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Abstract

The decentralized navigation function methodology, established in

our previous work for navigation of multiple holonomic agents with

global sensing capabilities is extended to the case of local sensing

capabilities. Each agent plans its actions without knowing the des-

tinations of the others and the positions of those agents lying outside

its sensing neighborhood. The stability properties of the closed loop

system are checked via Lyapunov stability techniques for nonsmooth

systems. The collision avoidance and global convergence properties

are verified through simulations.
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1 Introduction

Navigation of multiple agents is a field that has recently gained increasing

attention in the robotics community, due to the need for autonomous control

of more than one mobile robotic agents in the same workspace. While most

approaches in the past had focused on centralized planning, specific real-

world applications have lead researchers throughout the globe to turn their

attention to decentralized concepts. The basic motivation of our work comes

from two application domains: (i) decentralized conflict resolution in air

traffic management ([13]) and (ii) the field of micro robotics ([20],[15]), where

a team of autonomous micro robots must cooperate to achieve manipulation

precision in the sub micron level.

The reduced computational complexity and increased robustness with

respect to agent failures makes decentralized approaches are more appealing

compared to the centralized ones. There have been many different approaches

to the decentralized motion planning problem. Open loop approaches use

game theoretic and optimal control theory to solve the problem taking the

constraints of vehicle motion into account; see for example [2], [14], [27], [28].

On the other hand, closed loop approaches use tools from classical Lyapunov

theory and graph theory to design control laws and achieve the convergence

of the distributed system to a desired configuration both in the concept of

cooperative ([8], [17], [12], ) and formation control ([1], [10], [22], [25],[26]).

Closed loop strategies are apparently preferable to open loop ones, mainly

because they provide robustness with respect to modelling uncertainties and

agent failures and guaranteed convergence to the desired configurations.

However, a common point of most work in this area is devoted to the case of

point agents. Although this allows for variable degree of decentralization, it is

far from realistic in real world applications, even in the field of microrobotics,

where the non-zero volume of each robot cannot be disregarded due to the
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fact that the surrounding objects are of comparable size. Another example

is conflict resolution in Air Traffic Management, where two aircraft are not

allowed to approach each other closer than a specific “alert” distance. The

construction of closed loop methods for decentralized non-point multi-agent

systems is both evident and appealing.

A closed loop approach for single robot navigation was proposed by

Koditschek and Rimon [16], [23] in their seminal work. This navigation func-

tions’ framework handled single, point-sized, robot navigation. In [18] this

method was successfully extended to take into account the volume of each

robot in a centralized multi-agent scheme, while a decentralized version of

this work has been presented by the authors in [29],[7] for multiple holonomic

agents with global sensing capabilities. In these papers, the decentralization

factor lied in the fact that each agent had knowledge only of its own desired

destination, but not of the desired destinations of the others. Each agent

had global knowledge about the positions of every other member of the team

at each time instant.

The degree of decentralization in a multiagent system generally depends

on the knowledge each agent has about the state (position/velocity) and de-

sired goals of each member of the rest of the team. In the current framework,

the control design specification is to drive each agent to a desired configura-

tion. Clearly, neglecting the desired destinations of the rest of the team as

in [29],[7] is a first step towards decentralization.

Nevertheless, in practice, the sensing capabilities of each agent are limited.

Consequently, each agent can not have knowledge of the positions and/or

velocities of every agent in the workspace but only of the agents within its

sensing zone at each time instant. As a sensing zone we define a circle of

specified radius around an agent.

The rest of the paper is organized as follows: section 2 presents the multi-

agent system in hand and defines the problem adressed in this paper. In sec-
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tion 3 the concept of decentralized navigation functions, introduced in [7],[29]

to cope with navigation of multiple holonomic agents with global sensing ca-

pabilities, is reviewed and appropriately redefined in order to cope with the

restrictions of the situation in hand. The convergence analysis of the multia-

gent feedback control strategy for the multiagent system presented in section

3 is provided in Appendix A. Section 4 contains some nontrivial computer

simulations based on the proposed algorithm while section 5 summarizes the

results and indicates some relevant future directions of research. A review of

the nonsmooth stability analysis tools used in Appendix A are provided in

Appendix B.

2 System and Problem Definition

Consider a system of N agents operating in the same workspace W ⊂ R2.

Each agent i occupies a disc: Ri = {q ∈ R2 :‖ q− qi ‖≤ ri} in the workspace

where qi ∈ R2 is the center of the disc and ri is the radius of the agent.

The configuration space is spanned by q = [q1, . . . , qN ]T . Figure 1 shows a

five-agent conflict situation. In the case of holonomic agents, the motion of

each agent is described by the single integrator:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

The desired destinations of the agents are respectively denoted by the index

d: qd = [qd1, . . . , qdN ]T . We make the following assumptions:

1. Each agent i has knowledge of the position of only those agents located

in a cyclic neighborhood of specific radius dC at each time instant,

where dC > maxi,j∈N (ri +rj), so that it is guaranteed to be larger than

the maximum sum of two agents radii. The disc Ti = {q : ‖q−qi‖ ≤ dC}
is called the sensing zone of agent i.
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2. Each agent has knowledge only of its own desired destination qdi but

not of the others qdj, j 6= i.

3. Each agent i knows the exact number N of agents in the workspace.

4. Spherical agents are considered.

5. The workspace is bounded and spherical.

The multi agent navigation problem treated in this paper can be stated as

follows: “under the prescribed assumptions, derive a set of control laws (one

for each agent) that drives the team of agents from any initial configuration

to a desired goal configuration avoiding, at the same time, collisions.”.

The first three assumptions reveal the decentralized nature of this frame-

work, as well as its specific limitations. Each agent must know the existence

of all agents in the workspace(ass. 3) but needs to know the exact posi-

tion only of agents found within its sensing zone at each time instant(ass.2).

Furthermore, knowledge of the desired destinations of the other agents is un-

necessary(ass. 1). In this paper, the navigation functions ([16],[18],[29],[7])

tool is redefined in order to cope with assumptions 1,2.

3 Decentralized Navigation Functions for Agents

with Limited Sensing Capabilities

3.1 Preliminaries

Navigation functions (NF’s) are real valued maps realized through cost func-

tions ϕ(q), whose negated gradient field is attractive towards the goal con-

figuration and repulsive with respect to obstacles [16]. It has been shown by

Koditscheck and Rimon that strict global navigation (i.e. the system q̇ = u
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under a feedback control law of the form u = −K∇ϕ admits a globally at-

tracting equilibrium state) is not possible, and a smooth vector field on any

sphere world with a unique attractor, must have at least as many saddles as

obstacles [16].

A navigation function is defined as follows:

Definition 1 [16]: Let F ⊂ R2N be a compact connected analytic manifold

with boundary. A map ϕ : F → [0, 1] is a navigation function if:(1) it is

analytic on F , (2) it has only one minimum at qd ∈ int(F ), (3) its Hes-

sian at all critical points (zero gradient vector field) is full rank, and (4)

limq→ϑF ϕ(q) = 1.

In this definition, F represents the “free space” of robot movement, i.e.

the subset of the workspace which is free of collisions.

Strictly speaking, the continuity requirements for the navigation functions

are to be C2. The first property of Definition 1 follows the intuition provided

by the authors of [16], that it is preferable to use closed form mathematical

expressions to encode actuator commands instead of “patching together”

closed form expressions on different portions of space, so as to avoid branching

and looping in the control algorithm. Analytic navigation functions, through

their gradient provide a direct way to calculate the actuator commands, and

once constructed they provide a provably correct control algorithm for every

environment that can be diffeomorphically transformed to a sphere world.

In this paper, we further relax this requirement by using a non-analytic,

merely C0 navigation function, in order to cope with the limited knowledge

each agent has about the state of the other subsystems. The discontinuities

however, take place outside of the region where critical points of the potential

function occur, so it does not affect the navigation properties of the proposed

function.

A function ϕ that has a unique minimum on F is called polar. By using

a polar function on a compact connected manifold with boundary, all initial
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conditions will either be brought to a saddle point or to the unique minimum

of the function.

A scalar valued function ϕ whose Hessian at all critical points is full rank

is called Morse. The corresponding critical points are called non-degenerate.

The requirement in Definition 1 that a navigation function must be a Morse

function, establishes that the initial conditions that bring the system to sad-

dle points are sets of measure zero [21]. In view of this property, all initial

conditions away from sets of measure zero are brought to the unique mini-

mum.

The last property of Definition 1 guarantees that the resulting vector field

is transverse to the boundary of the free space F . This establishes that the

system always evolves in the interior of F , avoiding collisions and is safely

brought to qd,

3.2 DNF’s vs MRNF’s

In [18], the navigation functions method has been extended to the case of

multiple mobile robots with the use of Multi-Robot navigation functions

(MRNF’s).

In the form of a centralized setup [18], where a central authority has

knowledge of the current positions and desired destinations of all agents i =

1, . . . , N , the sought control law u = [u1 . . . uN ] is of the form: u = −K∇ϕ(q)

where K is a gain. In the decentralized case addressed in this work, each

agent has only local knowledge of the current positions of the others, and not

of their desired destinations. Hence each agent i has a different navigation

law.

Following the procedure of [16],[18],[29],[7], we consider the following class
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of decentralized navigation functions(DNF’s):

ϕi(q) =
γdi + fi(

(γdi + fi)
k + Gi

)1/k
(2)

where k is a positive scalar parameter and γdi =‖ qi − qdi ‖2 is the squared

metric of the current agent’s configuration qi from its destination qdi. The

definition of the function fi will be given later. Function Gi has as arguments

the coordinates of all agents, i.e. Gi = Gi(q), is used to encapsulate all

possible collision schemes of agent i with the others.

Figure 2 shows a plot of a DNF of an agent in an environment of 3 (other)

moving agents denoted by A-i. The DNF is maximized on the boundary of

the free space and minimized at the goal configuration. Using the notation

q̃i
∆
= [q1, . . . , qi−1, qi+1, . . . , qN ]T , the decentralized NF can be rewritten as

ϕi = ϕi(qi, q̃i)

3.3 Construction of the G function for Limited Sensing

Zone

In [29],[7] the decentralization feature of the whole scheme lied in the fact

that each agent didn’t have knowledge of the desired destinations of the

rest of the team. On the other hand, each one had global knowledge of the

positions of the others at each time instant. This is far from realistic in real

world applications where each agent is able of detecting and tracking those

that are located within its sensing zone. The “Proximity Function” between

two agents i, j in [29], [7] is

βij = ‖qi − qj‖2 − (ri + rj)
2

In this work we take the limited sensing capabilities of each agent into ac-

count. Specifically, each agent only knows the position of those agents which
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are within a cyclic neighborhood of specific radius dC around its center.

Therefore the Proximity Function between two agents has to be redefined in

this case. We propose the following nonsmooth function:

βij =




‖qi − qj‖2 − (ri + rj)

2, for ‖qi − qj‖ ≤ dc

d2
c − (ri + rj)

2, for ‖qi − qj‖ > dc

(3)

This definition of the Proximity Function captures the fact that each agent

has no knowledge about the whereabouts of those agents found outside its

sensing zone. Figure 3 shows a plot of a Proximity Function.

For example in figure 4 we have ‖qi − qk‖ < dC therefore βik = ‖qi −
qk‖2 − (ri + rk)

2, while ‖qi − qj‖ > dC therefore βij = d2
C − (ri + rj)

2.

Consider now a situation similar to the one in figure 1 where we have

five agents. For an agent ”R”, we proceed to define function GR. We denote

by O1, O2, O3, O4 the remaining four agents in this scenario. To encode all

possible inter-agent proximity situations, the multi-agent team is associated

with an (undirected) graph whose vertices are indexed by the team members.

The following are discussed in more detail in [6], [29],[7] .

Definition 2 A binary relation with respect to an agent R is an edge be-

tween agent R and another agent.

Definition 3 A relation with respect to agent R is defined as a set of binary

relations with respect to agent R.

Definition 4 The relation level is the number of binary relations in a rela-

tion with respect to agent R.

We denote by (Rj)l the jth relation of level-l with respect to agent R.

With this terminology in hand, the collision scheme of figure 5a is a level-1

relation (one binary relation) and that of figure 5b is a level-3 relation (three
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binary relations), always with respect to the specific agent R. We use the

notation

(Rj)l = {{R, A} , {R, B} , {R,C} , . . .}
to denote the set of binary relations in a relation with respect to agent R,

where {A,B, C, ...} the set of agents that participate in the specific relation.

For example, in figure 5b:

(R1)3 = {{R, O1} , {R, O2} , {R, O3}}

where we have set arbitrarily j = 1.

The complementary set (RC
j )l of relation j is the set that contains all the

relations of the same level apart from the specific relation j. For example in

figure 5b: (
RC

1

)
3

= {(R2)3 , (R3)3 , (R4)3}
where

(R2)3 = {{R, O1} , {R, O2} , {R, O4}}
(R3)3 = {{R, O1} , {R, O3} , {R, O4}}
(R4)3 = {{R, O2} , {R, O3} , {R, O4}}

A “Relation Proximity Function” (RPF) provides a measure of the distance

between agent i and the other agents involved in the relation. Each relation

has its own RPF. Let Rk denote the kth relation of level l. The RPF of this

relation is given by:

(bRk
)l =

∑

j∈(Rk)l

β{R,j} (4)

where the notation j ∈ (Rk)l is used to denote the agents that participate in

the specific relation of agent R. For example, in the relation of figure 5b we

have

(bR1)3 =
∑

m∈(R1)3

β{R,m} = β{R,O1} + β{R,O2} + β{R,O3}
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A “Relation Verification Function” (RVF) is defined by:

(gRk
)l = (bRk

)l +
λ(bRk

)l

(bRk
)l + (BRC

k
)
1/h
l

(5)

where λ, h are positive scalars and

(BRC
k
)l =

∏

m∈(RC
k

)l

(bm)l

where as previously defined, (RC
k )l is the complementary set of relations of

level-l, i.e. all the other relations with respect to agent i that have the

same number of binary relations with the relation Rk. Continuing with the

previous example we could compute, for instance,

(
BRC

1

)
3

= (bR2)3 · (bR3)3 · (bR4)3

which refers to level-3 relations of agent R.

It is obvious that for the highest level l = n−1 only one relation is possible

so that (RC
k )n−1 = ∅ and (gRk

)l = (bRk
)l for l = n−1. The basic property that

we demand from RVF is that it assumes the value of zero if a relation holds,

while no other relations of the same or other levels hold. In other words it

should indicate which of all possible relations holds. We have he following

limits of RVF (using the simplified notation gRk
(bRk

, BRC
k
) ≡ gi(bi, b̃i)):

1. lim
bi→0

lim
b̃i→0

gi

(
bi, b̃i

)
= λ

2. lim
bi→0
b̃i 6=0

gi

(
bi, b̃i

)
= 0

These limits guarantee that RVF will behave in the way we want it to, as an

indicator of a specific collision.

The function Gi is now defined as

Gi =
ni

L∏

l=1

ni
Rl∏

j=1

(gRj
)l (6)

11



where ni
L the number of levels and ni

Rl
the number of relations in level-l with

respect to agent i. Hence Gi is the product of the RVF’s of all relations wrt

i.

The construction of the Gi function is done in such a way to ensure that

the gradient motion imposed on agent i under the control strategy (9) is

repulsive with respect to the boundary of the free space. This guarantees

collision avoidance. More details can be found in [7].

3.4 The f function

The key difference of the decentralized method with respect to the centralized

case is that the control law of each agent ignores the destinations of the

others. If we used ϕi = γdi

((γdi)
k+Gi)

1/k as a navigation function for agent

i, there would be no “available potential” for i to cooperate in a possible

collision scheme when its initial condition coincides with its final destination.

In order to overcome this limitation,we need to add a function fi to γi so

that the cost function ϕi attains positive values in proximity situations even

when i has already reached its destination. This function was introduced in

[7]. Here, we modify the previous definitions to ensure that the destination

point is a non-degenerate local minimum of ϕi with minimum requirements

on assumptions. We define the function fi by:

fi(Gi) =





a0 +
3∑

j=1
ajG

j
i , Gi ≤ X

0, Gi > X
(7)

where X > 0, Y = fi(0) > 0. By definition, X is a parameter that “acti-

vates” the function fi, while Y is the value of fi when collision are bound to

occur, namely when Gi → 0. The parameters aj are evaluated so that fi is

maximized when Gi → 0 and minimized when Gi = X. We also require that
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fi is continuously differentiable at X. Therefore we have:

a0 = Y, a1 = 0, a2 =
−3Y

X2
, a3 =

2Y

X3

We require that Y ≤ Θ1

k
where Θ1 is an arbitrarily large positive gain. This

will help in obtaining a lower bound of k analytically in the stability analysis

that follows. The parameter X serves as a sensing parameter that activates

the fi function whenever possible collisions are bound to occur. The only

requirement we have for X is that it must be small enough to guarantee

that fi vanishes whenever the system has reached its equilibrium, i.e. when

everyone has reached its destination. In mathematical terms:

X < Gi (qd1, . . . , qdN) ∀i (8)

That’s the minimum requirement we have regarding knowledge of the desti-

nations of the team.

3.5 Control Strategy

The proposed feedback control strategy for agent i is defined as

ui = −Ki
∂ϕi

∂qi

(9)

where Ki > 0 a positive gain.

A key point in the discrimination between centralized and decentralized

navigation functions is that the latter contain a time-varying part which

depends on the movement of the other agents. Using the same procedure as

in [18],[16] we first prove that the construction of each ϕi guarantees collision

avoidance:

Proposition 1 For each fixed q̃i, the function ϕi(qi, ·) is a navigation func-

tion if the parameters h, k assume values bigger than a finite lower bound.
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For the complete proof see [6]. A crucial aspect of this Proposition is the

fact that each ϕi is transverse to the boundary of the free space of the cor-

responding agent i. This guarantees collision avoidance.

On the other hand, the latter does not guarantee global convergence of

the system state to the destination configuration. This is guaranteed by the

following proposition:

Proposition 2 The state of the system converges to qd up to a set of initial

conditions of measure zero if the parameters h, k assume values bigger than

a finite lower bound.

The proof of this proposition is based on nonsmooth analysis and is provided

in Appendix A. The tools from nonsmooth stability theory used in the next

section are reviewed in Appendix B.

4 Simulations

To demonstrate the navigation properties of our decentralized approach, we

present two simulations of multiple holonomic agents that have to navigate

from an initial to a final configuration, avoiding collisions with each other.

Each agent has no knowledge of the positions of those agents lying outside its

sensing zone, which is the big circle around its center of mass in Fig.6, Pic.1.

In this picture A-i,T-i denote the initial position and desired destination of

agent i respectively. The chosen configurations constitute non-trivial setups

since the straight-line paths connecting initial and final positions of each

agent are obstructed by other agents. The following have been chosen for

the simulation of figure 6:

Initial Conditions :

q1(0) =
[
−.1732 −.1

]T
, q2(0) =

[
.1732 −.1

]T
,

q3(0) =
[

0 .2
]T

, q4(0) =
[

0 −.2
]T
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Final Conditions :

qd1 =
[

.1732 .1
]T

, qd2 =
[
− .1732 .1

]T
,

qd3 =
[

0 −.1
]T

, qd4 =
[

0 .25
]T

Parameters :

k = 110, r1 = r2 = r3 = r4 = .05, dC = .11

λ = 1, h = 5, X = .001, Y = .01

Pictures 1-6 of Figure 6 show the evolution of the team configuration within

a horizon of 6000 time units. One can observe that the collision avoidance

as well as destination convergence properties are fulfilled.

The second simulation (Fig.7) involves seven holonomic agents. In screen-

shot A, A-i,T-i denote the initial condition and desired destination of each

agent i respectively. Screenshots A-F of Figure 7 show the evolution in time

of the seven agent team. One can observe that the collision avoidance and

destination convergence properties are fulfilled in this case as well.

The following have been chosen for the simulation of figure 7:

Initial Conditions :

q1(0) =
[
−.35 0

]T
, q2(0) =

[
−.13 .075

]T
,

q3(0) =
[

0 .15
]T

, q4(0) =
[

.13 .075
]T

, q5(0) =
[
−.13 −.075

]T
,

q6(0) =
[

0 −.15
]T

, q7(0) =
[

.13 −.075
]T

Final Conditions :

qd1 =
[

0 0
]T

, qd2 =
[

.13 −.075
]T

,

qd3 =
[

0 −.15
]T

, qd4 =
[
−.13 −.075

]T
, qd5 =

[
.13 .075

]T
,

qd6 =
[

0 .15
]T

, qd7 =
[
−.13 .075

]T

Parameters :

k = 94, r1 = r2 = r3 = r4 = r5 = r6 = r7 = .05, dC = .13

λ = 1, h = 5, X = .0000356, Y = .01
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5 Conclusions

In this paper we extended the decentralized navigation method to the case

of multiple holonomic agents with limited sensing capabilities. We proposed

a nonsmooth extension of the navigation function of [7] and proved system

convergence using tools from nonsmooth stability analysis. The effectiveness

of the methodology is verified through computer simulations.

Current research includes applying this method to the case of distributed

nonholonomic agents [19] as well as introducing new definitions of the sensing

zone of an agent. Extensions of this method to 3-dimensional kinematics are

also under investigation.
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A Stability Analysis

In this section we provide the proof of Proposition 2.

We immediately note that the result of this Proposition is existential

rather than computational. We show that finite k, h that renders the system

almost everywhere asymptotically stable exist, but we do not provide an

analytical expression for this lower bound. However, practical values of k, h

will be provided in the simulation section. In [6], we have used ϕ =
∑n

i=1 ϕi

as a Lyapunov function for the whole system. In this case this function

is continuous everywhere, but nonsmooth whenever a switching occurs, i.e.

whenever ‖qi − qj‖ = dc for some i, j. We define the switching surface as:

S = {q : ∃i, j, i 6= j|‖qi − qj‖ = dc} (10)

We have proved that the derivative of ϕ =
∑n

i=1 ϕi is negative definite across

the trajectories of the system except from a set of initial conditions of mea-
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sure zero whenever q /∈ S (see [6]). On the switching surface the Lyapunov

function is no longer smooth so we must use stability theory for nonsmooth

systems. In the case when q ∈ S we shall make use of theorem B.6. First we

must use the following lemma to ensure that ϕ is regular.

Lemma A.1 The function ϕ is regular ∀q ∈ S.

Proof of Lemma A.1: We show first that βij is regular whenever ‖qi − qj‖ =

dC . The directional derivative at dC is

β′ij(dC ; v) = lim
t→0

βij(dC + tv)− βij(dC)

t
=





0, v ≥ 0

c < 0, v < 0

The generalized directional derivative is

β0
ij(dC ; v) = lim sup

t→0
y→dC

βij(y + tv)− βij(y)

t
=





0, v ≥ 0

c < 0, v < 0

so that β0
ij(dC ; v) = β′ij(dC ; v) ∀v. It is easy to check that the terms ∂bi

∂βij
, ∂Gi

∂bi

are nonnegative so by virtue of Theorem 2.3.9 (i), [4], the function Gi is

regular at q ∈ S.

Function ϕi is continuously differentiable wrt Gi. In this case the term
∂ϕi

∂Gi
is nonpositive but we are fortunate that Gi is 1-dimensional. Following

the proof of theorem 2.3.9 (ii),[4] we can see that the generalized derivative of

ϕi satisfies the following inequality: ϕ0
i (q; v) ≤ ∂ϕi

∂Gi
G0

i (q; v) = ∂ϕi

∂Gi
G′

i(q; v) =

ϕ′i(q; v). But we always have ϕ′i(q; v) ≤ ϕ0
i (q; v), so that ϕ′i(q; v) = ϕ0

i (q; v),

ensuring the regularity of ϕi. The function ϕ is regular as the finite linear

combination by nonnegative scalars of regular functions.♦
We now proceed with the proof of Proposition 2. We make use of the following

matrix theorems in our analysis:

Theorem A.2 [11]: Given a matrix A ∈ Rn×n then all its eigenvalues lie
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in the union of n discs:

n⋃

i=1





z : |z − aii| ≤
n∑

j=1
j 6=i

|aij|





∆
=

n⋃

i=1

Ri(A)
∆
= R(A)

Each of these discs is called a Gersgorin disc of A.

Corollary A.3 [11]: Given a matrix A ∈ Rn×n and n positive real numbers

p1, . . . , pn then all the eigenvalues of A lie in the union of n discs:

n⋃

i=1





z : |z − aii| ≤ 1

pi

n∑

j=1
j 6=i

pj |aij|





A key point of Corollary A.3 is that if we bound the first n/2 Gersgorin

discs of a matrix A sufficiently away from zero, then there exist real num-

bers p1, . . . , pn rendering the remaining n/2 discs sufficiently close to the

corresponding diagonal elements. Hence, by ensuring the positive definite-

ness of the eigenvalues of the matrix M corresponding to the first n/2 rows,

then we can render the remaining ones sufficiently close to the corresponding

diagonal elements. This fact will be made clearer in the analysis that follows.

Proof of Proposition 2: In the global sensing case, the Proximity function

between agents i and j is given by:

βij(q) = ‖qi − qj‖2 − (ri + rj)
2 = qT Dijq − (ri + rj)

2

where the 2N × 2N matrix Dij is defined in [18]. :

Dij =


O2(i−1)×2N

O2×2(i−1) I2×2 O2×2(j−i−1) −I2×2 O2×2(N−j)

O2(j−i−1)×2N

O2×2(i−1) −I2×2 O2×2(j−i−1) I2×2 O2×2(N−j)

O2(N−j)×2N



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We can also write bi
r = qT P i

rq −
∑

j∈Pr

(ri + rj)
2 ,where P i

r =
∑

j∈Pr

Dij, and Pr

denotes the set of binary relations in relation r. It can easily be seen that

∇bi
r = 2P i

rq,∇2bi
r = 2P i

r . We also use the following notation for the r-th

relation wrt agent i:

gi
r = bi

r + λbi
r

bi
r+(b̃i

r)
1/h , b̃i

r =
∏

s∈Sr
s 6=r

bi
s,

∇b̃i
r =

∑
s∈Sr
s6=r

∏

t∈Sr
t 6=s,r

bt
i

︸ ︷︷ ︸
b̃i
s,r

· 2P i
sq

where Sr denotes the set of relations in the same level with relation r. An

easy calculation shows that

∇gi
r = . . . = 2

[
di

rP
i
r − wi

rP̃
i
r

]
q

∆
= Qi

rq, P̃
i
r

∆
=

∑

s∈Sr
s6=r

b̃i
s,rP

i
s

where di
r = 1 + (1 − bi

r

bi
r+(

∼
bi
r)1/h

) λ

bi
r+(

∼
bi
r)1/h

, wi
r = λbi

r(
∼
bi
r)

1
h
−1

h(bi
r+(

∼
bi
r)1/h)2

. The gradient of

the Gi function is given by:

Gi =
Ni∏

r=1

gi
r ⇒ ∇Gi =

Ni∑

r=1

Ni∏

l=1
l 6=r

gi
l

︸ ︷︷ ︸
g̃i

r

∇gi
r =

Ni∑

r=1

g̃i
rQ

i
rq

∆
= Qiq

where Ni all the relations with respect to agent i. We define

∇G
∆
=




∇G1

...

∇GN


 =




Q1

...

QN


 q

∆
= Qq

Remembering that ui = −Ki
∂ϕi

∂qi
and that ϕi = γdi+fi

((γdi+fi)
k+Gi)

1/k , fi =
3∑

j=0
aiG

j
i
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the closed loop dynamics of the system are given by:

q̇ =




−K1A
−(1+1/k)
1

{
G1

∂γd1

∂q1
+ σ1

∂G1

∂q1

}

...

−KNA
−(1+1/k)
N

{
GN

∂γdN

∂qN
+ σN

∂GN

∂qN

}




= . . .

= −AKG (∂γd)− AKΣQq

where σi = Giσ(Gi) − γdi+fi

k
, σ(Gi) =

3∑
j=1

jajG
j−1
i ,Ai = (γdi + fi)

k + Gi and

the matrices

AK
∆
= diag


 K1A

−(1+1/k)
1 , K1A

−(1+1/k)
1 , . . .

, KNA
−(1+1/k)
N , KNA

−(1+1/k)
N




︸ ︷︷ ︸
2N×2N

G
∆
= diag (G1, G1, . . . , GN , GN)︸ ︷︷ ︸

2N×2N

, (∂γd) =

[
∂γd1

∂q1

. . .
∂γdN

∂qN

]

Σ
∆
=


 Σ1︸︷︷︸

2N×2N

, . . . , ΣN︸︷︷︸
2N×2N




︸ ︷︷ ︸
2N×2N2

, Σi = diag




0, 0, . . . , σi, σi︸ ︷︷ ︸
2i−1,2i

, . . . , 0, 0




By using ϕ =
∑
i

ϕi as a candidate Lyapunov function we have ϕ =
∑
i

ϕi ⇒

ϕ̇ =
(∑

i
(∇ϕi)

T
)

q̇,∇ϕi = A
−(1+1/k)
i {Gi∇γdi + σi∇Gi} and after some trivial

calculation
∑

i

(∇ϕi)
T = . . . = (∂γd)

T AG + qT QT AΣ
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where AG = diag


 G1A

−(1+1/k)
1 , G1A

−(1+1/k)
1 , . . . ,

GNA
−(1+1/k)
N , GNA

−(1+1/k)
N




︸ ︷︷ ︸
2N×2N

and

AΣ =




AΣ1︸︷︷︸
2N×2N
...

AΣN︸ ︷︷ ︸
2N×2N




︸ ︷︷ ︸
2N2×2N

, AΣi
= diag


 A

−(1+1/k)
i σi, . . . ,

A
−(1+1/k)
i σi




︸ ︷︷ ︸
2N×2N

The derivative of the candidate Lyapunov function is calculated as

ϕ̇ =
(∑

i
(∇ϕi)

T
)
· q̇ = . . .

= −
[

(∂γd)
T qT

]

 M1 M2

M3 M4




︸ ︷︷ ︸
M


 ∂γd

q




where M1 = AGAKG,M2 = AGAKΣQ, M3 = QT AΣAKG,M4 = QT AΣAKΣQ.

Let’s return to the local sensing case.Let S1 = {q : ∃i, j, i 6= j|(‖qi−qj‖ =

dc)
∧

(‖qk − ql‖ 6= dc∀k, l : k 6= i, j, l 6= i, j)} denote the subset of S which

corresponds to the simplest case of switching that involves only two agents.

System dynamics are given by:

q̇ = f(q) =

[
−K1

∂ϕ1

∂q1

, ...,−Kn
∂ϕn

∂qn

]T

The vector function f(q) is nonsmooth at S1 so that q̇ ∈ K[f ](q), q ∈ S1.

We have K[f ](q ∈ S1) = co{f−S1
, f+

S1
} where S

−(+)
1 = {q : ‖qi − qj‖ < (>)dC}

and

f
−(+)
S1

(q ∈ S1) = lim
q∗→q,

q∗∈S
−(+)
1

f(q∗)
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Likewise, the generalized gradient of the candidate Lyapunov function at the

discontinuity surface is given by ∂ϕ(q ∈ S1) = co{∇ϕ−S1
,∇ϕ+

S1
} where

∇ϕ
−(+)
S1

(q ∈ S1) = lim
q∗→q,

q∗∈S
−(+)
1

∇ϕ(q∗)

Each ρ ∈ ∂ϕ(q ∈ S1) is the convex combination of the limit points of the

convex hull: ρ = µ
(
∇ϕ−S1

)
+ (1 − µ)

(
∇ϕ+

S1

)
, µ ∈ [0, 1]. Similarly, each

η ∈ K[f ](q ∈ S1) as η = λf−S1
+ (1 − λ)f+

S1
, λ ∈ [0, 1], so that ρT η =

λµ
(
∇ϕ−S1

)T
f−s1

+ (1− λ)µ
(
∇ϕ−S1

)T
f+

s1
+ λ(1− µ)

(
∇ϕ+

S1

)T
f−s1

+ (1− λ)(1−
µ)

(
∇ϕ+

S1

)T
f+

s1
. By virtue of theorem B.5 of Appendix B one has

ϕ̇(q ∈ S1) ∈
⋂

ρ∈∂ϕ(q∈S1)

ρT η, η ∈ K[f ](q ∈ S1)

Going back to the previous analysis, it is easy to see that the matrices

AG, AK , G, Σ, AΣ are continuous in the discontinuity surface. The matrix Q

is discontinuous at S1 and that’s due to the nonsmoothness of the functions

Gi, Gj. By using the notation Q− (q ∈ S1) = lim
q∗→q

q∗∈S−1

Q (q∗), Q+ (q ∈ S1) =

lim
q∗→q

q∗∈S+
1

Q (q∗) and noting that
⋂

ρ∈∂ϕ(q∈S1)
ρT η =

⋂
µ∈[0,1]

{
ρT η|λ ∈ [0, 1]

}
we con-

clude after some trivial calculation that

ϕ̇ (q ∈ S1) ∈
⋂

µ∈[0,1]





−
[

(∂γd)
T qT

]
M


 ∂γd

q




|λ ∈ [0, 1]





with M =


 M1 M2

M3 M4


 where

M1 = AGAKG,M2 = AGAKΣ
(
λQ− + (1− λ) Q+

)

M3 =
(
µ

(
Q−)T

+ (1− µ)
(
Q+

)T
)

AΣAKG
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M4 = λµ (Q−)
T

AΣAKΣQ− + (1− λ) µ (Q−)
T

AΣAKΣQ++

λ (1− µ) (Q+)
T

AΣAKΣQ− + (1− λ) (1− µ) (Q+)
T

AΣAKΣQ+

We first proceed by examining the Gersgorin discs of the first half rows of

the matrix M . We denote this procedure as M1 − M2, as the main diag-

onal elements of M1 are ”compared” with the corresponding raw elements

of M2. Note that the submatrices M1,M2 are both diagonal, therefore the

only nonzero elements of raw i of the 4N × 4N matrix M are the elements

Mii,Mi,2N+i where of course 1 ≤ i ≤ 2N as we calculate the Gersgorin discs

of the first half rows of the matrix M . With respect to corollary A.3, we

have:
|z −Mii| ≤ 1

pi

∑
j 6=i

pj |Mij|, 1 ≤ i ≤ 2N ⇒
⇒ |z − (M1)ii| ≤ p2N+i

pi
|(M2)ii|

where

(M1)ii = A
−2(1+1/k)
i KiG

2
i

and

|(M2)ii| =
∣∣∣∣A

−2(1+1/k)
i σiKiGi ·

{
λ

(
Qi

ii

)+
+ (1− λ)

(
Qi

ii

)−}∣∣∣∣

Denote
∣∣∣λ (Qi

ii)
+

+ (1− λ) (Qi
ii)
− |λ ∈ [0, 1]

∣∣∣ ∆
=

∣∣∣(Qi
ii)
±∣∣∣, where Qii

i the ii-th

element of Qi. It is then obvious that
∣∣∣(Qi

ii)
±∣∣∣

max
= max

{∣∣∣(Qi
ii)
−∣∣∣

max
,
∣∣∣(Qi

ii)
+

∣∣∣
max

}
,

which is always bounded in a bounded workspace. Therefore we have:

∣∣∣z − A
−2(.)
i KiG

2
i

∣∣∣ ≤ p2N+i

pi

∣∣∣A−2(.)
i σiKiGi (Q

i
ii)
±∣∣∣

⇒ z ≥ A
−2(.)
i KiG

2
i − p2N+i

pi

∣∣∣A−2(.)
i σiKiGi (Q

i
ii)
±∣∣∣

We examine the following three cases:

• Gi < ε At a critical point in this region, the corresponding eigenvalue

tends to zero, so that the derivative of the Lyapunov function could

achieve zero values. However, the result of Lemma 6 in [6] indicates

that ϕi is a Morse function, hence its critical points are isolated[16].

26



Thus the set of initial conditions that lead to saddle points are sets of

measure zero[21].

• Gi > X The corresponding eigenvalue is guaranteed to be positive as

long as:

z > 0 ⇐ A
−2(.)
i Ki

(
Gi − p2N+i

pi
|σi|

∣∣∣(Qi
ii)
±∣∣∣

)
> 0

⇐ Gi ≥ X > p2N+i

pi
|σi|

∣∣∣(Qi
ii)
±∣∣∣ = γdi

k
p2N+i

pi

∣∣∣(Qi
ii)
±∣∣∣

⇐ k >
(γdi)max

X
p2N+i

pi

∣∣∣(Qi
ii)
±∣∣∣

max

• 0 < ε ≤ Gi ≤ X In [6], we prove that |σi(ε)| ≤ Y
∣∣∣ 1
k

+ 8
9

∣∣∣ +
∣∣∣γdi

k

∣∣∣ The

corresponding eigenvalue is guaranteed to be positive as long as:

z > 0 ⇐ ε >
{
Y

∣∣∣ 1
k

+ 8
9

∣∣∣ +
∣∣∣γdi

k

∣∣∣
}

p2N+i

pi

∣∣∣(Qi
ii)
±∣∣∣

max
Y≤Θ1

k⇐

k > 2 max



2

√
Θ1

ε
,
16Θ1

9ε
,
(γdi)max

ε





p2N+i

pi

∣∣∣∣
(
Qi

ii

)±∣∣∣∣
max

A key point is that there is no restriction on how to select the terms p2N+i

pi
.

This will help us in deriving bounds that guarantee the positive definiteness

of the matrix M .

We are now left to examine the Gersgorin discs of the second half rows

of the matrix M . Likewise, we denote this procedure as M3−M4. The discs

of Corollary A.3 are evaluated:

|z −Mii| ≤ ∑
j 6=i

pj

pi
|Mij|, 2N + 1 ≤ i ≤ 4N, 1 ≤ j ≤ 4N

⇒ |z − (M4)ii| ≤ Ri(M3) + Ri(M4)
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where Ri(M3) =
2N∑
j=1

pj

pi

∣∣∣(M3)ij

∣∣∣,Ri(M4) =
4N∑

j=2N+1
j 6=i

pj

pi

∣∣∣(M4)ij

∣∣∣ and

(M4)ii =
∑

j




KiA
−(1+1/k)
i A

−(1+1/k)
j σjσi·

·





λµ (Qi
ii)
− (

Qj
ii

)−
+ (1− λ) µ (Qi

ii)
− (

Qj
ii

)+
+

λ (1− µ) (Qi
ii)

+
(
Qj

ii

)−
+

(1− λ) (1− µ) (Qi
ii)

+
(
Qj

ii

)+ |λ ∈ [0, 1]








Following the same procedure as in [6], it can easily be shown that Ri(M3) ≥
Ri(M4)∀i.

The corresponding eigenvalue is guaranteed to be positive as long as:

z > 0 ⇐ (M4)ii > Ri(M3) + Ri(M4)

⇐ (M4)ii > max {2Ri(M3), 2Ri(M4)} = 2Ri(M3)

Choosing without loss of generality pi = p, 2N + 1 ≤ i ≤ 4N , we have after

some non-trivial calculations:

Ri(M3) =
2N∑

j=1

pi

p

∣∣∣∣∣∣∣∣

A
−2(1+1/k)
j σjKjGj

(
µ

(
Qj

ii

)−
+ (1− µ)

(
Qj

ii

)+
)

+

(AjAi)
−(1+1/k) σiKjGj

(
µ

(
Qi

jj

)−
+ (1− µ)

(
Qi

jj

)+
)

∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

|(M3)ij|
The fact that (M4)ii > 0 is guaranteed by Lemma 2.3 in [6]. This lemma also

guarantees that there is always a finite upper bound on the terms We have

(M4)ii > 2Ri(M3) = 2
2N∑
j=1

pj

p

∣∣∣(M3)ij

∣∣∣ ⇐
p > 4N

(M4)ii
max

j

{
pj

∣∣∣(M3)ij

∣∣∣
}

,

2N + 1 ≤ i ≤ 4N, 1 ≤ j ≤ 2N

We can now directly apply theorem B.6 to our case. We have proved that

v ≤ 0 ∀v ∈ ˙̃ϕ and that the only invariant subset of the set S = {q|0 ∈ ˙̃ϕ(q)}
is

{
qd = [qd1, ..., qdn]T

}
. Hence the nonsmooth version of LaSalle’s invariance

principle guarantees convergence to the destination points. ♦
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B Elements from Nonsmooth Analysis

In this section, we review some elements from nonsmooth analysis and Lya-

punov theory for nonsmooth systems that we use in the stability analysis of

Appendix A.

We consider the vector differential equation with discontinuous right-hand

side:

ẋ = f(x) (11)

where f : Rn → Rn is measurable and essentially locally bounded.

Definition B.1 [9]: In the case when n is finite, the vector function x(.) is

called a solution of (11) in [t0, t1] if it is absolutely continuous on [t0, t1] and

there exists Nf ⊂ Rn, µ(Nf ) = 0 such that for all N ⊂ Rn, µ(N) = 0 and for

almost all t ∈ [t0, t1]

ẋ ∈ K[f ](x) ≡ co{ lim
xi→x

f(xi)|xi /∈ Nf ∪N}

Lyapunov stability theorems have been extended for nonsmooth systems

in [24],[3]. The authors use the concept of generalized gradient which for the

case of finite-dimensional spaces is given by the following definition:

Definition B.2 [4]: Let V : Rn → R be a locally Lipschitz function. The

generalized gradient of V at x is given by

∂V (x) = co{ lim
xi→x

∇V (xi)|xi /∈ ΩV }

where ΩV is the set of points in Rn where V fails to be differentiable.

Lyapunov theorems for nonsmooth systems require the energy function

to be regular. Regularity is based on the concept of generalized derivative

which was defined by Clarke as follows:
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Definition B.3 [4]: Let f be Lipschitz near x and v be a vector in Rn. The

generalized directional derivative of f at x in the direction v is defined

f 0(x; v) = lim
y→x

sup
t↓0

f(y + tv)− f(y)

t

Definition B.4 [4]: The function f : Rn → R is called regular if

1) ∀v, the usual one-sided directional derivative f ′(x; v)exists and

2) ∀v, f ′(x; v) = f 0(x; v)

The following chain rule provides a calculus for the time derivative of the

energy function in the nonsmooth case:

Theorem B.5 [24]: Let x be a Filippov solution to ẋ = f(x) on an interval

containing t and V : Rn → R be a Lipschitz and regular function. Then

V (x(t)) is absolutely continuous, (d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃V (x) :=

⋂

ξ∈∂V (x(t))

ξT K[f ](x(t))

We shall use the following nonsmooth version of LaSalle’s invariance principle

to prove the convergence of the prescribed system:

Theorem B.6 [24] Let Ω be a compact set such that every Filippov solution

to the autonomous system ẋ = f(x), x(0) = x(t0) starting in Ω is unique and

remains in Ω for all t ≥ t0. Let V : Ω → R be a time independent regular

function such that v ≤ 0∀v ∈ ˙̃V (if ˙̃V is the empty set then this is trivially

satisfied). Define S = {x ∈ Ω|0 ∈ ˙̃V }. Then every trajectory in Ω converges

to the largest invariant set,M , in the closure of S.

30



1
u


2
u


3
u

4
u


5
u


1
d
q


2
d
q


3
d
q


4
d
q


5
d
q


1
R


2
R


3
R


4
R


5
R


1
T


2
T


3
T


4
T


5
T


Figure 1: A conflict scenario with five agents. Each agent i occupies a disc

Ri(black discs) of radius ri centered at qi. Each agent’s sensing zone Ti(white

discs) is centered at qi and has radius dC .
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Figure 3: The function βij for ri + rj = 1, dc = 4.
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Figure 6: Simulation A
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Figure 7: Simulation B
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