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Abstract

The decentralized navigation function methodology, established in
our previous work for navigation of multiple holonomic agents with
global sensing capabilities is extended to the case of local sensing
capabilities. Each agent plans its actions without knowing the des-
tinations of the others and the positions of those agents lying outside
its sensing neighborhood. The stability properties of the closed loop
system are checked via Lyapunov stability techniques for nonsmooth
systems. The collision avoidance and global convergence properties
are verified through simulations.
Keywords: Decentralized Control, Autonomous Agents, Multi Agent
Systems, Motion Planning.
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1 Introduction

Navigation of multiple agents is a field that has recently gained increasing
attention in the robotics community, due to the need for autonomous control
of more than one mobile robotic agents in the same workspace. While most
approaches in the past had focused on centralized planning, specific real-
world applications have lead researchers throughout the globe to turn their
attention to decentralized concepts. The basic motivation of our work comes
from two application domains: (i) decentralized conflict resolution in air
traffic management ([13]) and (ii) the field of micro robotics ([20],[15]), where
a team of autonomous micro robots must cooperate to achieve manipulation
precision in the sub micron level.

The reduced computational complexity and increased robustness with
respect to agent failures makes decentralized approaches are more appealing
compared to the centralized ones. There have been many different approaches
to the decentralized motion planning problem. Open loop approaches use
game theoretic and optimal control theory to solve the problem taking the
constraints of vehicle motion into account; see for example [2], [14], [27], [28].
On the other hand, closed loop approaches use tools from classical Lyapunov
theory and graph theory to design control laws and achieve the convergence
of the distributed system to a desired configuration both in the concept of
cooperative ([8], [17], [12], ) and formation control ([1], [10], [22], [25],[26]).

Closed loop strategies are apparently preferable to open loop ones, mainly
because they provide robustness with respect to modelling uncertainties and
agent failures and guaranteed convergence to the desired configurations.
However, a common point of most work in this area is devoted to the case of
point agents. Although this allows for variable degree of decentralization, it is
far from realistic in real world applications, even in the field of microrobotics,

where the non-zero volume of each robot cannot be disregarded due to the



fact that the surrounding objects are of comparable size. Another example
is conflict resolution in Air Traffic Management, where two aircraft are not
allowed to approach each other closer than a specific “alert” distance. The
construction of closed loop methods for decentralized non-point multi-agent
systems is both evident and appealing.

A closed loop approach for single robot navigation was proposed by
Koditschek and Rimon [16], [23] in their seminal work. This navigation func-
tions’ framework handled single, point-sized, robot navigation. In [18] this
method was successfully extended to take into account the volume of each
robot in a centralized multi-agent scheme, while a decentralized version of
this work has been presented by the authors in [29],[7] for multiple holonomic
agents with global sensing capabilities. In these papers, the decentralization
factor lied in the fact that each agent had knowledge only of its own desired
destination, but not of the desired destinations of the others. Each agent
had global knowledge about the positions of every other member of the team
at each time instant.

The degree of decentralization in a multiagent system generally depends
on the knowledge each agent has about the state (position/velocity) and de-
sired goals of each member of the rest of the team. In the current framework,
the control design specification is to drive each agent to a desired configura-
tion. Clearly, neglecting the desired destinations of the rest of the team as
in [29],[7] is a first step towards decentralization.

Nevertheless, in practice, the sensing capabilities of each agent are limited.
Consequently, each agent can not have knowledge of the positions and/or
velocities of every agent in the workspace but only of the agents within its
sensing zone at each time instant. As a sensing zone we define a circle of
specified radius around an agent.

The rest of the paper is organized as follows: section 2 presents the multi-

agent system in hand and defines the problem adressed in this paper. In sec-



tion 3 the concept of decentralized navigation functions, introduced in [7],[29]
to cope with navigation of multiple holonomic agents with global sensing ca-
pabilities, is reviewed and appropriately redefined in order to cope with the
restrictions of the situation in hand. The convergence analysis of the multia-
gent feedback control strategy for the multiagent system presented in section
3 is provided in Appendix A. Section 4 contains some nontrivial computer
simulations based on the proposed algorithm while section 5 summarizes the
results and indicates some relevant future directions of research. A review of
the nonsmooth stability analysis tools used in Appendix A are provided in

Appendix B.

2 System and Problem Definition

Consider a system of N agents operating in the same workspace W C R2.
Each agent ¢ occupies a disc: R; = {q € R? :|| ¢ — ¢ ||< r;} in the workspace
where ¢; € R? is the center of the disc and r; is the radius of the agent.
The configuration space is spanned by ¢ = [qi,...,qy]?. Figure 1 shows a
five-agent conflict situation. In the case of holonomic agents, the motion of

each agent is described by the single integrator:

The desired destinations of the agents are respectively denoted by the index

d: qq = [qa1, - - - ,qu]T. We make the following assumptions:

1. Each agent ¢ has knowledge of the position of only those agents located
in a cyclic neighborhood of specific radius do at each time instant,
where de > max; jen (1, +1;), so that it is guaranteed to be larger than
the maximum sum of two agents radii. The disc T; = {q : ||[¢—q|| < dc}

is called the sensing zone of agent 1.



2. Each agent has knowledge only of its own desired destination g4 but

not of the others gg4, j # 1.
3. Each agent ¢ knows the exact number N of agents in the workspace.
4. Spherical agents are considered.
5. The workspace is bounded and spherical.

The multi agent navigation problem treated in this paper can be stated as
follows: “under the prescribed assumptions, derive a set of control laws (one
for each agent) that drives the team of agents from any initial configuration
to a desired goal configuration avoiding, at the same time, collisions.”.

The first three assumptions reveal the decentralized nature of this frame-
work, as well as its specific limitations. Each agent must know the existence
of all agents in the workspace(ass. 3) but needs to know the exact posi-
tion only of agents found within its sensing zone at each time instant(ass.2).
Furthermore, knowledge of the desired destinations of the other agents is un-
necessary(ass. 1). In this paper, the navigation functions ([16],[18],[29],[7])

tool is redefined in order to cope with assumptions 1,2.

3 Decentralized Navigation Functions for Agents

with Limited Sensing Capabilities

3.1 Preliminaries

Navigation functions (NF’s) are real valued maps realized through cost func-
tions ¢(q), whose negated gradient field is attractive towards the goal con-
figuration and repulsive with respect to obstacles [16]. It has been shown by

Koditscheck and Rimon that strict global navigation (i.e. the system ¢ = u



under a feedback control law of the form u = —KVp admits a globally at-
tracting equilibrium state) is not possible, and a smooth vector field on any
sphere world with a unique attractor, must have at least as many saddles as
obstacles [16].

A navigation function is defined as follows:

Definition 1 [16]: Let F C R* be a compact connected analytic manifold
with boundary. A map ¢ : F — [0,1] is a navigation function if:(1) it is
analytic on F, (2) it has only one minimum at qq € int(F), (3) its Hes-
sian at all critical points (zero gradient vector field) is full rank, and (4)
limg_yre(q) = 1.

In this definition, F' represents the “free space” of robot movement, i.e.
the subset of the workspace which is free of collisions.

Strictly speaking, the continuity requirements for the navigation functions
are to be C2. The first property of Definition 1 follows the intuition provided
by the authors of [16], that it is preferable to use closed form mathematical
expressions to encode actuator commands instead of “patching together”
closed form expressions on different portions of space, so as to avoid branching
and looping in the control algorithm. Analytic navigation functions, through
their gradient provide a direct way to calculate the actuator commands, and
once constructed they provide a provably correct control algorithm for every
environment that can be diffeomorphically transformed to a sphere world.
In this paper, we further relax this requirement by using a non-analytic,
merely CY navigation function, in order to cope with the limited knowledge
each agent has about the state of the other subsystems. The discontinuities
however, take place outside of the region where critical points of the potential
function occur, so it does not affect the navigation properties of the proposed
function.

A function ¢ that has a unique minimum on F' is called polar. By using

a polar function on a compact connected manifold with boundary, all initial
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conditions will either be brought to a saddle point or to the unique minimum
of the function.

A scalar valued function ¢ whose Hessian at all critical points is full rank
is called Morse. The corresponding critical points are called non-degenerate.
The requirement in Definition 1 that a navigation function must be a Morse
function, establishes that the initial conditions that bring the system to sad-
dle points are sets of measure zero [21]. In view of this property, all initial
conditions away from sets of measure zero are brought to the unique mini-
mum.

The last property of Definition 1 guarantees that the resulting vector field
is transverse to the boundary of the free space F'. This establishes that the
system always evolves in the interior of F', avoiding collisions and is safely

brought to qg,

3.2 DNF’s vs MRNF’s

In [18], the navigation functions method has been extended to the case of
multiple mobile robots with the use of Multi-Robot navigation functions
(MRNEF’s).

In the form of a centralized setup [18], where a central authority has
knowledge of the current positions and desired destinations of all agents i =
1,..., N, the sought control law u = [u; ...un]| is of the form: u = —KVy(q)
where K is a gain. In the decentralized case addressed in this work, each
agent has only local knowledge of the current positions of the others, and not
of their desired destinations. Hence each agent ¢ has a different navigation
law.

Following the procedure of [16],[18],[29],[7], we consider the following class



of decentralized navigation functions(DNF'’s):

(q) = Yai + [i - (2)
o ((’7di+fi)k +Gi) /

where k is a positive scalar parameter and v4 =|| ¢; — qa; ||* is the squared
metric of the current agent’s configuration ¢; from its destination ¢g4;. The
definition of the function f; will be given later. Function G; has as arguments
the coordinates of all agents, i.e. G; = G;(q), is used to encapsulate all
possible collision schemes of agent ¢ with the others.

Figure 2 shows a plot of a DNF of an agent in an environment of 3 (other)
moving agents denoted by A-i. The DNF is maximized on the boundary of
the free space and minimized at the goal configuration. Using the notation

i 2 [q1s - Qi1 Gitt,y - - - ,qN]T, the decentralized NF can be rewritten as
i = %‘(CJ@', CL‘)

3.3 Construction of the G function for Limited Sensing

Zone

In [29],[7] the decentralization feature of the whole scheme lied in the fact
that each agent didn’t have knowledge of the desired destinations of the
rest of the team. On the other hand, each one had global knowledge of the
positions of the others at each time instant. This is far from realistic in real
world applications where each agent is able of detecting and tracking those
that are located within its sensing zone. The “Proximity Function” between

two agents ¢, 7 in [29], [7] is
B = lai — ilI* = (rs + 1)

In this work we take the limited sensing capabilities of each agent into ac-

count. Specifically, each agent only knows the position of those agents which
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are within a cyclic neighborhood of specific radius d¢ around its center.
Therefore the Proximity Function between two agents has to be redefined in

this case. We propose the following nonsmooth function:

(3)

5 = g — q;|1> — (ri +75)2 for [|g; — g;]| < de
ij =
d? — (r; + ;)% for |lg; — g¢;]| > d.

This definition of the Proximity Function captures the fact that each agent
has no knowledge about the whereabouts of those agents found outside its
sensing zone. Figure 3 shows a plot of a Proximity Function.

For example in figure 4 we have |l¢; — qx|| < d¢ therefore Gy = ||¢;i —
q||* — (ri + 7%)?, while ||¢; — ¢;|| > dc therefore 3;; = dZ — (r; + 1)

Consider now a situation similar to the one in figure 1 where we have
five agents. For an agent ” R”, we proceed to define function Gr. We denote
by Oq, 0, 03,04 the remaining four agents in this scenario. To encode all
possible inter-agent proximity situations, the multi-agent team is associated
with an (undirected) graph whose vertices are indexed by the team members.

The following are discussed in more detail in [6], [29],[7] .

Definition 2 A binary relation with respect to an agent R is an edge be-

tween agent R and another agent.

Definition 3 A relation with respect to agent R is defined as a set of binary

relations with respect to agent R.

Definition 4 The relation level is the number of binary relations in a rela-

tion with respect to agent R.

We denote by (R;); the jth relation of level-l with respect to agent R.
With this terminology in hand, the collision scheme of figure 5a is a level-1

relation (one binary relation) and that of figure 5b is a level-3 relation (three



binary relations), always with respect to the specific agent R. We use the

notation
(Rj>l = {{Rv A} ) {R? B} ) {Ra C} ). }

to denote the set of binary relations in a relation with respect to agent R,
where {A, B, C, ...} the set of agents that participate in the specific relation.

For example, in figure 5Hb:

(31)3 = {{R, 01} ) {R, 02} ) {R> 03}}

where we have set arbitrarily j = 1.

The complementary set (Rf)l of relation j is the set that contains all the
relations of the same level apart from the specific relation j. For example in
figure 5b:

(Rlo)g = {(R2)s, (R3)s, (Ra)g}
where

(R2)3 = {{R, Ol} ) {R7 02} ) {R7 04}}
(R3>3 = {{Rv Ol} ) {R’ 03} ) {Rv 04}}
(R4)3 = {{Rv 02} ) {Ra 03} ) {R> 04}}

A “Relation Proximity Function” (RPF) provides a measure of the distance
between agent ¢ and the other agents involved in the relation. Each relation
has its own RPF. Let Rj, denote the k" relation of level . The RPF of this
relation is given by:

r i = > By (4)

Je(Bi)h
where the notation j € (Ry); is used to denote the agents that participate in
the specific relation of agent R. For example, in the relation of figure 5b we

have

(br)s = Y. Birmy = Biroyr + Brosy + Biros)

mG(R1)3
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A “Relation Verification Function” (RVF) is defined by:

)\(bRk)l
(br)i + (Bre )"

(ng)l = (bRk)l +

where A, h are positive scalars and
(Bre)hi=TI (bm)

where as previously defined, (RY); is the complementary set of relations of
level-[, i.e. all the other relations with respect to agent ¢ that have the
same number of binary relations with the relation Rj. Continuing with the

previous example we could compute, for instance,

(Bre), = (bma)s - (brg)y - (b))

which refers to level-3 relations of agent R.

It is obvious that for the highest level | = n—1 only one relation is possible
so that (RS ),_1 = 0 and (gr,); = (bg, ); for | = n—1. The basic property that
we demand from RVF is that it assumes the value of zero if a relation holds,
while no other relations of the same or other levels hold. In other words it
should indicate which of all possible relations holds. We have he following
limits of RVF (using the simplified notation gg, (br,, Bre) = g:(bi, b;)):

L Jim bhirt gi (bi, bi) = A

2. bliiin)0 gi (bi,l;i) =0

bi#0
These limits guarantee that RVF will behave in the way we want it to, as an
indicator of a specific collision.

The function G; is now defined as

7 'n,i
np TR

Gi = 111198, (6)

1=1j=1
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where nf, the number of levels and n, the number of relations in level-l with
respect to agent ¢. Hence G; is the product of the RVF’s of all relations wrt
1.

The construction of the GG; function is done in such a way to ensure that
the gradient motion imposed on agent i under the control strategy (9) is
repulsive with respect to the boundary of the free space. This guarantees

collision avoidance. More details can be found in [7].

3.4 The f function

The key difference of the decentralized method with respect to the centralized
case is that the control law of each agent ignores the destinations of the
others. If we used ¢, = ———; as a navigation function for agent
((va)*+G)
1, there would be no “available potential” for ¢ to cooperate in a possible
collision scheme when its initial condition coincides with its final destination.
In order to overcome this limitation,we need to add a function f; to 7; so
that the cost function ¢; attains positive values in proximity situations even
when ¢ has already reached its destination. This function was introduced in
[7]. Here, we modify the previous definitions to ensure that the destination
point is a non-degenerate local minimum of ¢; with minimum requirements

on assumptions. We define the function f; by:

3 .
agp + Z CL‘G{, Gz <X
fi(Gi) = =

0, Gi>X

(7)

where X > 0,Y = f;(0) > 0. By definition, X is a parameter that “acti-
vates” the function f;, while Y is the value of f; when collision are bound to
occur, namely when G; — 0. The parameters a; are evaluated so that f; is

maximized when G; — 0 and minimized when GG; = X. We also require that
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fi is continuously differentiable at X. Therefore we have:

-3Y 2Y

ap =Y, a1 ZO,CL2=7X2 03 = 73

We require that ¥V < % where ©; is an arbitrarily large positive gain. This
will help in obtaining a lower bound of £ analytically in the stability analysis
that follows. The parameter X serves as a sensing parameter that activates
the f; function whenever possible collisions are bound to occur. The only
requirement we have for X is that it must be small enough to guarantee

that f; vanishes whenever the system has reached its equilibrium, i.e. when

everyone has reached its destination. In mathematical terms:

X < GZ (qdl7 Ce ,QdN) Y1 (8)

That’s the minimum requirement we have regarding knowledge of the desti-

nations of the team.

3.5 Control Strategy

The proposed feedback control strategy for agent 7 is defined as

Op;
- _ K,
u; "Ba, 9)

where K; > 0 a positive gain.

A key point in the discrimination between centralized and decentralized
navigation functions is that the latter contain a time-varying part which
depends on the movement of the other agents. Using the same procedure as
in [18],[16] we first prove that the construction of each ¢; guarantees collision

avoidance:

Proposition 1 For each fized §;, the function v;(q;,-) is a navigation func-

tion if the parameters h, k assume values bigger than a finite lower bound.
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For the complete proof see [6]. A crucial aspect of this Proposition is the
fact that each ¢; is transverse to the boundary of the free space of the cor-
responding agent ¢. This guarantees collision avoidance.

On the other hand, the latter does not guarantee global convergence of
the system state to the destination configuration. This is guaranteed by the

following proposition:

Proposition 2 The state of the system converges to qq up to a set of initial
conditions of measure zero if the parameters h, k assume values bigger than

a finite lower bound.

The proof of this proposition is based on nonsmooth analysis and is provided
in Appendix A. The tools from nonsmooth stability theory used in the next

section are reviewed in Appendix B.

4 Simulations

To demonstrate the navigation properties of our decentralized approach, we
present two simulations of multiple holonomic agents that have to navigate
from an initial to a final configuration, avoiding collisions with each other.
Each agent has no knowledge of the positions of those agents lying outside its
sensing zone, which is the big circle around its center of mass in Fig.6, Pic.1.
In this picture A-i,T-i denote the initial position and desired destination of
agent ¢ respectively. The chosen configurations constitute non-trivial setups
since the straight-line paths connecting initial and final positions of each
agent are obstructed by other agents. The following have been chosen for
the simulation of figure 6:

Initial Conditions:

w0 =[—1732 —1] @) =[ 1732 —1]",
w0 =[0 2] awO0=[0 -2]

14



Final Conditions:
qa = | 1732 .1 Tr,ngzz[——.1732 1 ]T,
Gus =10 —.1 }ijqd4 =0 25 }71

Parameters:
k=110,ry =ro =r3 =14 = .05,dc = .11
A=1,Ah=5X=.001,Y = .01
Pictures 1-6 of Figure 6 show the evolution of the team configuration within
a horizon of 6000 time units. One can observe that the collision avoidance
as well as destination convergence properties are fulfilled.

The second simulation (Fig.7) involves seven holonomic agents. In screen-
shot A, A-i,T-i denote the initial condition and desired destination of each
agent i respectively. Screenshots A-F of Figure 7 show the evolution in time
of the seven agent team. One can observe that the collision avoidance and
destination convergence properties are fulfilled in this case as well.

The following have been chosen for the simulation of figure 7:

Initial Conditions:

w©) =[-35 0] a0 =[-13 075] .
%@:ﬁ.wfmwzjmoﬁfm@=y434mT,
6O =[0 —15] a0 =[ 13 —o75]

Final Conditions:
r T T
=10 0] ae=1].13 —075 ],
T T T
gis=[0 15| au=[-13 —075 | as=].13 075] .
r T T
Gas =0 15] gz =|—13 075 |

Parameters:

k:94,7"1:7"2:’/“327'4:7"5:7“6:7“7:.05,d0=.13
A=1,h=5X =.0000356,Y = .01

15



5

Conclusions

In this paper we extended the decentralized navigation method to the case

of multiple holonomic agents with limited sensing capabilities. We proposed

a nonsmooth extension of the navigation function of [7] and proved system

convergence using tools from nonsmooth stability analysis. The effectiveness

of the methodology is verified through computer simulations.

Current research includes applying this method to the case of distributed

nonholonomic agents [19] as well as introducing new definitions of the sensing

zone of an agent. Extensions of this method to 3-dimensional kinematics are

also under investigation.
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A Stability Analysis

In this section we provide the proof of Proposition 2.

We immediately note that the result of this Proposition is existential
rather than computational. We show that finite k, h that renders the system
almost everywhere asymptotically stable exist, but we do not provide an
analytical expression for this lower bound. However, practical values of k, h
will be provided in the simulation section. In [6], we have used ¢ = > ;| ¢;
as a Lyapunov function for the whole system. In this case this function
is continuous everywhere, but nonsmooth whenever a switching occurs, i.e.

whenever ||¢; — g;|| = d. for some 4, j. We define the switching surface as:

S={q:3i,5,i # jllle; — ¢;]| = dc} (10)

We have proved that the derivative of ¢ = 37 | ¢; is negative definite across

the trajectories of the system except from a set of initial conditions of mea-
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sure zero whenever ¢ ¢ S (see [6]). On the switching surface the Lyapunov
function is no longer smooth so we must use stability theory for nonsmooth
systems. In the case when ¢ € S we shall make use of theorem B.6. First we

must use the following lemma to ensure that ¢ is regular.
Lemma A.1 The function ¢ is reqular ¥q € S.

Proof of Lemma A.1: We show first that 3;; is regular whenever ||¢; — ¢;|| =

dc. The directional derivative at d¢o is

Bi;(desv) = lim Bii(do + tv) — Bij(de) _ { 0,0 >0

13 c<0,v<0

The generalized directional derivative is

i(desv) = limsup ;
y—dc

B (y + tv) — Bi; (y) _ 0,v=>0
c<0,v<0

so that ﬁ?j(dc; v) = B;;(dc;v) Vu. It is easy to check that the terms gﬁbﬁ, aaf?’
i 1

are nonnegative so by virtue of Theorem 2.3.9 (i), [4], the function G; is

regular at ¢ € S.

Function ¢; is continuously differentiable wrt GG;. In this case the term

0pi
0G;

the proof of theorem 2.3.9 (ii),[4] we can see that the generalized derivative of

is nonpositive but we are fortunate that G; is 1-dimensional. Following

; satisfies the following inequality: ©)(q;v) < %G?(q;v) = %G;(q;v) =
@i(q;v). But we always have j(q;v) < ¢?(g;v), so that ¢i(q;v) = ¢(g;v),
ensuring the regularity of ;. The function ¢ is regular as the finite linear
combination by nonnegative scalars of regular functions.

We now proceed with the proof of Proposition 2. We make use of the following

matrix theorems in our analysis:

Theorem A.2 [11]: Given a matriv A € R™™ then all its eigenvalues lie
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in the union of n discs:

U321z —aul < layl p = U Ri(A) = R(A)
i=1 j=1 i=1
j#i

Each of these discs is called a Gersgorin disc of A.

Corollary A.3 [11]: Given a matriz A € R™" and n positive real numbers

D1, -, Pn then all the eigenvalues of A lie in the union of n discs:
n 1 n
Uqz:lz—aul < = pjlayl
i=1 Pij=

J#

A key point of Corollary A.3 is that if we bound the first n/2 Gersgorin
discs of a matrix A sufficiently away from zero, then there exist real num-
bers pi,...,p, rendering the remaining n/2 discs sufficiently close to the
corresponding diagonal elements. Hence, by ensuring the positive definite-
ness of the eigenvalues of the matrix M corresponding to the first /2 rows,
then we can render the remaining ones sufficiently close to the corresponding

diagonal elements. This fact will be made clearer in the analysis that follows.

Proof of Proposition 2: In the global sensing case, the Proximity function

between agents ¢ and j is given by:
Bis(a) = llas = as|I* = (ri +75)" = 4" Dijg — (ri + 1)
where the 2N x 2N matrix D;; is defined in [18]. :

Dy =
i Oa(i—1)x2N ]
Oaxo(i=1) Tax2 Oaxagi—i—1) —laxz Oaxan—j)
Oa(j—i—1)x2N

Ogxai-1)y —laxa Oaxoj—i—1) Iaxa Oaxav—j)

Oa(N—j)x2N
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We can also write b, = ¢" Pig — ¥ (r; +7;)° ,where P/ = ¥ Dj;, and P,
JEPr JEPr
denotes the set of binary relations in relation r. It can easily be seen that

Vbl = 2P!q, Vb = 2P!. We also use the following notation for the r-th
relation wrt agent i:
i _pi b, b — bi
gr r + bi-i—(l;i)l/h’ r Sggr Rl
s#Er
Vb, = % ] bi-2Pq
SESy tes,
SFT t#s,r
——
b,
where S, denotes the set of relations in the same level with relation r. An

easy calculation shows that

SGS’I‘

S#T
. o~ 1y
b A i Ab.(by) B

where d. = 1+ (1 —

S ~—, w, = —=-=——_ The gradient of
biA (R b (b)) h(by+(b3) /)2
the G; function is given by:

N; ) N; N; ' ‘ N; N
Gi=]lg=VG=> 119V => 3Q1=Qu
r=1 r=1[=1 r=1
l#r

gr

where NN; all the relations with respect to agent i. We define

VGl Ql
VG2 | — | |q2Qq
VGy QN
3 .
R. bering that u; = —K;2% and that ¢; = Yaitfi s = G
emembering that u o At i = )T T G
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the closed loop dynamics of the system are given by:

_KNAJ—V(l‘f‘l/k’) {GN%W;EJVV + JNM}

dqn
= —AgG (0va) — Ax3Qq

3 )

where 0; = Gy0(G;) — 2 o(Gy) = Y ja;GI A = (vai + f)¥ 4+ G; and
j=1

the matrices

A K1A1—(1+1/k)’ [(1141—(14-1/16)7 o
A = diag

KNA;V(lJrl/k)’KNA;V(1+1/k)

2N xX2N

?

G £ diag (G1,G1,...,GN,GN), (0Va) = [

2N x2N

Va1 3%11\/]
oq Oqn

R 0,0,...,0;0;
X=1 ¥ ,..., YN |, =diag 2i—1,2i
~—~
2N x2N 2N x2N ...,0,0

9

2N x2N?2

By using ¢ = >~ ¢; as a candidate Lyapunov function we have ¢ = 3~ p; =

o= (Z (Vgpi)T> G, Vo, = A7 (F1/E) {GiVv4 + 0;VG,;} and after some trivial

- 7
K3

calculation
S (Vo) =...=(0n)" Ac +¢"Q" Ax

i
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GNA]_\/(1+1/k),GNAJ_\/(1+1/k)

2N x2N

GLATOFR) G g=O1m)
where Ag = diag ( e H and

P .2N><2N P y A,;_(Hl/k)di, L
=1 : , Ay, = atag _
A (1+1/k)g

7 %

S~ 2N xX2N
L 2N x2N |
———
2N2x2N

The derivative of the candidate Lyapunov function is calculated as

o= (S (Vo)) =

i

[ o) M, M2] |:87d]

where M, = AgAxG, My = AgAYQ, M3 = QT As A G, My = QT As A XQ.
Let’s return to the local sensing case.Let S1 = {q : 34, .7 # j|(||¢: — ¢;|| =
do) Nllge — ail| # dVE, 1 k # 4,j,0 # i,j)} denote the subset of S which
corresponds to the simplest case of switching that involves only two agents.
System dynamics are given by:
I

Op r
= flq) = | K 222 K,
1 f(q) ' aQI T aQn

The vector function f(g) is nonsmooth at S; so that ¢ € K[f](q),q € Si.
We have K[f)(q € S1) =@ f5,, f3,} where S;7 = {q: [|g; — ¢;l| < (>)dc}
and

s es) = lim (@)

q*—q,
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Likewise, the generalized gradient of the candidate Lyapunov function at the

discontinuity surface is given by dp(q € S1) = co{ Vg, Vi } where

Vs ge si) = Aim V(g

q* ES;(Jr)

Each p € 0p(q € S1) is the convex combination of the limit points of the
convex hull: p = p (Vgogl) + (1 — p) (V(pjgrl) ,p € [0,1]. Similarly, each
ne K[fl(g € Si)asn = Ag +(1—=ANfd, A € [0,1], so that p'n =
M (Vo) S+ (L= (Vs ) F 401 —p) (Vo) S+ (1= A)(1 -
1) (Vgogl)T . By virtue of theorem B.5 of Appendix B one has

¢(ges)e () p'noneK[fl(qge S)
pEIP(qEST)

Going back to the previous analysis, it is easy to see that the matrices
Ag, Ak, G, X, Ay, are continuous in the discontinuity surface. The matrix )

is discontinuous at S; and that’s due to the nonsmoothness of the functions
Gi,G;. By using the notation Q™ (¢ € S1) = lim Q(¢*), QT (g€ S1) =
q —q

q €S,
lim @ (¢*) and noting that N plnp= nN {anP\ € [0, 1]} we con-
a"—q pEDP(qES) ne0,1]

q*€S1+
clude after some trivial calculation that

a
. — 1 ()" M
plges)e N [ @) | q
LN e 0,1
. M, M,
with M = where
3 M,y

My = AgAxG, My = AcArY (AQ™ + (1 - 1) Q")
M; = (M (Q7>T + (1 —p) (Q+)T> AsArG
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My =M (Q) Az ASQ™ + (1 =\ p(Q7)" AgAxXQ +
A=) Q1) AsAkSQ™ + (1—A) (1 — ) (@) AsAkTQT

We first proceed by examining the Gersgorin discs of the first half rows of
the matrix M. We denote this procedure as M; — M,, as the main diag-
onal elements of M; are "compared” with the corresponding raw elements
of M,. Note that the submatrices My, My are both diagonal, therefore the
only nonzero elements of raw ¢ of the 4N x 4N matrix M are the elements
M, M; oni where of course 1 <1 < 2N as we calculate the Gersgorin discs

of the first half rows of the matrix M. With respect to corollary A.3, we

have:
|2 = M| < 5 ;Pj |M;;|,1 <i<2N =
jF#i
= ]Z — (Ml)”‘ < % (MQ)“’
where
(Ml)” - AZ_2(1+1/1€)K,LG12
and

08, = [ o Dy (@) + -3 (@8) )
)i , where Q;i* the ii-th
( 21)—’— max}7

which is always bounded in a bounded workspace. Therefore we have:

Denote |X(Q3) "+ (1= 1) (@)™ X € [0.1]] £ (@3
element of ;. It is then obvious that ‘( i )i‘ = max {‘( )

Y

0 0 max

2= A7V EG?
- > A~_2(')K’G2 _ P2N+i
— vt Di

< DP2N+i
- P

A72()0'2KzGl ( zl)i’

)

A7V KG ( Z)i‘

)

We examine the following three cases:

e (G; < ¢ At a critical point in this region, the corresponding eigenvalue
tends to zero, so that the derivative of the Lyapunov function could
achieve zero values. However, the result of Lemma 6 in [6] indicates

that ¢; is a Morse function, hence its critical points are isolated[16].
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Thus the set of initial conditions that lead to saddle points are sets of

measure zero[21].

e (GG; > X The corresponding eigenvalue is guaranteed to be positive as

long as:

W)

di P2N+i
Di

2> 0« A7V (G -
=G> X > B o] |( ;Z)i‘

=k> Ll)m‘”‘ ngf’ Qi)

) >

O'Z'|

( M

max

e 0 <e<G; <X In [6], we prove that |o;(¢)] < Y‘%ng‘ +|%2] The
corresponding eigenvalue is guaranteed to be positive as long as:
2> 0> {r i+ i+ [} e Q...
y<&1
- k
0, 160 ; . N
k > 2max {2\/71’ 1’ (7a )max} DaN+ ( ;Z>
c % € bi max
P2N+i )

A key point is that there is no restriction on how to select the terms -
This will help us in deriving bounds that guarantee the positive definiteness
of the matrix M.

We are now left to examine the Gersgorin discs of the second half rows
of the matrix M. Likewise, we denote this procedure as Mz — M,. The discs

of Corollary A.3 are evaluated:
|z — M| < Z%]Mij\,QN—I—lgigélN,lgjgélN
J#

= |z — (Ma) | < Ri(M3) + Ri(My)
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2N AN
where Ri(Mz) = 32 % |(My),;|,Ri(My) = > 2 \(My),;| and
j=1Pi J j=2N+1 p’
JF#i
KA (1+1/k) A;(Hl/k)ajai-

M (@) (@) + (1= V(@) (@) +
AM1=p) (@) (Qh) +

(1= X (1— ) (@) (%) N e0.1]

Following the same procedure as in [6], it can easily be shown that R;(M3) >
Ry(My)Vi.

The corresponding eigenvalue is guaranteed to be positive as long as:

z>0<« (M4)“ > RZ(Mg) + RZ(M4)
& (My),, > max {2R;(M3),2R;(M4)} = 2R;(Ms)

Choosing without loss of generality p; = p,2N + 1 < i < 4N, we have after

some non-trivial calculations:

R-(M):%& Aj—2(1+1/k KG( ( u) +(1—M)< iz)+>+ )
(M3 o .)+

P | (AT UZKG( (@) +-w(e

Jj

I(

The fact that (M,),; > 0 is guaranteed by Lemma 2.3 in [6]. This lemma also

guarantees that there is always a finite upper bound on the terms We have

(My),, >2R(M3)—22p’ (M. )

=17
P> G, max {p; |(Ms)y |}
ON +1<i<4N,1<j<2N

P

We can now directly apply theorem B.6 to our case. We have proved that
v < 0VYv € ¢ and that the only invariant subset of the set S = {¢|0 € ¢(q)}
is {qd = [qa1, - qdn]T}. Hence the nonsmooth version of LaSalle’s invariance

principle guarantees convergence to the destination points.
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B Elements from Nonsmooth Analysis

In this section, we review some elements from nonsmooth analysis and Lya-
punov theory for nonsmooth systems that we use in the stability analysis of
Appendix A.

We consider the vector differential equation with discontinuous right-hand
side:

& = f(z) (11)

where f: R" — R" is measurable and essentially locally bounded.

Definition B.1 [9]: In the case when n is finite, the vector function x(.) is

called a solution of (11) in [tg,t1] if it is absolutely continuous on [tg,t1] and

there exists Ny C R™, u(Ny) = 0 such that for all N C R™, u(N) =0 and for
almost all t € [to, ]

t € K[f|(z) =co{ lim f(x;)|z; ¢ Ny UN}

T;—T

Lyapunov stability theorems have been extended for nonsmooth systems
in [24],[3]. The authors use the concept of generalized gradient which for the

case of finite-dimensional spaces is given by the following definition:

Definition B.2 [4]: Let V : R" — R be a locally Lipschitz function. The

generalized gradient of V' at x is given by
where Qy is the set of points in R™ where V' fails to be differentiable.

Lyapunov theorems for nonsmooth systems require the energy function
to be reqular. Regularity is based on the concept of generalized derivative

which was defined by Clarke as follows:
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Definition B.3 [4]: Let f be Lipschitz near x and v be a vector in R™. The

generalized directional derivative of f at x in the direction v is defined

£(2:v) = lim sup fly +tv) — f(y)

Y= 410 t

Definition B.4 [4]: The function f : R" — R is called regular if

1) Yv, the usual one-sided directional derivative f'(x;v)exists and

2) Vv, f'(z;v) = fO(x;v)

The following chain rule provides a calculus for the time derivative of the

energy function in the nonsmooth case:

Theorem B.5 [24]: Let x be a Filippov solution to & = f(x) on an interval
containing t and V : R" — R be a Lipschitz and reqular function. Then

V(z(t)) is absolutely continuous, (d/dt)V (x(t)) exists almost everywhere and

d a.e o
ZV®) e Viz) = 1 ER[f(1)
£e0V (z(t))
We shall use the following nonsmooth version of LaSalle’s invariance principle

to prove the convergence of the prescribed system:

Theorem B.6 [24] Let Q be a compact set such that every Filippov solution
to the autonomous system & = f(z),x(0) = x(to) starting in Q is unique and
remains in 2 for all t > tg. Let V : QQ — R be a time independent regqular
function such that v < OVv € \N/(zf \7 1s the empty set then this is trivially
satisfied). Define S = {z € Q|0 € \7} Then every trajectory in €1 converges

to the largest invariant set,M, in the closure of S.
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Figure 1: A conflict scenario with five agents. Each agent ¢ occupies a disc
R;(black discs) of radius r; centered at ¢;. Each agent’s sensing zone T;(white

discs) is centered at ¢; and has radius d¢.
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Figure 2: A DNF in an environment with three moving agents
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Proximity Function of Agentsi,|

de

Distance of Agentsi,|

Figure 3: The function 3;; for r; +1r; =
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Figure 4: Agent k is within the sensing zone T; of agent i, therefore 3;;, =
las — qull> — (ri +ri)?. Agent j is outside the sensing zone T; of agent i,

therefore 5@‘ = d%’ — (T’i + Tj)2.
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Figure 5: Part a represents a level-1 relation and part b a level-3 relation

wrt agent R.
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Figure 6: Simulation A
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Figure 7: Simulation B
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