilizable systems, a self-triggered scheme
was presented that establishes semi-global practical stability
of the sampled system. For exponentially stabilizable systems,
event-based techniques were presented through which, the
controller is updated to preserve the stability properties of the
system while the triggering mechanism is also updated which
may reduce future controller updates.
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