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Abstract—Motivated by the recent interest in cyber-physical
and interconnected autonomous systems, we study the problem
of dynamically coupled multi-agent systems under conflicting
local signal temporal logic tasks. Each agent is assigned a local
signal temporal logic task regardless of the tasks that the other
agents are assigned to. Such a task may be dependent, i.e., the
satisfaction of the task may depend on the behavior of more than
one agent, so that the satisfaction of the conjunction of all local
tasks may be conflicting. We propose a hybrid feedback control
strategy using time-varying control barrier functions. Our control
strategy finds least violating solutions in the aforementioned
conflicting situations based on a suitable robustness notion and
by initiating collaboration among agents.

Index Terms—Multi-agent systems, signal temporal logic, au-
tonomous systems, cooperative control, hybrid systems.

I. INTRODUCTION

OLLABORATIVE control of multi-agent systems deals

with achieving global tasks such as consensus, formation
control, connectivity maintenance, and collision avoidance (see
[1] for an overview). A recent trend has been to extend beyond
these standard objectives and to consider more complex global
or local task specifications by using temporal logics [2]-
[5]. Most of these works use linear temporal logic (LTL)
and require a discrete abstraction of the physical system to
then employ computationally costly graph search methods.
Signal temporal logic (STL) [6], on the other hand, allows
to impose tasks with strict deadlines and offers a closer
connection to the physical system by the introduction of robust
semantics [7], [8], hence offering the benefit of not necessarily
requiring an abstraction of the system. Control methods for
STL then consider discrete-time systems and result, even for
single-agent systems, in computationally costly mixed integer
linear programs [9]-[11]. We recently proposed an alternative
approach for continuous-time systems by using time-varying
feedback control strategies [12]-[14], which are computation-
ally efficient and inherently robust due its feedback nature.
For multi-agent systems, [2] and [12] assume that each agent
is subject to a local task regardless of the tasks that the other
agents are assigned to. Since these tasks may be dependent,
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i.e., satisfaction of a task may depend on more than one agent,
satisfiability of each local task does not imply satisfiability
of the conjunction of all local tasks. In these conflicting
cases, [2] finds least violating solutions for local LTL tasks,
while [12] finds least violating solutions for the STL setup,
but considering a limited class of STL (not allowing until
operators) and assuming complete communication graphs for
subgroups of agents.

Control barrier functions [15] guarantee the existence of
a control law that renders a desired set forward invariant;
[16] presents control barrier functions tailord for safe robot
navigation, while [17] presents decentralized control barrier
functions for safe multi-robot navigation. Nonsmooth and
time-varying control barrier functions have appeared in [18]
and [19], while robustness and input-to-state safety notions
have been proposed in [20] and [21]. Barrier functions have
also been used to control systems under temporal logic tasks;
[13] establishes a connection between the semantics of an STL
task and time-varying control barrier functions, while [22]
considers finite time control barrier functions for LTL.

We consider coupled multi-agent systems under local STL
task. First, we provide a barrier function-based control law
that guarantees satisfaction of a local task despite dynamical
couplings and when the task is not dependent. Therefore, the
existence of a barrier function that accounts for the semantics
of this STL task is assumed, as described in [13]. Based on
this control law and motivated by a notion of input-to-state
safety, we then propose a control law that finds a least violating
solution for the case when the local task is dependent and
when collaboration among agents is not possible or desired.
In a second step, we introduce a local detection mechanism
that detects critical events that may lead to a violation of
the local task and that may be resolved or benefit from
online collaboration with other agents. The proposed control
strategy is robust and computationally efficient. In contrast to
dependent local tasks, our previous work [14] considers global
tasks and derives collaborative feedback control laws.

Sec. II presents the problem formulation, while our pro-
posed problem solution is stated in Sec. IIl. Simulations are
presented in Sec. IV followed by conclusions in Sec. V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let O be a zero vector of appropriate size. Furthermore, an
extended class K function o : R — R is a locally Lipschitz
continuous and strictly increasing function with a(0) = 0.



Lemma 1: The initial value problem Z = —«(z) with z(0) >
0 has the solution z(t) = 8(|z(0)|,t) > 0 where 5 : R>¢ x
R>o9 — R>q is a class L function. For € € R>( and if a(z)
is a linear function, 2 = —a(z) — € with z(0) > 0 has the
solution z(t) satisfying z(¢) > B(|z(0)],t) + a~*(—e).
Proof: The first part follows by [23, Ch. 4]. The second
part can easily be verified since «(z) is a linear function. W
Consider M agents modeled by a directed graph G :=
(V,E). The set of agents is V := {1,..., M}, while £ €
V x V indicates communication links, i.e., (i,5) € & if
agent j receives information from agent i. For each agent
i, let £; € R™ and u; € R™ be the corresponding state
and input, respectively. Also let n := n; + ... 4+ nys and

T . .
x = [x17 ... xy’]| € R". The dynamics of agent i
are

x; = fi(xi,t) + gi(xi, t)u; + ci(x, 1) (D

where fz : R™ % Rzo — R™, gi R™ x RZO — R’I’L;{,XH’LL',
and ¢; : R™ x R>9 — R™ are locally Lipschitz continuous.
The function ¢;(x,t) may model dynamical couplings such
as those induced by a mechanical connection between agents
or such as those induced by a secondary controller; ¢;(x,t)
may also describe unmodelled dynamics or process noise. We
assume that ¢;(x,t) is bounded, but otherwise unknown so
that the control design does not require knowledge of x. In
other words, there exists C; > 0, known by agent 4, such that
lei(z,t)|] < C; for all (x,t) € R™ x Rxq.

Signal temporal logic (STL) [6] is based on predicates p that
are obtained after evaluation of a continuously differentiable
predicate function h : R? — R as p := T (True) if A(¢) >0
and p := L (False) if h(¢) < 0 for ¢ € R The STL syntax
is then given by

¢ =T |pl-¢[¢' A" | ¢ Uy ¢”

where ¢' and ¢ are STL formulas and where Uj, ) is the
until operator with a < b < oo. Also define F, ¢ =
TUap ¢ (eventually operator) and Giqp)¢ = —Flqp ¢
(always operator). Let ¢’ |= ¢ denote the satisfaction relation,
ie., if a signal ¢’ : R>o — R9 satisfies ¢ (at time 0). These
STL semantics are defined in [6]. A formula ¢ is satisfiable
if 3¢" : R>p — R? such that ¢’ = ¢. Robust semantics for
STL [8] are denoted by p?®(¢’) and determine how robustly
C' satisfies ¢. The robust semantics for STL are defined in [8,
Def. 3]. It holds that ¢’ |= ¢ if p®(¢") > 0 [7, Prop. 16]. In
this paper, we consider the STL fragment

o= T p| - Ag”
¢ = Glay¥ | Flap¥ | V' Upan " | &' A"

where ¢’ and " are of the form (2a), whereas ¢’ and ¢”
are of the form (2b). Each agent ¢ is assigned a local task
¢; of the form (2b). Initially, each agent only knows its own
formula, but it may obtain partial information of other agent’s
formulas. These tasks may be dependent, i.e., the satisfaction
of ¢; may depend on the behavior of other agents j # i. By
behavior of an agent ¢, we mean the state trajectory a;(t) that
evolves according to (1). Let the satisfaction of ¢; depend on

(2a)
(2b)

a set of agents denoted by V; C V with |V;| > 1 where |V
denotes the cardinality of the set V;.

Assumption 1: 1t holds that (j,7) € £ for all j € V; \ {i}.
For ji,...,5v, € Vi, let &; = [x;,7 zj,, "]
and n; :==mnj, +. .. —&—njwil, i.e., &; is the stacked state vector
of all agents in V;. Since the elements of &; are contained in
x, let us also define the projection map p; : R® — R™ as
pi(x) := &; and let the projector from a set S € R™ onto
the formula state-space R™ be P;(S) := {z; € R"|Jz €
S, pi(x) = &;}. Each agent is supposed to not collide with
obstacles indicated by O; C R™. Note that satisfaction of all
local tasks may not be possible. Therefore, this paper proposes

a new notion of finding least violating solutions.

Problem 1: Consider M agents subject to the dynamics in
(1) and where each agent 7 is subject to a task ¢; of the form
(2b). Derive a local control law u; so that 7; < p®(&;) where
r; is maximized, while x;(t) ¢ O; for all ¢ > 0.

III. PROBLEM SOLUTION

We use control barrier functions as in [13] where, for single-
agent systems, conditions are imposed on a function b;(Z;,t)
that account for the semantics of ¢;. If then

¢i(t) :={z; € R™

b;(x;,t) > 0}

is forward invariant, it holds that &; = ¢;. These conditions
also enforce that ;(¢t) € €;(¢t) implies &;(t) € B; for a
compact set B; C R™:; [14] presents a systematic procedure to
construct b, (&, t) if all predicate functions in ¢; are concave
(if the predicate function associated with —y as in (2a) is
convex, it can be rewritten as a concave predicate function)
and if g;(Z;,t) has full row rank for all (Z;,t) € R™ x R>.
Due to this particular construction, invariance of €;(¢) implies
r; < p®i(2;,0) where r; > 0 is maximized. In [13] and [14],
the function b;(Z;,t) is piecewise continuous in the second

argument with discontinuities at times {sy := 0,s1,...,54}
for some finite g. For each s; with j € {1,...,¢}, it holds
that lim__, - &;(7) 2 €;(s;) where limT_w; &, () is the left-

sided limit of €;(t) at t = s;.

Theorem 1: For each ¢;, assume that |V;| = 1 and let
b;(Z;,t) be a barrier function that satisfies the conditions in
[13, Steps A, B, and C]. If, for some extended class K function
«;, for some open set ®; with ©; O €;(¢) for all ¢ > 0, and
for all (x;,t) € ®; X (sj,554+1), there exists a continuous
control law w;(x;,t) such that

ob; (x;,
POALD) 1) 4 g1ty 1)
! 3)
0b;(x;, 1) 0b,(x;,t
20 s (b (s et
R L
then x; = ¢;.
Proof: Note that there exist solutions @ : [0, ) —
D1 X ... x D to (1) with 7ax > 0. Now, (3) implies
abi ivt
%(‘fi(wu t) + gi(xi, t)u; + ci(x, 1))
“ 8[1 (z;,t) @
Z;,
2TV s i (b (s
ot = az(bz(:):“t))



(0, min(Timax, 51)), by (x(2), 1) >
—a;(b;(x;,t)). Due to Lemma 1, the Comparison Lemma
[23, Ch. 3.4], and since b;(x;(0),0) > 0, it follows
that b;(x;(t),t) > 0, ie., z;(t) € C(t), for all ¢t €
[0, min(Tmax, $1)). Assuming 7. > S1, it holds x;(t) € €;(t)
for all ¢ € [s1, min(7max, s2)). Note that x;(s1) € €(s1)

since lim__ Ser ¢;(7) 2 &;(s;). This argument can be repeated

unless Tmax < s; for some j. Since b;(x;(t),t) > 0 implies
x;(t) € B; for all t € [0, Tmax)s Tmax = 00 due to [23,
Thm. 3.3] so that x;(t) € €;(¢) for all ¢ > 0. [ |

Theorem 1 is hence established since |V;| = 1, while the
dynamical couplings in ¢;(x,t) are bounded.

Corollary 1: For each ¢;, assume that |V;| = 1. If ¢; con-
tains only predicates associated with concave predicate func-
tions, g;(«;,t) has full row rank for all (x;,t) € R™ x R,
b;(x;,t) is constructed as in [14, Eq. (11)], and «; satisfies
[14, Lem. 4] which ensures W > —a;(b;(x4,t)) + x
for some x > 0 if W‘qi(mi,t) = 0, then u;(x;,t) = u,,
where u; is given by '

so that, for all t €

argmin w! (5a)
Obi(wi,t)
t.
° ox;

.’Bi,t
R e

0b;(x;, 1)

———(fi®i, 1) + gi(zs, O)0;) + ot

(5b)
Oia

results in 7; < p®i(x;) where r; is maximized.

Pl’OOf‘ If (.’Bi, t) € R™ x (Sj, Sj+1) with
Mgl(m“t) # 0, (5 is feasible and w;(x;,t)
is 1oca11y Lipschitz continuous at (;,t) [20, Thm.
8]. Note that Mgl(ml7 t) = 0 if and only if

w = 0 since g;(x;,t) has full row rank. If

(xi,t) € R™ x (s5,8;01) with 2= — 0, (5b) is
88 (ml > _ a;(b;(x;,t)) + x due the choice
of «; so that uz(scl, t) := 0. Due to continuity of %ﬁt) and
a;(b;(x;,t)), there exists a neighborhood ¢/ around (z;,t) so
that, for each (x},¢') € U, M > —a;(b;(x},t')) and
consequently wu;(x},t') = 0. Hence, u;(x;,t) is continuous
on R™ X (sj,sj+1). Theorem 1 guarantees invariance of
¢;(t) which implies r; < p% (x;) where 7; is maximized. ®
If now |[V;| > 1 for some i, satisfiability of each ¢;
separately does not ensure satisfiability of ¢1 A ... A ¢ar.
Example 1: Consider M := 6 agents. Agents ¢ €
{1,2,3} obey uncontrolled dynamics (u; := 0) with periodic

satisfied since

T
)W)]
Agent 4, 5, and 6 are supposed to track agent 1, 2,
and 3, respectively, while being subject to connectiv-
ity constraints. In STL language, this may look as fol-
lows: ¢4 = G[lO,oo) /\j:1,5,6(||$4 — JSJH S 0.3),
¢5 = Ghoeo) Njzoaellles — ;|| < 0.3), and ¢g :=
G110,00) /\j:374,5(Ha:6 — ;|| <0.3). Each of ¢4, ¢s5, or ¢ is
satisfiable on its own; however, ¢4 A ¢5 A ¢g is not satisfiable.

r /= T 7T
- PenOte fi(@i,t) = [fj}(wj1at) fj|v,;\(wj\vimt) ] >
gi(wth) = dlag(gjl (ijt)""7gj\vi\(wj¥i|7t))’
_ T T
Ci(mvt) = [Cj1 (:Ij,t) Cj\v“(a:at) ] P

solutions x;(t) := [sin(t—f— @m cos(t + 2@%1

and

u; = [ule . ’u,jwi‘T]T for ji,... 7j\V7;\ eV,
i.e., the stacked elements of all agents in V;. If now [V;| > 1,

the barrier inequality (4) changes to

868(3317 )(fb( )_A'_gi(:fji,t)ﬂi‘Féi(mvt))
gé (Zi,t) ”
+ T“ > —ai(bi(i'iat))

where we, in the remainder, assume that b;(Z;, t) satisfies the
conditions in [13, Steps A, B, and C] and is such that, for
each (Z;,t) € R™ x (s;,sj41), @; can be selected so that (6)
holds, i.e., 220t > o, (b, (@, 1)) if 22200 g, (2, ) = 0.
This means that, if all agents in V; collaborate ¢; can
be satisfied. If ¢; contains only predicates associated with
concave predicate functions and g;(&;,t) has full row rank for
all (z;,t) € R™ xR, then b;(Z;, ) can even be constructed
as in [14, Eq. (11)] with «; satisfying [14, Lem. 4] which
again ensures that 22:(@et) > —a;(b;(&;,t)) + x for some
x > 0if Mgz(w“ t) = 0. This ensures that all agents
in V; can use a collaborative control law as presented in [14,
Thm. 1]. Thereby, we ensure that a possible violation of (6)
in fact stems from conflicting local objectives.

A. Conflicting Local STL tasks without Online Collaboration

We first consider cases where online collaboration, i.e.,
agents can send and receive collaboration requests during run-
time, is not desired (e.g., agents are not willing to collaborate)
or possible (e.g., communication limitations in £) and inves-
tigate the behavior of agent ¢ while other agents j # ¢ are
subject to the following assumption that we put in perspective
later.

Assumption 2: Each agent j # i applies a bounded and
continuous control law w;(x,t) that achieves x;(t) € B, for
a compact set 25, and for all ¢ > 0.

For simplicity, let us re-write the dynamics of the set of
agents V; by re-indexing the agents as follows

x; = fi(Zi,t) + Gi(@s, )y + (1)
= fi(xi, t) + gi(xi, t)u; + &z, t)

where fl( nt) = [f (wl,t)T o” o” T,
gi(xi,t) = [gz 1131, O]Tv éi(z,t) = ¢z, t) +
0" dj (@0 ... djlw(a: t)T}T with d;(,t) =
fi(z;, ) gj(x;,t)u;(z,t). Hence, (6) is equivalent to
8(2: )( fi(@it) + gi(@i, t)u;)
(N
ba(wZ’ )Ei(:c,t) + % > —ai(bi(x4,t)).

The above inequality may pose feasibility issues if
Mgl(wl, t) = 0 and %;;’t)éi(w,t) # 0. Then, the
satisfaction of (7) depends in particular on w~ (z,t)
and hence on the behavior of the agents in V;\{i} according to
éi(z,t); ¢;(x,t) is, however, unknown to agent ¢ and may be
favoring or acting against satisfying (7). It should be noted that
these situations are inevitable in the given setup. In the sequel,
¢i(x,t) is treated as an unknown disturbance. In particular,



let C; be a positive constant such that ||&;(z, t)|| < C; for all
(z,t) € ® x Ry where ® € R™ is an open and bounded set
for which it holds that P;(®) D €;(¢) for all ¢ > 0 as well
as P;j(®) D B, for all j # i (the relevance of D becomes
obvious in Theorem 2); C; exists since c;(x,t) and w;(z,t)
are bounded (Assumption 2) and f;(x;,t) and g;(x;,t) are
continuous. Let, for a linear class X function «; and each
(Q_L'i,t) S R(@) X RZO’ ui(:ii,t) = 1u,; and €i(£1_2i7t) = ¢
where u; and €; are given by

argmin Ki,lzliTﬁi + KLQQZ (8a)
3[’1 77j,t ~ 8b (3l
S.t. L(fl(ﬂlz,lf) + gi(xi,t)ui) + ﬁ
6xi ot
0b;(x;,1) (8)
> i (b (7 7" _
s+ 22D

with Ki’l,Ki’Q S [0, 1] and Ki,l + KZ',Q = 1; (8b) 1mphes
(7) when ¢; = 0 and é; > 0 relaxes (8b) when needed.
Inspired by the notion of input-to-state safety [21], we de-
scribe the worst case level of infeasibility by considering
€iwe = SUD(g, e P, (D)xRs, i(TisT)-

Theorem 2: Let Assumptions 1 and 2 hold and assume that
C; is given. Then it holds that

Q:i,wc(t) = {2131 S Rﬁ‘lbi(ii“t) > a;l(—ei’wc)}

is forward invariant if P;(®D) D €; () for all ¢t > 0.

Proof: Note that u;(&;, t) is locally Lipschitz continuous
due to [20, Thm. 8]. Consequently, there exists a solution
x ¢ [0,7max) — D to (1) with Tx > 0. Due to (8b) it
holds that b;(2;(t),t) > —ai(b;(Z(t), 1)) — €iwe for all t €
[0, min(7max, $1)). By Lemma 1 and the Comparison Lemma
[23, Ch. 3.4], we deduce b;(Z;(t),t) > B(|b;(2:(0),0)],t) +
; H(—€iwe) > a; H(—€ime) for all t € [0, min(Tmax, 51))-
The same iterative reasoning over [s1, min(7max, S2)) as in
Theorem 1 applies if Tmax > 51 until 7. < s; for some
j. Tt, however, holds that b;(Z;(t),t) > a; '(—¢;wc) for all
t € [0, Timax), 1., Z;(t) € &€ w(t) for all ¢ € [0, Tmax) Where
€, we(t) is compact since P;(D) D €; y(t). By [23, Thm.
3.3], it follows that 7. = o0. [ |

The above estimate may be conservative. For a given
initial condition «(0) and the solution = : [0,7) — ©
to (1) until time 7 > 0, it does not necessarily hold that
€ (Zi(t),t) = € we for some ¢ € [0,7). We can obtain
a local estimate of the worst case at time 7 by defining
€i,max(T) 1= SUDyc(0,7) €:(Zi(t), ). Note that €; max(7) < €;we-

Corollary 2: Let Assumptions 1 and 2 hold and assume that
C; is given. Given an initial condition 2(0) and the solution
x:[0,7) = D to (1) until time 7 > 0. If P;(D) D €; max(t)
for all ¢ € [0, 7) where

Ci,max(t) = {i’z S mei(:ﬁiat) > a;l(_ei,maX(T))L

then it holds that &;(t) € €; max(t) for all t € [0, 7).

Proof- Tt holds that b, (Z;(t),t) > —oy(b;(Z;(t),t)) —
€ max(7) for all ¢ € [0, 7). By Lemma 1 and the Comparison
Lemma [23, Ch. 3.4], &;(t) € €;max(t) forallt € [0,7). W

Corollary 2 tells us that &;(t) € €; max(t) for all ¢t € [0, 7),
but it does not tell us whether or not &;(t) € €; max(t) for

all ¢ > 7. Corollary 2, however, motivates that minimizing

€; results in a least violating solution, i.e., achieving Z;(t) €
€; max(t) for all ¢ > 0 depends on ensuring that €;(Z;(¢),t) <
€i,max for ¢ > 7. This observation will be used in the online
collaboration part presented in the next subsection. By least
violating solution we hence mean a solution &;(¢) such that
Zi(t) € € max(t) where €; max is minimized. The previous
analysis relies on Assumption 2. If, however, each agent i
solves (8), making Assumption 2 obsolete, the question is how
an estimate of C’Z can be obtained. First, the set ® needs to be
selected. A starting point is to select © such that P;(D) D B,
for each 7. Then, C~'Z- needs to be selected, for each agent ¢,
such that ||&;(z,t)|| < C; for all (z,t) € D x Rxg. If agents
are subject to input limitations, i.e., u; € U; for some compact
set U;, an estimate of C~’i can easily be obtained. This will be
assumed in the next section.

B. Conflicting Local STL tasks with Online Collaboration

Online collaboration is initiated if a critical event (defined
below) is detected by agent ¢ and should account for £. The
structure of b;(&;,t) (see [13], [14] for details) is

bi(xT;,t) = f—ln(Zo exp(—

where 7; > 0, ol(t) : Rsg — {0,1}, and p; € N; Z! contains
the stacked states of only a subset of agents V! C V;. This
allows to collaborate only with a subset of agents. Let .4;(¢)
be such that I € A;(t) if and only if ol(t) = 1. It holds that

In(JA; (t
by(@it) < min bl(@1) < by(a,, 1) + 2O
IEA; () m

nibl(@},1)))

€))

Definition 1: A critical event happens at time 7 > 0 if
bi(zi(7),7) + IHW;M < 0 and €;(Z;(7),7) > €;m where
€i,m > 0 is a design 1parameter

Collaboration requem are indicated by cr! i - Ry —
{T,L} where crw (t) := L by default. If a critical event
is detected at t = 7, there exists at least one | € A;(7) such
that b!(zl(7),7) < 0 due to (9). For each | € A;(7) with
bl (zL(7),7) <0, agent i sends the function bl(z!,t) to agent
j € Vi\ {i} and sets cr} ;(7) := T if (k,j) € & for each
k€ VE\ {j}. Let Ni(t) and £, ;(t) be such that j € N(2)
and ! € £; ;(t) if and only if cr! ;(#') = T for some j € V, I €
{1,...,p;},and ' € [0,t]; N( ) C V is the set of agents from
which a collaboration request has been received until time ¢,
while £; ;(t) is the set of corresponding indices I. Let also
CRi(t) :== 2 jeni(r) 1£i;(t)]| denote the number of received
collaboration requests and let each pair (j,1) € N;(t) x L; ;(t)
be uniquely associated with v;;(t) € {2,...,CR;(t)+1}. For

K, i € 10,1] with ZCR H{(B)+2 K, =1, agent 4 then solves

CR;(t)+2
argmin K 14, @; + Z Ki k€l s (10a)
Ui k=2
ab 19 A ab 19
ot 2ATLT) )<fz<w“>+gi<wi,t>ui>+%
Ti @, (10b)
> —a(ea(ai ) + [ 25220, - &,

ox;



obl (!, 1)
8:137;

. ovl(zEl)
(fi(xs,t) + gi(xs, t) ;) + o
bk (@h, 1)) «

ozt H
for each j € N;(t), l € L; ;(¢).

(10c)

> —ay(bl(@},1) + § = &t

Collaboration is indicated by (10c) and agent ¢ hence not only
aims to satisfy ¢; as in (10b), but also contributes to satisfying
¢; for each j € N;(t). Collaboration may come at the cost
of not satisfying ¢; depending on the ratio of the parameters
K i. Note that (10) is a convex quadratic program with m; +
1+ CR;(t) decision variables and 1 + CR;(¢) constraints.
For safety, barrier functions such as in [16] are used.
Consider h(xz;) : R™ — R with h(z;) < 0 for ; € O;
and h(xz;) > 0 for x; ¢ O,. We also require that h(zx;) < 0
for x; ¢ B,. For an extended class K function &;, consider

oh;(z; .
) (:n )(fi(wiat) + gi(@i, t)t;)
ox; 96, (11)
> —ai(hi(xi)) + H ém‘l ‘Ci-

We assume that there exists a compact set Z/A{Z such that, for
each x; € P;(D), there exists &; € U; so that (11) holds.
Given a function h;(x;) obtained, for instance, by a sum-
of-squares procedure, this property can easily be verified;
C; can then be obtained by considering x; € P;(®) and
assuming uw; € U; 2 Z]Z Let now u;(Z;c,t) := @; and
€k(Zic,t) = € where w; and € are given by the
quadratic program (10), which is additionally subject to (11)
and 14; € U;, and where Z; . is the stacked vector of the states
of the agents in V; Ujcpr, (1) Ulegiﬁj(t)]/]l». Note that CR;(t)
introduces discontinuities that, however, do not affect the
existence of solutions since CR;(t) is piecewise continuous.
Theorem 3: Let Assumption 1 hold and assume that C; is
given. If u;(Z;,¢) is continuous, then r; < 0% (x;) where
T > Ky > a;l(—ei}max(oo)) with k; = infy>0 b,(2;(2),1)
and where r; is maximized, while x;(t) ¢ O; for all ¢ > 0.
Proof: The quadratic program (10), additionally subject
to (11) and @; € U;, is feasible for each x; € P;(D). If
u;(Z;c,t) is continuous, there exist solutions @ : [0, Tmax) —
D to (1) with 7y > 0. This implies that &; gape = {x; €
R™|h;(x;) > 0} is forward invariant and x;(t) ¢ O; for all
t € [0, 00). In particular, note that 7,,x = oo due to [23, Thm.
3.3] so that b;(Z;(t),1) > k; > ;' (—€;max(00)) forall ¢t > 0
so that p? (Z;) > r; > k; by construction of b;(Z;,t). [ ]

IV. SIMULATIONS

Consider M := 6 with n; := m; := 2. Agents 1, 2, and 3
are as in Example 1. Agents 4, 5, and 6 are subject to &; =
ci(z,t) +w; where ¢;(@,t) 1= > 004560 (i) S2 (T — ;)
and where, for ¢ := [Cl C_Q]T € R?, sat; (€) = [C:l EQ]T
with (. = (. if |¢.|] <1, =1if (. > 1, and {, = —1
if ¢, < —1 for ¢ € {1,2}. We impose u; € U; := [-2,2]?
so that C; = 4. Scenario 1 illustrates the approach in Section
III-A, while Scenario 2 illustrates the online collaboration as
in Section III-B; b;(&;,t) for ¢ € {4,5,6} are constructed as
in [14, Eq. (11)] and we set a;(r) := 10r and &;(r) := 5007.

Scenario 1: Agents 4, 5, and 6 are subject to ¢y,
¢5, and ¢g as in Example 1. It holds that & :=
{(1,4),(5,4),(6,4),(2,5),(4,5),(6,5), (3,6), (4,6), (5,6)}.
Note that ¢4, ¢5, and ¢g already have a formula dependency
in a favouring direction. The simulation results are shown
in Fig. 1 where K;; := 0.1 and K; 5 := 0.9. Fig. 1a shows
that k4 = —0.395, k5 = —0.382, and kg = —0.39, while
Fig. 1b shows that €4 max(00) = 7.006, €5 max(00) = 6.808,
and €6 max(00) = 7.271 with €; max(00) = sup,g € (Z;(¢), t).
Theorem 3 hence predicts that by(Z4(t),t) > —0.7006,
bs(x5(t),t) > —0.6808, and bg(s(t),t) > —0.7271 and
gives a more conservative estimate than what is actually
obtained. The trajectories from 0 — 10 s and from 10 — 35 s
are shown in Fig. 1c and 1d, respectively. Consider further
one static obstacle O; := {o} for each agent i € {4,5,6}
with 0 := {x; € R™|[z; — [0 03]" || < 0.2}, iee., placed
such that it intersects the agents trajectories in Fig. 1d. The
simulation results are shown in Fig. 2.

Scenario 2: To illustrate the use of collaboration requests,
consider now a slightly altered scenario with the formu-
las ¢y = ¢4, o5 = G500)([|xs — 22| < 0.3), and
6 = Gp500)([l®s — x3]| < 0.3) together with the edge
set £ :={(1,4), (5,4),(6,4),(2,5),(4,5), (3,6)} so that only
agent 5 can colaborate with agent 4 in case of a critical event.
The simulation results are shown in Fig. 3. A critical event
happens at 7 = 4.927 s and then collaboration is established
with agent 5 and the parameters K51 := 0.1, K52 := 0.7,
and K5 3 := 0.2. Agent 5 deviates from its optimal trajectory,
which would be similar to agent 6’s trajectory (agent 6 can
not collaborate due to &), to collaborate with agent 4.

The computation times are, on average for each agent and
on an Intel Core i7-6600U with 16 GB of RAM, 2 ms without
collaboration and 2.5 ms when collaboration is initiated.

V. CONCLUSION

Based on control barrier functions, we presented a feedback
control strategy to find least violating solutions for multi-agent
systems under conflicting local signal temporal logic tasks. In
particular, the barrier function inequality was relaxed whenever
needed and a characterization of the violation was formalized.
Furthermore, collaboration among agents was initiated when
possible. For future work, not only collaboration, but also task
re-assignment may be considered, i.e., defining a notion of
least violating solutions for the discrete level.
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