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Abstract—In this paper, we design a decentralized control
protocol for the collision avoidance of a multi-agent system,
which is comprised of 3D ellipsoidal agents that obey 2nd-order
uncertain Lagrangian dynamics. More specifically, we derive
a novel closed-form smooth barrier function that resembles
a distance metric between 3D ellipsoids and can be used by
feedback-based control laws to guarantee inter-agent collision
avoidance. Discontinuities and adaptation laws are incorporated
in the control protocol to deal with the uncertainties of the
dynamic model. The control laws are decentralized, in the sense
that each agent uses only local sensing information. Simulation
results verify the theoretical findings.

Index Terms—Cooperative control, Decentralized control,
Agents-based systems, Robust adaptive control

[. INTRODUCTION

OLLISION avoidance in systems comprised of multiple

robotic agents is a crucial safety property that needs
to be always achieved. Except for the single-agent case [1],
[2], multi-agent collision avoidance is tackled in a variety of
works (e.g., [3]-[8]), where the multi-agent system aims for
a primary objective (navigation, formation). The majority of
the related works considers spherical agents, which provide
a straightforward metric for the inter-agent or the agent-to-
obstacle distances. However, since the shapes of real robotic
vehicles can be far from spherical (e.g., robotic manipulators),
that approach can be too conservative and may prevent the
agents from fulfilling their primary objectives. Ellipsoids, on
the other hand, can approximate more accurately the volume
of autonomous agents (see Fig. 1).

The authors in [1], [9], [10] employ diffeomorphisms to
transform arbitrarily-shaped obstacles, including ellipsoids, to
points. This methodology, however, is not straightforwardly
extendable to the case of moving obstacles (i.e., multiple
autonomous agents). A point-world transformation of multi-
agent systems was taken into account in [11], [12]. As
described in [11] though, each agent’s transformation deforms
the other agents into shapes whose implicit closed-form equa-
tion (and hence a suitable distance metric) is not trivial to
obtain. The methodology of [9] provides useful insight, where
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the volume of each agent is “absorbed” to the other agents via
Minkowski sums. The closed-form implicit equation of the
resulting shapes, however, although possible to obtain [13],
cannot be used to derive an appropriate distance metric in a
straightforward way; [14] derives a conservative inter-ellipsoid
distance by employing ellipsoid-to-sphere transformations and
eigenvalue computations. An arithmetic algorithm that pro-
duces velocities for inter-agent elliptical agents is derived in
[15], without, however, theoretical guarantees. Optimization-
based techniques (e.g., Model Predictive Control), which can
be employed for collision avoidance of convex-shaped agents
[16], can be too complex to solve, especially in cases where
the control must be decentralized and/or complex dynamics are
considered. The latter property constitutes another important
issue regarding the related literature. In particular, most related
works consider simplified single- or double-integrator models,
which deviate from the actual dynamics and can lead to
performance decline and safety jeopardy.

Barrier functions constitute a suitable tool for expressing
objectives like collision avoidance. Originated in optimiza-
tion, they are continuous functions that diverge to infinity as
their argument approaches the boundary of a desired/feasibly
region. Barrier Lyapunov-like functions for general control
systems can be found in [17], [18], and in [3], [19], [20]
for multi-agent systems, for obstacle avoidance with spherical
obstacles/agents and time-dependent tasks.

According to the authors’s best knowledge, there are no
existing works addressing collision avoidance between 3D
ellipsoidal agents subject to dynamic uncertainties and external
disturbances under closed-form control protocols, which is the
focus of this work. In particular, we design smooth closed-
form barrier functions for the collision avoidance of ellipsoidal
agents. By employing results from the computer graphics field,
we derive a novel closed-form expression that represents a
distance metric! of two ellipsoids in 3D space. Moreover,
we use the latter to design a control protocol that guarantees
the collision avoidance of a multi-agent system that aims to
achieve a primary objective, subject to uncertain 2nd-order
Lagrangian dynamics. The derived control law is (i) decentral-
ized, in the sense that each agent calculates its control signal
based on local information, (ii) discontinuous and adaptive,
in order to compensate for the uncertainties and external
disturbances. We note that the derived barrier functions have

!By distance metric we mean that it is zero in a collision between the
ellipsoids and positive otherwise.



appeared in our preliminary results [21], incorporated how-
ever with simpler dynamics. This work provides significant
improvements, also from a practical viewpoint, by considering
external disturbances and more general uncertainties in the
agents’ dynamics. Moreover, in contrast to [21], we present
here an important symmetric property of the derived barrier
functions (Proposition 3) that plays a key role in the multi-
agent control design procedure.

The rest of the paper is organized as follows. Section II pro-
vides preliminary background and the used notation. Section
IIT formulates the treated problem and Section IV illustrates
the main results. Section V is devoted to a simulation example
and Section VI concludes the paper.

Fig. 1. Ellipsoid approximation of (a) the rigid links of a robotic manipulator,
(b) a mobile robot (top and front view).

II. NOTATION AND PRELIMINARIES
A. Notation

The sets of natural and real numbers are denoted by N, and
R, respectively, and R>g, R~ are the sets of nonnegative and
positive real numbers, respectively; ||«||; and ||z|| denote the
1- and 2-norm, respectively, of a vector z € R™; SE(3) is the
special Euclidean group and S™ ! is the @-dimensional sphere.
Given a set A, its interior is denoted by A. The identity matrix
is I,, € R™*™ The open and closed balls with radius §, cen-
tered at = € R™, are denoted by B(z,d) and B(z, ), respec-
tively. The sign function is defined as sgn(z) = —1, if z <0,
sgn(z) = 0, if z = 0, and sgn(x) = 1, if > 0; its vector
counterpart is defined as sgn(x) = [sgn(x1),...,sgn(x,)]" €
R", for ¢ = [21,...,2,]] € R™ Given a discontinuous
function f : R® — RF, its Filippov regularization [22] is
defined as K[f](x) == MyuoMugyy—o @ (Blx.6)\N). ).
where [ L(N)=0 is the intersection over all sets NV of Lebesgue
measure zero, and co(E) is the convex closure of the set
E. The Filippov regularization of sgn(x) € R is denoted
by K[sgn|(z) = SGN(z) where SGN(z) = —1, if z < 0,
SGN(z) =1, if x > 0, and SGN(z) € [-1,1], if z = 0.

B. Cubic Equations and Ellipsoid Collision

Proposition 1: Consider the cubic equation f(\) = c3A\3 +
A% + A+ ¢ = 0 with ¢, € R, V¢ € {0,...,3} and
roots A1, Az, Az, with f(A1) = f(A2) = f(A3) = 0. Then,
given its discriminant A == (¢3)* [T seqi2p (Ai—Aj)?, the

jefi+1,...,3}
following hold:
i) A=0<« 3i,j € {1,2,3}, with ¢ # j, such that \; =
Aj, i.e., at least two roots are equal,

(i) A>0e N\ eR,Vie{1,2,3}, and \; # \;,Vi,j €
{1, 2,3}, with i # j, i.e., all roots are real and distinct.
Proposition 2: [23] Consider two planar ellipsoids A =
{zeR3st. 2T A(t)2 <0}, B={2 € R3s.t. 2" B(t)z < 0},
with z = [p'1]",p € R?, and 4, B : R>o — R3%3 terms that
describe their motion in 2D space. Given their characteristic
polynomial f(\) = det(AA — B), which has degree 3, the
following hold:
(1) IN* > 0s.t. f(A*) = 0, i.e, the polynomial f(\) has
always one positive real root,
(i) AN B = 0 if and only if the characteristic equation
f(A) = 0 has two distinct negative roots, i.e., I}, A5 <
0, with A} # A3, and f(A}) = f(A5) =0.
(iii) ANB # P and ANB =0, ie., Aand B touch externally,
if and only if and only if f(A) = 0 has a negative root
with multiplicity 2.

C. Nonsmooth Analysis

Consider the following differential equation with a discon-
tinuous right-hand side:

&= f(z,1), (D

where f : D X [tg,o0) — R™, D C R", is Lebesgue
measurable and locally essentially bounded.

Definition 1 (Def. 1 of [24]): A function x : [to,t1) — R",
with t; > ¢, is called a Filippov solution of (1) on [tg, 1) if
x(t) is absolutely continuous and if, for almost all ¢ € [to,?1),
it satisfies @ € K[f](z,1).

Lemma 1 (Lemma 1 of [24]): Let z(t) be a Filippov
solution of (1) and V' : D x [tg,t1) — R be a locally
Lipschitz, regular function’. Then V(xz(t),t) is absolutely
continuous, %V(x(t),t) exists almost everywhe_re (a.e), ie.,

for almost all ¢ € [to,t1), and V (x(t),t) € V(x(t),t) =
Necov(@né ' [KIf](z,t)T,1]T, where OV (x, t) is the Clarke’s
generalized gradient [24].

Theorem 1 (Corollary 2 of [24]): For the system given in
(1), let D C R™ be an open and connected set containing
x = 0 and suppose that f is Lebesgue measurable and x >
f(z,t) is essentially locally bounded, uniformly in ¢. Let V :
D X [to,t1) — R be locally Lipschitz and regular such that
Wi(z) < V(x,t) < Wa(x), Vt € [to,t1), © € D, and z <
—W(z(t)), Vz e V(z(t),t), t € [to,t1), = € D, where
W1 and W, are continuous positive definite functions and W
is a continuous positive semi-definite on D. Choose r > 0
and ¢ > 0 such that B(0,r) C D and ¢ < min, =, Wi (z).
Then for all Filippov solutions x : [tg,t1) — R™ of (1), with
z(ty) € D == {x € B(0,r) : Wa(z) < c}, it holds that
t; = 0o, 2(t) € D, Vt € [tg,00), and limy_,o, W (z(t)) = 0.

III. PROBLEM FORMULATION
Consider N > 1 ellipsoidal autonomous agents, with
N = {1,...,N}, operating in SE(3), and described by
the ellipsoids A;(x;) = {y € R* : yTA;(x;)y < 0}
z; = [p/,n]" € M = R3 x S3 is the ith agent’s center
of mass pose, where p; € R? is its inertial position and

2See [24] for a definition of regular functions.



ni = [pi, €] ]T € S? its unit quaternion-based orientation,with
©; € R, ¢ € R3 its scalar and vector parts, respectlvely,
subject to ||ml = 15 Ai(zy) = T, ( )A T (xl), with
A; = diag{l f, L, 20 f, —1}, corresponding to the principal
axis lengths l“,lw,lZZ € R.g of agent i’s ellipsoid, and
T, € SE(3) is the transformation matrix describing the
translation and orientation of agent 7’s center of mass, Vi € N.
The agents’ motion follows the 2nd-order dynamics:

i = En(m:)vi
M; ()05 + Ci(s, vi)vi + gi(zs) + fi(ve) + di(t) = s,

(2)
(2b)
where v; = [p;],w, ] is agent i’s velocity, with w; € R3
being its angular velocity, E : §3 — R7*6 is the matrix map-
ping the quaternion rates to Velocmes [25], M; : Ml — R6x6
are positive definite inertia matrices, satisfying the property
m < M;(x) < m, Vo € M,i € N, for positive constants
m, m, C; : M x R® — R™™" are the Coriolis terms,
gi : M — RS are the gravity vectors, f; : R¢ — RS are
unknown vector fields that represent static friction-like terms,
di : Ry>g — RS are unknown external disturbances, and
u; € RO are the robots’ control inputs, Vi € N. The terms
M;, C; and g; are continuous everywhere, the terms f; are
locally bounded and continuous almost everywhere, and d;
are measurable and uniformly bounded. We also consider that
u; is decomposed as u; = uy; +us;, where uy, is a bounded
term that is responsible for some (potentially cooperative)
task, and u,; is a control term to be designed in order to
achieve multi-agent decentralized collision avoidance, Vi € N.
More specifically, we consider that ¢(z) € R is a term
that corresponds to the cooperative task dictated by uf,i,
with up; = E (nZ)T‘%(I) Vi € N, ci(z) < ¢z) <

¢o(z), for continuous posmve deﬁmte functions ¢y, ¢s, and
nonempty sets {z € X : z = ¢ (y)}, Vy € R>o, where
r o= [z, .., 2\]", and X = {:c e MY : Ai(z) N
Aj(z;) = 0,Vi,j € N,i # j}; ¢ can be also a function of
T=1[p] —Payr--sDN —PN_1,M1 -, that concerns
potential formation control objectives. Then X becomes {Z €
R*S xS3N ¢ Ay (2)NA;(z;) = 0,Vi,j € N,i # j}. The
conditions for ¢ are satisfied by standard quadratic functions,
e.g., o(x) Yiendllpe — ail® + €} } (for multi-agent
navigation) or ¢(z) = > e r{llpi — — a;|I* + em]}
(for formation) for sufficiently distant al,aw, where F is
a potential formation set and ey, e,, , represent appropriate
quaternion errors [25]. Note that ¢ and u ; are not responsible
for collision avoidance or compensating model uncertainties.

The dynamics (2) have the following properties [26]:

Property 1: The terms C; can be chosen such that
M;(z) — 2C;(x, &) are skew-symmetric, ie., y ' (M;(x) —
2C;(x,2))y =0, Vo € M, 2,y € RS, i € \V.,

Property 2: The gravity terms of (2) can be written as
gi(z) = Y;(2)0;, Vo € M,i € N, where Y; : Ml — R6*¢ are
known continuous matrices, and 6; € R¢, ¢ € N, are constant
but unknown dynamic parameters of the agents, Vi € N.

Property 3: [26] The friction terms are dissipative, i.e.,
v fi(vi) >0, Yu; #0,i € N.

Moreover, the following assumption is needed:

Assumption 1: Tt holds that ||d;(t)]1 < db,,
where dp, are unknown positive constants, i € N.

Vt € Rzo,

Note that in our previous work [21] we imposed a growth
condition on the terms f;(-) and we did not consider any form
of external disturbances. In addition, we consider that each
robot has a limited sensing radius dcon; € R, With deon,; >
max{ly i, ly, 1} + maxjepn { max{ly j, 1y j, lzﬁj}} + ¢ for
an arbitrarily small positive constant €, which implies that the
agents can sense each other without colliding. Based on this,
we can model the topology of the multi-robot network through
the undirected time-varying graph G(p) = (N, E(p)), with
E(p) = {(i,5) € N2 : fip; — pj | < min{deons, deony} . p =
[p{,...,pA]", and we further define the agent time-varying
neighborhood N; (p) = {j € N : [|p;—p;|| < deon,i}, Vi € N.
Moreover, we consider the complete graph G := (N, £), with
E={(i,4),Vi,j e N,i < j}, M = |E| = Wandan
edge numbering set M = {1,..., M}. Finally, given an edge
m € M, we use the notation (ml,mg) € N? for the robot
indices of edge m € M. As discussed in Section I, the agents
need to avoid collisions with each other, while executing their
task, dictated by uy ;. To that end, we aim to design closed-
form barrier functions and decentralized feedback control laws
us,; that guarantee collision avoidance among the ellipsoidal
agents, while compensating appropriately for the model uncer-
tainties and the external disturbances. By “decentralized”, we
mean here that agents can use only local information, in view
of their limited sensing radius (i.e., only p;,n;, j € N;(p)).
Formally, the treated problem is the following:

Problem 1: Given N 3D ellipsoidal autonomous agents with
the uncertain Lagrangian dynamics (2) executing tasks dictated
by uy,;, design

1) closed-form barrier functions that encode collision avoid-
ance of the agents,

2) decentralized control laws in ug; that guarantee inter-
agent collision avoidance, i.e., A;(z;(t))NA;(x;(t)) = 0,
Vi,j € N, i # j, as well as boundedness of all closed
loop signals.

IV. MAIN RESULTS

This section describes the proposed solution to Problem
1. In order to deal with the ellipsoidal collision avoidance,
we employ results from computer graphics that are related
to detection of ellipsoid collision and we build appropriate
barrier functions whose boundedness implies the collision-
free trajectories. Moreover, we use adaptive and discontinuous
control laws to appropriately compensate for the uncertainties
and external disturbances of (2).

We employ first the results described in Proposition 2
to build an appropriate ellipsoidal barrier function. Note,
however, that these results concern planar ellipsoids and
cannot be straightforwardly extended to the 3D case, which
is the case of the considered multi-agent system. For that
reason, we consider the respective planar projections. For
an ellipsoid A;,i € N, we denote as A;Y, A¥* AY* its
projections on the planes z-y, x-z and y-z, respectively, with
corresponding matrix terms A7Y, A¥* AY* (le., Af(x;) =
{y € R® : yTAs(x;)y < O} Vs € {my,xz,yz}). Note
that in order for A;, A; to collide (touch externally), all
their projections on the three planes must also collide, i.e.,



Ai(w) 0 Aj(g) # 0 A Ai(wi) N Aj(ay) = 0 & Af(zi) 0
Ai(xj) # 0N Af(z) N A (z5) = 0, Vs € {zy,z2,y2},
i.e., Therefore, A; and A; do not collide if and only if
A (x;) N A3(z5) = 0 for some s € {zy,rz,yz}. In view
of Proposition 2, that means that the characteristic equations
57 (A) = det(AAF (z;) — Aj(z;)) = 0 must always have one
positive real root and two negative distinct roots for at least
one s € {xy,xz,yz}. Hence, by denoting the discriminant
of ff;(A\) = 0 as A} ;(z;,7;), Proposition 1 suggests that
A J(x“xj) must remain always positive for at least one
s € {wy, w2, yz}, since a collision would imply A7 ; (v, ;) =
0, Vs € {xy,xz yz}. Therefore, by defining the smooth
function [9] o(z) = exp(—1), if z > 0 and o(z) := 0, if
x < 0, we conclude that A; and A; do not collide if and
only if (AP (z1, ;) + 7(AF (s, ;) + oAV (wi,27)) >
0, since a collision would result in A (x,,xj) =0 <
o(A7;(zi,z5)) = 0,Vs € {xy, 2, yz} We aim now at
defining a decentralized continuously differentiable function
for each edge m € M that incorporates the collision avoidance
property of agents my, mo. We need first the following result
regarding the discriminant of f;(\) = 0:

Proposition 3: Let Ay, As be the discriminants of f;(\) =
det(AA — B) = 0, fo(\) :== det(AB — A) = 0, respectively,
where A, B € R3%3, Then A = A,.

Proof: Let det(AMA — B) = 0 & fi(\) == c3A® +
oA + X + ¢y = 0, with ¢, € R, ¥ € {0,...,3}.
It can be verified that det(AB — A) = 0 & fa(\) =
—coA3 — 1A% — g\ —c3 = 0. Let A1, Ao, A3 be the solutions

of AN = 0. e AW = Alda) = Ai(k) = 0. and
A1 Ao = By substltutlng - n fa(N), € € {1,2,3},
we obtain —co)\ — cl)\ — cz)\ — 3 = —(e3\} +
codZ + 1 he + co) = —fl()\g) = 0. Hence, %7 %27 )\% are the

solutions of fo(A) = 0. The discriminants of f1(\) = 0 and
fg()\) = 0 are Al = Cé()q — )\2)2(/\1 - /\3)2()\2 - )\3)2 and
Ay = (=) O =) (T =) (g =) =
co(MA2A3) " (A2 — A1)?(As — A1)*(As — Ag)?, which, by
substituting cg = —c3 A1 A2 A3, becomes Ay = Aj. [ |

Therefore, we conclude that the discriminants A7 ;(z;, ;)
and Aj(zj,z;) of det(AAj(z;) — Aj(z;)) = 0 and
det(AAj(z;) — Af(x;)) = 0, respectively, are the same, for
all s € {xy,xz,yz}. Hence, we can define uniquely for
each edge m € M the continuously differentiable function
Ay, M? — Rzo, with

A ($m1,$m2) = U(Aﬁl mao (mm1axm2))+
o (A my (Tmy s Tmy)) + 0 (AL (T Tmy)), (3)

which needs to remain positive for all times in order to achieve
the collision avoidance property, i.e., Ay, (@i, (), T, (t)) >
0, Vt € Rso,m € M. Note that, in view of Propo-
sition 3, the agents mj; and mgy can calculate (3) based
on A7, (Tmy, Tmy) and A3 (T, T, ), Tespectively,
Vs € {xy,xz, yz},m € M.

We still need to incorporate the fact the that agents have
a limited sensing radius, and that agent 7 does not have
access to the functions A7 ;(x;,z;), when j ¢ N;(p). To
that end, we define first the greatest lower bound of A,,
when both agents m, mo are in each other’s sensing radius,

ie, A, = inf(mml@MZ)GMz{Am(:L'mI,_xmz) st |lpm, —
Pm.ll < min{deon,,, ;deon,,, }},¥m € M. Since deon; >
max{ly i, lyi, 2} +maxjen { max{ly ;, 1, ;,1.;} } +e, Vi€
N, it follows that there exists a positive constant €5 such
that A,, > ea > 0,Vm € M. Next, we define the smooth
switching functions f,,, : R>¢ — [0, B, with [9]

3 o()

o(@)+o(Am—z)’ @

where A,, is a positive constant satisfying A, < Km, VYm €
M. Then, by choosing B = B (Yo Am (T, s Tms,)), Where
v, 1S a positive scaling constant, we incorporate the limited
sensing radius of the agents in the collision avoidance scheme,
since % vanishes when my ¢ N, (p) or ma ¢ Ny, (p),
i.e., when at least one of the agents that form edge m lies
outside the sensing range of the other agent. The terms /3,
can be any positive constants, ¥m € M. All the necessary
information for the construction of the functions 3,,, A,,, i.e.,
the constants A,,, 3, and the lengths I, ;, l, L., i € N,
can be transmitted off-line to the agents.

We can now define a suitable barrier function for each
edge m € M as any continuously differentiable function
by @ R>9g — Rx( with the property limg_, by (z) = oo,
e.g., bp(z) =1, meM. The barrier function for edge m is
then by, = by, (Brm), Ym € M.

We propose now a decentralized feedback control law for
the solution of Problem 1. Firstly, we define the estimations
of the unknown terms #; € R® and dj, € R of Property 2 and
Assumption 1, respectively, as 0, € R¢ and db € R, with the
respective errors 6; = 6‘ —0; and db = db —dy,, Vi € N. By
using adaptive and discontinuous control techniques, we prove
in the following that these estimations compensate appropri-
ately for the unknown terms, without necessarily converging
to them. In particular, we design the feedback control laws for
Us,; aAS

) _ OA, .
Ui = Z a(z,m)/{mEn(m)TaT_n + Yi(z:)0;
meM ¢
— ky,v; — a?bi sgn(v;), (5)
where a(i,m) = —1 if agent 7 is part of edge m, and
a(i,m) = 0 otherwise, Vi € N, m € M, and k,,, =
abgéyﬁ m)%, Ym € M. Moreover, we design the as-
sociated adaptation laws
). — Vi) T,
?z . ’71,9}/;(‘%2) (% }VZ €N, (6)
dy, = Yiallvila

with arbitrary bounded initial conditions, where ~yy ; and 7,4 ;
are positive gains, Vi € N. The correctness of (5)-(6) is shown
in the following theorem:

Theorem 2: Consider a multi-agent system comprised
of 3D ellipsoidal agents and subject to the dynamics (2)
at a collision-free initial configuration, i.e., A;(z;(0)) N
Aj(x;(0)) =0, Vi,j € N with i # j. Then, application of the
control and adaptation laws (5), (6) guarantees that the agents
avoid collisions for all times, i.e., A;(z;(t)) NA;(z;(t)) = 0,



Vi,j € N with i # j, t € Rx¢, with all closed loop signals
being bounded. Moreover, lim;_, o, v;(t) = 0,Vi € N.
Proof: Consider the vector ¢, = [zT,v",0T, dJ]T

€ Z, = X x RTNHN where X = {z € MV : A;(x;) N
Aj(x;) = 0,Vi,j € N,i # j} as defined in Section III,
voi=[uf,...,00]T € RN, dy == [dy,,...,dpy]" € RY,
0 = [0],...,05] € RN, Since the initial configuration is

collision-free, it holds that (,(0) € Z,. By combining (2),
(5), and (6), we obtain the closed-loop system dynamics (, =
F¢(Cz, t). It can be verified that Fy is measurable in ¢ over R
and measurable and locally bounded in (, over Z,. Hence, by
invoking Prop. 3 of [27], we conclude that at least one Filippov
solution exists and any such solution satisfies (. : [0,t1) = Z,
for a positive ¢;. Define ( = [qb, bl,...,bN[,vT,gT,clvl;r]T
€ Z = RMATNHIN+L where ¢ is the cooperative term
defined in Section III. Note that ((0) € Z and, for any finite
r, ¢ € B(0,7) C Z < (, € Z,, which we prove in the
following. Define the function L V() = () + > e bm +
Sien{zvd Mi(2i)v; + d2 + —H@ |12}, for which it
holds that W7 (¢) < V(()) < Wg(() for positive definite
functions Wi, W5 on Z. Since ¢(0) € Z, we conclude that
V(¢(0)) is well defined, and hence there exists a finite constant
V such V(¢(0)) <V and b,,(0) <V, ¥m € M. We aim to
show that V, given its initial boundedness, remains bounded
vVt € R>p, and so do the terms b,,, Ym € M. By differen-
tiating V' along the solutions of the closed loop system and
in view of Lemma 1 we obtain V € V := Ofeav(c)éTK[é].
Since V is continuously differentiable, the generalized gradient
reduces to the standard gradient and therefore, after using
Properties 1, 2, and grouping terms, we obtain

. aAnLT —
meaéi{z} < Z { Zﬁ la(lvm)”mami Ey(mi) | vit
z €N U mem
_ op(x
ol Ol +o7 (uz——mxnmEn(m)T )

—v; fi(vi) + db +

aTe }
Yi,0
By also using Property 3, Assumption 1, substituting u; =
wp; +us,; with up; = E (nl)T‘a%f) and (5), the adaptation
= dy, —dy,, ; = 6; — 6; and
the property x'sign(x) llz]|1, Yo € R”, we obtain
max__c{z} < = Yicn b, v;||? =: W(C). Therefore, z <

—W(C(t), Yz € V(C(t)), t € [0,1), where W : Z — R is
a positive semi-definite function defined on Z. Hence, by ap-
plying Theorem 1, we conclude that ¢; = oo, (t) is bounded
in the compact set {¢ € B(0,7) : Wa(¢) < ¢}, Vt € Rxg
for any r and c satisfying B(0,7) C Z, ¢ < min = W1(¢),
and lim;_,o W(¢(t)) = 0 = limy_ v(t) = 0. Note that,
since the sets {z € MY : 2 = ¢ 1(y),z € X} are
nonempty, r can be chosen arbitrarily large, corresponding
to all collision-free initial configurations. Therefore, inter-
agent collisions are avoided, and the adaptation signals éi,
czbi, remain bounded, Vi € N, t € R>o. The continuity of
the terms Y;(-) implies also their boundedness and hence the
boundedness of the control signals (5), (6), t € R>q. Note that

laws (6), and using db,

convergence of gi, CE, to zero is not needed, and hence we
do not require persistence of excitation or sufficient richness
of the respective signals, as is usually assumed in adaptive
control when parameter convergence is taken into account.

Remark 1: It can be verified that det(\A;, (m,) —
A3 (T, ), and hence b, are functions of P, — Pmys Nim,y»
Nm,. Therefore, if ¢ is a function of z, the aforementioned
analy51s still holds by setting X = {T € R¥5 x 3 .
Ai(xi) N Aj(xj) = 0,Vi,j € N,i# j}. Moreover, note that
achievement of the objectives expressed by ¢ is not pursued
in this paper and may not be necessarily guaranteed due to
the potentially counteracting terms of u;. The control scheme
could be extended, however, by appropriately designing the
terms ¢(x) such that the resulting configuration of the agents
implies ¢(z) = 0, like, e.g., [3], [4], [9].

Remark 2: Since AS = A ; (due to Proposition 3),
Vi,j € N, #* ], the control scheme can be ex-
tended to directed communication graphs, by setting for
the ith agent bi,j = bi’j(ﬂij(Ai’j(LCi,LCj))), V] € N\{Z},
with A; j(2;,2;) as in (3) and f;; as in (4), Zw =
inf(y, o yem2{Ai (i, ;) st |[pi — pjll < deon, }» and appro-
priately modifying the control law. Similarly, collision avoid-
ance with static environment obstacles could be incorporated
in the overall scheme. An event-triggered extension is also
possible by employing results from the related literature, e.g.,
[28]. Finally, for implementation purposes in real applications,
the discontinuous part of (5) could be approximated by a
continuous function via the boundary layer technique [29],
e.g., ‘v‘vllile instead of sgn(v;;), when |v;;| < ¢;,, where
v, € Hé is the jth component of v;, Vi € A, and €; is a
small positive constant.

V. SIMULATION RESULTS

We consider a simulation example with N = 8 rigid
bodies in SE(3), described by ellipsoids with axes lengths
lz; = 0.5m, [, ; = 0.3m, lm = 0.2m, Vi € N. The initial
poses are p; = [3,3,0] 7, —13,3,0]T, p3 = [3,-3,0] T,
=1-3,3.0", ps [3,3,3] —[3,3,3]T, pr = [3,—3,3]1
pg = [—3,3,—3]T, m=1mns = [0.769,0.1696,0.6153,0.0358]T,
ne = mg = [0.8488,—0.3913,—0.0598,—0.3505]T, 73 =
ns = [0.7638,—0.5283,—0.3275,—0.1738] T, ny = n; =
[0.7257,0.3081,0.3714,0.4904] . We consider that ¢(z) de-
scribes an independent multi-agent navigation objective, with
desired configurations as p1, = p2, P2, = D1, P3, = DP4»
P4y, = P3, P5g = P65 P6g = P55 P1q = P8 P8y = P75 Nig =
[1,0,0,0] T, Vi € N. We set the errors e, = pl p;, and
en, = leg,el]T =i, ®7;, where 7; = [p;, —¢] |7 € S¥is
the quaternion conjugate, ® denotes the quaternion product,
and e, , e, are the scalar and vector parts, respectively, of the
quaternion error [25]. The desired quaternion configuration is

achieved when e,, = [£1,0,0,0]" and hence the function
¢(x) is chosen as ¢(x) = > cp (alz pill> +1—¢3,).
with ¢ = >, ((pZ Diy) | i —€y,e, wz) [25]. The con-
trol inputs uy, are therefore chosen as wuy; [p;';

pisepel]’, Vi € N. The agent masses are chosen as
(0.1,0.2,0.01,0.1,0.1,0.2,0.1,0.2) and the principal mo-

ments of inertia as diag{0.05,0.03,0.01}, Vi € A/. We also set



fi(vi) =my, Sin(wfz‘t + (bfi)vi’ di(t) = (1/mf7,) Sin(wfit +
(bf'i)’ Vi € N, with [mfl,. .. ,mfg] =0.1"- [1,2,0.1,1,1,2,1,2],

[Whse o wp] = 0.01 - [1,2,0.1,1,1,2,1,2], and [¢y,,....br,]
= 0.01 - [5,1,0.05,0.5,1,0.5,1]. We choose b,, = Ao with
Bm = 1, A, = 10% v, = 107%, ¥m € M, and
0:(0) = 0.1, dy,(0) = 02, k,, = 1, Vi € N. The

expressions for A, (z,,Zm,) were derived by using the
symbolic toolbox of MATLAB. Fig. 2 shows a 3D plot of
the agent trajectories, and Fig. 3 shows the minimum of the
barrier functions min,,c {0 (¢)} (left), which is always
positive, and the signals v;(t) = |lp; — pi||> + 1 — €2,
and v;(¢) (right), Vi € N, t € [0,15]. A short video that
demonstrates the aforementioned simulation example can be

found in https://youtu.be/IAni7zZIMM7k.

Fig. 2. The evolution of agent trajectories Vt € [0, 15].
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Fig. 3. Left: The evolution of the minimum of the barrier functions

min,, - {bm (t)}. Right: The evolution of the signals ~;(¢) and v;(t),
Vi € N, Vt € [0,15].

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a closed-form barrier function as well
as a robust decentralized control scheme for the multi-agent
collision avoidance of 3D ellipsoids, using discontinuous and
adaptive controllers. Future efforts will be devoted towards
adding connectivity properties to the current framework and
resolving issues of local minima.
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