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Abstract—In this paper, we investigate the reachability analysis
and safety controller synthesis problem for linear discrete-time
systems under additive bounded disturbances. We consider the
following problem; design a state feedback controller such that
any state trajectories starting from an initial set can be robustly
controlled towards a target one in finite time, while at the
same time avoiding any prohibited regions. One of the potential
disadvantages of existing reachability algorithms when external
disturbances are taken into account, may be that the solution
to guarantee reachability becomes conservative. Motivated by
this, this paper provides a new controller synthesis framework
based on the notion of tube-based control strategy, in which
a suitable sequence of polytopes is generated according to a
convex feasibility problem. An illustrative simulation validates
the effectiveness of our proposed method.

I. INTRODUCTION

Reachability and safety controller synthesis have been active
areas of research in the community of hybrid systems. The
basic concept is to design the control strategy such that the
state trajectory reaches a desired target region in finite time,
while at the same ensuring certain safety specifications (e.g.,
avoiding obstacles). This concept has led to a wide variety of
applications, such as motion planning of dynamic robots [1],
[2], safe platooning or control of manuevers [3], [4], synthetic
biology [5], and so on. So far, different theoretical foundations
based on different problem formulations have been proposed
in the literature, see e.g., [6]–[13]. For example, in [6],
[7], reachability analysis is given for continuous-time linear
systems on a set of full dimensional polytopes (or simplices)
that are partitioned in a state-space. A piece-wise affine control
law is designed as a set of vector fields to steer the state
to exit a prescribed facet in finite time to enter an adjacent
polytope. Similar reachability formulations for the case of
discrete-time systems have been also proposed in [8]. Another
approach to controller synthesis problem is based on approx-
imately bisimilar abstractions [12], [13]. In this approach, a
symbolic model that approximately simulates the behavior of
the original (continuous) control system is constructed through
the notion of approximate bisimilar relations, and a safety
controller is synthesized based on finding appropriate paths
by solving symbolic optimal control problems.
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In this paper, we investigate the reachability and controller
synthesis problem for linear discrete-time systems, where
the basic problem formulation follows the polytope-based
approach [6]–[11], as already discussed above. Namely, we
consider that the state-space is partitioned by a finite number of
polytopes, and for each pair of them the reachability problem
is formulated. Following the hierarchical approach in [1], [8],
[10], [11], [14], we first construct a finite transition system
by analyzing the reachability for all pairs of polytopes. Then,
a high level controller finds a suitable path of the transition
system by implementing standard graph search algorithms to
achieve the desired reachablity goals. Based on the generated
path, a low level controller implements a control strategy such
that the corresponding state trajectory can achieve the entrance
to the target set while avoiding any prohibited regions.

One of the main contributions of this paper is to provide
a new reachability framework that deals with external dis-
turbances. That is, we propose to design a controller such
that any state trajectories starting from an initial polytope
can be steered towards a target one in finite time, and
this is guaranteed under any bounded external disturbances
affecting the system model. Note that reachability analysis
for linear systems under external disturbances has been also
investigated in [10], [11]. In this approach, reachability is
analyzed by evaluating open-loop predictions of the states that
are propagated over the worst case effect of the disturbance
sequence. However, this open-loop formulation may lead to a
conservative result, since the disturbance effect will be over-
estimated as the prediction time step evolves and the feasible
sets to satisfy desirable constraints may become significantly
tighter.

Instead of analysing reachability via open-loop predictions,
this paper provides an alternative reachability framework,
which is inspired by a tube based control strategy [15],
[16]. Originally, tube based strategy has been developed as a
Model Predictive Control (MPC) framework for stabilization
of (non)linear systems under external disturbances. Unlike
standard open-loop MPC formulations, tube based MPC de-
termines a sequence of polytopes (or the so-called tubes) and
an associated control policy by solving an optimal control
problem online. As stated in [15], the tube based approach
can moderate the conservativeness compared with the open-
loop MPC formulation that needs to have tight constraints to
guarantee feasibility. In this paper, we modify the original
tube-based framework in order to apply it for reachability
analysis, and desirable feedback control policies that steer the
state to the target polytope are designed in the hierarchical
manner.

The remainder of this paper is organized as follows.



In Section II, the problem formulation is provided. In
Section III, reachability analysis and an algorithm to obtain a
finite transition system are given. In Section IV, we provide an
over-all control algorithm. In Section V, simulation examples
validate the effectiveness of the proposed approach. We
finally conclude in Section VI.

Notations. Let R+, N, N+ be the positive real, non-negative
and positive integers, respectively. For vectors v1, · · · , vN ,
denote by co{v1, · · · , vN} their convex hull. A set of vec-
tors {v1, · · · , vN} whose convex hull gives a set P (i.e.,
P = co{v1, · · · , vN}), and each vn, n ∈ {1, 2, · · · , N} is not
contained in the convex hull of v1, · · · , vn−1, vn+1, · · · , vN
is called a set of vertices of P . For two given sets A ⊂ Rn,
B ⊂ Rn, denote by A⊕B the Minkowski sum A⊕B = {z ∈
Rn | ∃x ∈ A, y ∈ B : z = x+y} and by A	B the Pontryagin
difference A	B = {x ∈ Rn | x+ y ∈ A, ∀y ∈ B}.

II. PROBLEM FOMULATION

In this section, the system description and problem formu-
lation are given.

A. System description

Consider the following discrete-time linear dynamical sys-
tems with additive bounded disturbances:

x(k + 1) = Ax(k) +Bu(k) + w(k) (1)

for k ∈ N, where x(k) ∈ Rn is the state, u(k) ∈ Rm

is the control variable, and w(k) ∈ Rn is the additive
bounded disturbance. We assume that state, control input and
disturbance variables satisfy the following constraints:

x(k) ∈ X , u(k) ∈ U , w(k) ∈ W, (2)

for all k ∈ N, where X ⊂ Rn, U ⊂ Rm,W ⊂ Rn are assumed
to be polytopic sets. Regarding the sets U , W , we further
assume that the origin is contained in their interiors, i.e., 0 ∈
U , 0 ∈ W . In what follows, we consider that there exist No

number of bounded polygonal regions O1,O2, · · · ,ONo ⊂ X ,
which can be non-convex and represent prohibited regions that
the state x needs to avoid all the time. In practical situations,
such regions may represent obstacles where mobile vehicles
or robot manipulators need to avoid while moving in the state-
space X . An example of such prohibited regions is illustrated
in Fig. 1(a). In the following, we denote by O ⊂ Rn the union
of all prohibited regions, i.e., O =

⋃No

k=1Ok. Thus, the areas
given by X\O represent safety regions, in which the state can
freely move in the state-space X .

B. Cell decomposition

Before we formulate the problem, several assumptions are
given to motivate our control objective of this paper. First, we
are not interested in moving the state towards an exact point,
but in controlling it to a specified region in the state-space
X . This assumption is reasonable in some practical situations;
for example, when a robot aims to move to “Room A” as a
region of interest, rather than move to a specific point in the

(a) Example of some prohibited
regions in X (red regions).

(b) Example of cell decomposition.

Fig. 1. Illustrations of prohibited regions in X and an example of state-space
partitioning.

area. Moreover, we also assume that such region of interest
as well as the other safety regions are all characterized as
polytopes. Specifically, we consider that the safety areas X\O
are decomposed into a finite number of polytopic sets:

X\O =

N⋃
i=1

Pi, (3)

which is so-called the cell decomposition [17]. In (3), N repre-
sents the number of polytopes obtained by the decomposition,
and for all pairs (i, i′) ∈ {1, · · · , N} × {1, · · · , N}, i 6= i′, it
holds that Pi∩Pi′ is either empty or a common face of Pi and
Pi′ . The illustration of the cell decomposition is depicted in
Fig. 1(b). Here, each Pi ⊂ X may indicate a target region that
should be reached in finite time, or it may indicate a region
that should be passed through towards a target region.

There are numerous techniques in the literature for obtaining
the cell decomposition as in (3). In particular, the most well-
known decomposition scheme is a triangulation [18], where
the bounded state-space is partitioned into a finite number of
simplices. The triangulation method is useful, since we can uti-
lize computationally efficient methods to decompose complex
polygonal environments. Another decomposition scheme is
obtained by using different kinds of polygonal representations,
such as rectangles, cylinders [17], or general polytopes [1],
[19]. In view of the many different techniques, how the decom-
position scheme as illustrated above is applied is beyond the
scope of this paper; the main focus of this paper is to provide
a reachability and control synthesis framework among the
given polytopes obtained by the decomposition. Without loss
of generality, we denote each polytope Pi, i ∈ {1, · · · , N} as

Pi = co{vi,1, vi,2 · · · , vi,ni
}, (4)

where vi,1, · · · , vi,ni
∈ Rn represent the vertices of Pi and

ni denotes the number of them. Moreover, denote by P ∈ 2X

the set of all polytopes obtained by the decomposition, i.e.,
P = {P1,P2, · · · ,PN}.

C. Problem formulation and overview of approach

Suppose that the state is initially somewhere inside a certain
polytope, say Pinit ∈ P (i.e., x(0) ∈ Pinit), and it tries to
move towards a desired target set Ptarg ∈ P in finite time.
Our goal is then to design a control strategy such that any
states starting from Pinit can be driven into Ptarg. That is:



(a) Pij ∩ O = ∅. (b) Pij ∩ O 6= ∅.

Fig. 2. Illustrations for the two cases to check the reachability between Pi,
Pj .

Problem 1 (Safety Control Problem). For given initial and
target sets Pinit, Ptarg ∈ P, design a control strategy such
that for any x(0) ∈ Pinit, the closed loop state trajectory
enters Ptarg in finite time while at the same time avoiding
any prohibited regions O. �

To solve Problem 1, this paper adopts a hierarchical control
strategy, as the relevant approaches presented in [1], [8]–
[11], [14]. In the hierarchical approach, we obtain a finite
transition system based on the polytopes given by the cell
decomposition. The transition system represents an abstracted
behavior of the original control system in (1), which consists
of a finite number of symbolic states and the corresponding
transitions. Obtaining the transition system is useful, since
the problem to check the reachability from Pinit to Ptarg

can be solved by finding a suitable path of the transition
system through efficient graph search algorithms (e.g., Dijkstra
algorithm). Moreover, the transition system has an advantage
in adapting control specifications; even though the target
(or initial) set has been changed, a suitable path and the
corresponding control strategy can be re-designed once the
transition is provided in the offline phase.

In this paper, in order to generate the transition system,
we propose the so-called tube based strategy to analyze the
reachability between each pair of polytopes. Specific details
of this framework are provided in the next section.

III. FINITE ABSTRACTION BASED ON REACHABILITY

In this section, several steps are provided to generate a finite
transition system. In Section III-A, we define the notion of
reachability to design controllers among polytopes obtained
by the decomposition. We then provide in Section III-B an
algorithm to obtain the transition system.

A. Reachability analysis

Consider a pair of two polytopes (Pi,Pj) ∈ P× P (which
are not necessarily the initial and the target set), and let Pij ⊂
X be the convex hull of the union of Pi and Pj , i.e.,

Pij = co{Pi ∪ Pj}. (5)

First, let us analyze if there exists a control strategy to drive
the state from Pi to Pj while avoiding prohibited regions O.
Towards this goal, suppose first that Pij ∩ O = ∅, i.e., the
convex hull does not intersect any prohibited regions. In this
case, the set Pij represents a safety region since there is no
prohibited region inside the set. Thus, it is sufficient to design a

Fig. 3. Illustration of the sets Z and Q`

controller such that any state starting from Pi enters Pj , while
at the same time always remaining in Pij to avoid prohibited
regions. The illustration is depicted in Fig. 2(a). As we will see
later, finding such controller can be formulated by a convex
problem, since Pij as well as Pi, Pj are all convex sets.

Suppose that, on the other hand, we have Pij∩O 6= ∅. This
case may not be trivial; due to the non-convexity of the safety
region Pij\O, the problem to find a controller may be non-
convex and hard to be solved. The problem can still be convex,
however, if we try to find a controller such that any state
starting from Pi stays in the same set Pi (instead of Pij\O)
and it enters Pj at the final time. The illustration is depicted in
Fig. 2(b). Obviously, this constraint is tighter than the former
case; as the state needs to be inside Pi all the time until it
enters Pj , it implies that the two polytopes should be adjacent.
Yet the problem to find the control strategy becomes convex,
as the sets considered here are now all convex. Motivated by
the above two cases, the following notion of reachability is
given in this paper:

Definition 1 (Reachability). For a given pair of two polytopes
(Pi,Pj) ∈ P×P, we say that the state is reachable in L steps
from Pi to Pj , if for every initial state x(0) ∈ Pi there exists
a set of controllers u(0), u(1), · · · , u(L − 1) ∈ U , such that
the corresponding states x(1), x(2), · · · , x(L) in accordance
with (1) satisfy the following:
• If Pij ∩ O = ∅,

1) x(`) ∈ Pij , ∀` ∈ {1, · · · , L− 1};
2) x(L) ∈ Pj .

• If Pij ∩ O 6= ∅,
1) x(`) ∈ Pi, ∀` ∈ {1, · · · , L− 1};
2) x(L) ∈ Pj .

The above conditions must hold under any disturbances
w(0), · · · , w(L− 1) ∈ W . �

In the following, we formulate a problem to check reacha-
bility in accordance with Definition 1. Suppose that for given
(Pi,Pj) ∈ P × P and L ∈ N+, we wish to check the reach-
ability from Pi to Pj in L steps. To make sure that the state
can be robustly steered to Pj under the effect of disturbances,
the following tube-based strategy is adopted. In the tube based
strategy, the problem is to find a suitable sequence of polytopes
(or the so-called tubes) Q0,Q1, · · · QL ⊂ X and an associated
controller that forces the state trajectories to remain inside the
designed polytopes. Aiming to formulate a convex problem,



the sequence Q0,Q1, · · · QL is more specifically parametrized
as follows; for the initial setQ0, we haveQ0 = Pi. This means
that the initial polytope Q0 is given fixed and not regarded as
a decision variable. For the subsequent sets Q1, · · · ,QL, we
have

Q` = p` ⊕ ε`Z, (6)

for all ` ∈ {1, 2, · · ·L}. The set Z ⊂ Rn is a given polytope
characterized by Z = co{z1, · · · , zni

}, where the number
of points ni is the same as the number of vertices of Pi

(see (4)), and z1, · · · , zni
∈ Rn are given points selected

such that 0 ∈ Z . ε` > 0 denotes a scalar, decision variable
representing the size of Q`, and p` ∈ Rn denotes a decision
variable representing the center of Q`. The illustration of the
two sets Z , Q` are depicted in Fig. 3. All decision variables
to represent the sequence of polytopes are thus given by
(p1:L, ε1:L), with p1:L = {p1, · · · , pL}, ε1:L = {ε1, · · · , εL}.

Let qn(`) = p` +ε`zn, ∀` ∈ {1, · · · , L}, ∀n ∈ {1, · · · , ni},
and qn(0) = vi,n, ∀n ∈ {1, · · · , ni} (recall in (4) that
vi,1, · · · , vi,ni

are the vertices of Pi). Then, the sequence of
all polytopes Q0, · · · ,QL can be also represented by

Q` = co{q1(`), q2(`), · · · , qni(`)}, (7)

for all ` ∈ {0, 1, · · · , L}.
Using above notations, we propose the following problem

to analyze the reachability from Pi to Pj :

Problem 2 (Problem to check reachability from Pi to Pj

in L steps). Let (Pi,Pj) ∈ P × P and Pij = co{Pi ∪
Pj}. For given L ∈ N and Z = co{z1, · · · , zni

}, find
Q1:L = {Q1, · · · ,QL} and U0:L−1 = {U0, · · · ,UL−1} with
U` = co{u1(`), · · · , uni(`)}, ∀` ∈ {0, · · · , L−1}, by solving
the following feasibility problem:

min
Q1:L, U0:L−1

0 (8)

subject to the following constraints:
• If Pij ∩ O = ∅,

ε` > 0, ∀` ∈ {1, · · · , L} (9)
Q` ⊆ Pij , ∀` ∈ {1, · · · , L− 1}, (10)
QL ⊆ Pj , (11)
Aqn(`) +Bun(`) ∈ Q`+1 	W, (12)
un(`) ∈ U , (13)

where the constraints (12) and (13) must hold for all ` ∈
{0, · · · , L− 1}, n ∈ {1, · · · , ni}.

• If Pij ∩ O 6= ∅, the constraints are given by (9), (11),
(12), (13) and Q` ⊆ Pi, ∀` ∈ {1, · · · , L} (i.e., only the
constraint (10) is replaced by Q` ⊆ Pi, ∀` ∈ {1, · · · , L}
and the other constraints are the same). �

As shown in Problem 2, the problem is to find feasible
sequences of polytopes Q1:L and control inputs U0:L−1 such
that all constraints as illustrated above must be satisfied. Note
that although Q0(= Pi) is not regarded as a decision variable,
its vertices q1(0), · · · , qni(0) appear in (12) (with ` = 0). The

Fig. 4. Illustration of the sets Q1:L satisfying (10), (11) with L = 4 (for the
case Pij ∩ O = ∅).

constraints (10), (11) impose that each set Q` must be inside
Pij and the last one QL must be inside Pj . The illustration of
the sequence Q1:L satisfying such constraints is depicted in
Fig. 4. The constraint (12) indicates that there exists a set of
controllers u1(`), · · · , uni(`) such that all vertices of Q` can
be steered into a tighter set Q`+1	W . As we will see in the
analysis that follows to prove reachability, this guarantees that
every state in Q` can be steered towards inside Q`+1 under
any effect of the disturbance w ∈ W . All decision variables
in Problem 2 are given by (p1:L, ε1:L,U0:L−1). Problem 2 is
formulated as a convex problem, since all inclusion constraints
imposed in Problem 2 can be translated into the linear matrix
inequalities (LMIs). The following lemma states that the
reachability holds if Problem 2 has a feasible solution:

Lemma 1. Suppose that Problem 2 has a solution for given
(Pi,Pj) ∈ P× P and a time step L ∈ N+. Then, the state is
reachable from Pi to Pj in L steps. �

Proof. We prove only for the case Pij ∩ O = ∅, since for
the other case it can be proven in a similar manner. Let Q∗1:L,
U∗0:L−1 be the feasible solution to Problem 2. For convenience,
we also let Q∗0 = Q0 = Pi and

Q∗` =co{q∗1(`), · · · , q∗ni
(`)}, ∀` ∈ {0, · · · , L} (14)

U∗` =co{u∗1(`), · · · , u∗ni
(`)}, ∀` ∈ {0, · · · , L− 1}. (15)

From (10) and (11), we obtain Q∗` ⊆ Pij for all ` ∈
{1, · · · , L} and Q∗L ⊆ Pj . Thus, it is sufficient to prove that
for every x(0) ∈ Q∗0(= Pi), there exist u(0), · · · , u(L− 1) ∈
U such that x(`) ∈ Q∗` , ∀` ∈ {1, · · · , L}. This can be shown
inductively as follows.

Suppose x(`) ∈ Q∗` for some ` ∈ {0, · · · , L − 1}. Then,
there exists λn ∈ [0, 1], n ∈ {1, · · · , ni} such that x(`) =∑ni

n=1 λnq
∗
n(`) with

∑ni

n=1 λn = 1. Then, let u(`) be given
by

u(`) =

ni∑
n=1

λnu
∗
n(`) ∈ U , (16)

where the last inclusion follows from the fact that we have
u∗n(`) ∈ U , ∀` ∈ {0, · · · , L − 1}, ∀n ∈ {1, · · · , ni}. We
obtain

x(`+ 1) = Ax(`) +Bu(`) + w(`)

=

ni∑
n=1

λn(Aq∗n(`) +Bu∗n(`)) + w(`)

∈ Q∗`+1,

(17)



where the last inclusion follows from the fact that we have
Aq∗n(`) + Bu∗n(`) ∈ Q∗`+1 	 W , ∀n ∈ {1, · · · , ni},∀` ∈
{1, · · · , L − 1} from the constraint given by (12). Thus,
x(`) ∈ Q∗` implies x(` + 1) ∈ Q∗`+1, ∀` ∈ {0, · · · , L − 1}
with a suitable choice of control input (given by (16)).
Therefore, starting from any x(0) ∈ Q∗0 = Pi, there exists
u(0), · · · , u(L − 1) ∈ U such that x(`) ∈ Q∗` ⊆ Pij ,
∀` ∈ {0, · · · , L − 1} and x(L) ∈ Q∗L ⊆ Pj . This concludes
that the state is reachable from Pi to Pj in L steps.

Suppose that Problem 2 has a solution for a given (Pi,Pj) ∈
P× P, and a time step L (i.e., the state is reachable from Pi

to Pj in L steps), providing feasible sequence of polytopes
and the control sets denoted as (14), (15), respectively. Then,
starting from any initial state from Pi, the following control
strategy can be implemented to steer the state towards Pj :

Algorithm 1 (Control strategy from Pi to Pj). For a given
initial state x(0) ∈ Pi:

1) (Initialization): Set ` = 0.
2) Given x(`), ` ∈ {0, 1, · · · , L}, compute λn ∈ [0, 1],

n ∈ {1, · · · , ni} such that x(`) =
∑ni

n=1 λnq
∗
n(`) with∑ni

n=1 λn = 1. Then, set u(`) ∈ U given by (16).
3) Apply u(`) to the plant, and set ` ← ` + 1. If ` = L,

terminate the algorithm. Otherwise, go back to Step 2).
�

As shown in Algorithm 1, the control input u(`) ∈ U for
each ` ∈ {0, · · · , L} is computed in the form of (16). Thus, it
is inductively shown from (17) that for any x(0) ∈ Q0 = Pi, it
holds that x(`) ∈ Q∗` ⊆ Pij (or Pi) for all ` ∈ {1, · · · , L−1}.
Moreover, sinceQ∗L ⊆ Pj , we obtain x(L) ∈ Q∗L ⊆ Pj , which
means that reachability in L steps has been achieved.

B. Algorithm to generate finite transition system

The transition system that we construct here is based on
the reachability presented in the previous subsection. The
transition system consists of a set of symbolic states S =
{s1, s2, · · · , sN} and the transition relation δ ⊆ S× S. Here,
each si ∈ S indicates the polytope Pi ∈ P (i.e., the polytope
having the same index i), and the transition (si, sj) ∈ δ
indicates that the reachability holds from Pi to Pj . Namely,
the transition from si to sj is allowed only if the reachability
holds from Pi to Pj according to Definition 1. To indicate
the relation, let Γ : P → S be the mapping that sends each
polytope to the corresponding symbolic state, i.e., Γ(Pi) = si.
Conversely, let Γ−1 be the mapping that sends each symbolic
state to the corresponding polytope. The transition system is
formally defined as follows:

Definition 2 (Transition system T ). A transition system based
on the reachability is a tuple T = (S, sinit, δ, starg, C), where;
• S = {s1, · · · , sN} is a set of symbolic states;
• sinit is an initial state, where sinit = Γ(Pinit);
• δ ⊆ S × S is a transition relation, where (si, sj) ∈ δ

only if the reachability holds from Pi to Pj according to
Definition 1;

• starg is a terminal state, where starg = Γ(Ptarg);
• C : δ → R+ is a cost function, where C(si, sj) = L if

the reachability holds from Pi to Pj in L steps. �

In Definition 2, a cost function C is defined to represent
how many time steps are taken to achieve the reachability. To
obtain the transition system T , we need to characterize both
the transition relation δ ⊆ S × S and the cost function C.
This can be done by solving Problem 2 iteratively to check
the reachability for each pair of two polytopes in P. An
overall procedure to characterize both δ and C is presented
in Algorithm 2. In the algorithm, we arbitrary pick up a
pair of two polytopes in P and solve Problem 2 to check the
reachability between them. While checking the reachability,
we increment the time steps L until Problem 2 finds a feasible
solution, or it exceeds a given threshold Lmax. If a feasible
solution has been found, we add the corresponding pair of
symbolic states to δ and assign C to the reachable time steps
L (line 7,8).

Algorithm 2: Transition system generator
Input : P, S, Lmax (Set of polytopes, symbolic state

domain and a threshold of time steps)
Output: δ, C (Transition relation and cost function)

1 Initialization: set δ = {∅} and C(si, sj) =∞ for all
(si, sj) ∈ S× S;

2 for each pair of (Pi,Pj) ∈ P× P do
3 set L = 1, flag = 0;
4 while flag = 0 or L < Lmax do
5 solve Problem 2 to check the reachability from Pi

to Pj in L steps;
6 if Problem 2 has a solution then
7 δ ← {δ ∪ (si, sj)};
8 C(si, sj) = L;
9 flag = 1;

10 end
11 L← L+ 1;
12 end
13 end

Remark 1. Note that the computational load of Algorithm 2
may be relatively high, since we need to solve Problem 2
iteratively by incrementing the step size L until the solution
has been found. To alleviate such computational burden, one
may instead solve Problem 2 for a fixed step size L, rather
than solving it multiple times with different step sizes. �

IV. OVERALL CONTROL STRATEGY

Based on the transition system obtained in the previous
section, we now present an overall control strategy. The
control strategy is given in a hierarchical manner, consisting
of a high level control layer, and low level control layer.
In the high level layer, the controller finds a finite path
from sinit to starg in the transition system T , such that the
summation of the cost function C is minimized. Finding



such optimal path can be implemented by using standard
graph search algorithms, such as Dijkstra algorithm [17].
The generated path indicates the sequence of polytopes that
the states should follow to reach the target set Ptarg. In
the low level control layer, the actual control law is given
to the real system based on the sequence of polytopes
obtained in the high level layer. During the execution, a local
polytope to polytope controller is implemented according
to Algorithm 1. The overall control strategy is provided below.

Algorithm 3 (Overall control strategy from Pinit to Ptarg).
1) (High level control): The controller searches a finite path

of T :
s(0), s(1), · · · , s(d) (18)

for some d ∈ N+, where s(0) = sinit, s(d) = starg such
that the total cost

∑d
j=0 C(s(j), s(j + 1)) is minimized

by applying, e.g., Dijkstra algorithm. If it does not find
such path, stop the algorithm.

2) (Low level control): Let

P(0),P(1), · · · ,P(d), (19)

where P(j) = Γ−1(s(j)) ∈ P for all j ∈ {0, 1, · · · , d}.
Apply the following:

a) (Initialization) Set j = 0;
b) Apply Algorithm 1 as a control strategy from P(j)

to P(j + 1).
c) Set j ← j + 1. If j = d, terminate the algorithm.

Otherwise, go back to step b). �

V. SIMULATION RESULTS

As a simulation example, we consider a point-mass robot
moving in the 2-D workspace X ⊂ R2, which is illustrated
in Fig. 5. In the figure, all black colored regions represent
obstacles to be avoided, while all white colored regions
represent safety regions in which the robot can move freely.
As shown in Fig. 5, the safety regions are decomposed into
subsets as 1 × 1 squares, which are regarded as polytopes to
analyze the reachability. We assume that the state of the robot
is the position in the workspace x = [x1, x2], following the
dynamics;

x1(k + 1) = x1(k) + u1(k)∆t+ w1(k),

x2(k + 1) = x2(k) + u2(k)∆t+ w2(k),
(20)

with ∆t = 0.5, where u = [u1;u2] ∈ R2 denotes the control
signal applied to the robot and w = [w1;w2] ∈ R2 denotes the
additive disturbances. For input constraints we assume U =
{u ∈ R : |u1 +u2| ≤ 1} and the disturbance size set is given
by W = {w ∈ R2 : ||w|| ≤ 0.20}. Although the dynamics
is relatively simple, we utilize this since it is often used as
a benchmark example of motion planning (see e.g., [9], [10],
[14]). A more complex linear robot motion model can be also
considered such as the one presented in [11].

To illustrate the proposed scheme, let us consider an ex-
ample to check reachability by solving Problem 2 from the
polytope labeled as 1 to the one labeled as 2 in Fig. 5. For

Fig. 5. State space X ∈ R2 considered in the simulation example.

(a) P1 and P2 and their convex
hull.

(b) Sequence of polytopes Q∗
1:8

(blue colored regions) obtained
by solving Problem 2.

Fig. 6. Reachability example from P1 to P2.

convenience, we denote these polytopes as P1, P2, respec-
tively. The enlarged view of these two sets and their convex
hull P12 = co{P1∪P2} are depicted in Fig. 6(a). We assume
that the set Z in (6) is given by Z = {[z1; z2] ∈ R2 : |z1| ≤
1, |z2| ≤ 1}. The solution to Problem 2 has been found with
L = 8 and the feasible sequence of polytopes Q∗1,Q∗2, · · · ,Q∗8
is illustrated in Fig. 6(b). As shown in Fig. 6(b), all generated
polytopes are inside P12, and the last polytope Q∗8 is placed
in P2. In a similar manner, we implement Algorithm 2 with
Lmax = 10 to check the reachability for each pair of polytopes
to obtain the transition system T . The resulting T has 67
symbolic states (equivalent to the number of white cells in
Fig. 5), and in total 655 transitions. In this example, it took
950 seconds to construct the transition system on Windows 10,
Intel(R) Core(TM) 2.40 GHz, 8 GB RAM.

As for the control specification, we consider a senario
where the robot starts from the region 1 (upper left region
in Fig. 5), and tries moving towards the regions labeled as
3, 4, 5, and 6 sequentially in that order. Although one might
express this as a linear temporal logic specification and could
generate the desired path through model checking algorithms
(see, e.g., [2]), we simply achieve this task by implementing



Fig. 7. Trajectories of robot paths (blue lines).

Algorithm 3 iteratively by replacing the initial and target set in
accordance with the specified order. That is, we first implement
Algorithm 3 by regarding Pinit as the region 1 and Ptarg as
the region 3. Then, once the robot enters the region 3 we
replace Pinit and Ptarg with 3, 4, respectively, and again
Algorithm 3 is implemented. This procedure has been taken
until the robot finally reaches 6. The resulting state trajectories
are shown in Fig. 7 by implementing this procedure. The
simulation has been conducted 50 times starting from different
initial states x(0) randomly selected in the region 1. From the
figure, it is shown that all state trajectories could reach the
specified regions in finite time, while avoiding any obstacles
regardless of any effect of bounded disturbances.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose reachability and control synthesis
framework for linear system with additive bounded distur-
bances. To take into account disturbance effects, we propose a
new reachability framework inspired by a tube based strategy,
in which a sutable sequence of polytopes is generated by
solving a convex feasibility problem. The effectiveness of
the proposed control synthesis scheme is verified through a
numerical simulation of a robot motion planning.

Our future work is to consider the problem of scalability.
That is, an algorithm to construct a finite transition system
through our current abstraction scheme does not scale well
for complex, high-order systems. This problem may be treated
by incorporating the idea from the novel approach presented
in [1]. Our future work also involves extending our proposed
scheme to temporal logic based control [10], [19]. Namely, we

assume that the control specification is expressed by termporal
logic formula, and provide a control synthesis framework such
that high level goals can be achieved.
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